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Multimodal transcriptomics reveal 
neurogenic aging trajectories and 
age-related regional inflammation in the 
dentate gyrus
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The mammalian dentate gyrus (DG) is involved in certain forms of learning 
and memory, and DG dysfunction has been implicated in age-related 
diseases. Although neurogenic potential is maintained throughout life 
in the DG as neural stem cells (NSCs) continue to generate new neurons, 
neurogenesis decreases with advancing age, with implications for 
age-related cognitive decline and disease. In this study, we used single-cell 
RNA sequencing to characterize transcriptomic signatures of neurogenic 
cells and their surrounding DG niche, identifying molecular changes 
associated with neurogenic aging from the activation of quiescent NSCs 
to the maturation of fate-committed progeny. By integrating spatial 
transcriptomics data, we identified the regional invasion of inflammatory 
cells into the hippocampus with age and show here that e ar ly -o nset  
n eu ro in fl am mation decreases neurogenic activity. Our data reveal the 
lifelong molecular dynamics of NSCs and their surrounding neurogenic DG 
niche with age and provide a powerful resource to understand age-related 
molecular alterations in the aging hippocampus.

The hippocampus is a key brain structure underlying the encoding of 
declarative memories, such as biographical events and semantic facts, 
and is required for spatial learning1–6. The hippocampus also plays a 
pivotal role in mood control7–9. The dentate gyrus (DG), which is the 
hippocampal subregion that receives the main inputs from cortical 
association areas, is one of the few regions in the adult mammalian brain 
that harbors neurogenic neural stem cells (NSCs)10,11. NSCs produce new 
neurons throughout life that integrate into pre-existing neural net-
works, providing structural and functional plasticity to hippocampal 
circuits. Aging has been associated with reduced levels of neurogenesis 
and a decline in hippocampus-dependent learning and memory12–14. 

Moreover, several age-related diseases, including Alzheimer’s disease 
and major depression, have been linked to impaired plasticity of the 
aging hippocampus11,15–19. However, the molecular alterations that occur 
from early adulthood into old age within the DG niche, required to 
sustain lifelong neurogenesis and to ensure proper circuit function, 
remain poorly understood.

Recent progress in single-cell RNA sequencing (scRNA-seq) ena-
bled genome-wide transcriptome analyses of individual cells and 
proved to be a powerful tool in mice, monkeys and humans to iden-
tify developmental trajectories of the hippocampus and neurogenic 
cells within the DG20–26. Indeed, scRNA-seq was used in the other main 
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(Fig. 1a and Supplementary Fig. 2). For all timepoints, 16 slides of 24 
coronal sections were acquired, yielding 42,169 spots (Fig. 1f). Similar 
to scRNA-seq analyses within the DG, we identified six major clusters 
upon unsupervised clustering that were highly correlated to their 
anatomical identities by manual annotation (for example, cortex, hip-
pocampus, midbrain, thalamus, hypothalamus and white matter) and 
displayed featured gene expression patterns conserved across all ages 
(Fig. 1g and Extended Data Fig. 2a–c). Focusing on the hippocampus, 
spatial transcriptomes captured cell-type-specific expression pat-
terns of hippocampal subregions and could even distinguish between 
different highly similar cornu ammonis (CA) regions—for example, 
CA1 and CA2—in all three ages when aligned with previously obtained 
data (Fig. 1h and Extended Data Fig. 2d)35. We also performed cell type 
mapping using the Tangram algorithm36 to characterize the spatial 
distribution of dentate cell types within the DG (Extended Data Fig. 2e). 
Thus, the global transcriptional architecture of the DG and the regional 
identity of the mouse brain is maintained into old age, allowing for 
the in-depth analyses of differentially expressed genes (DEGs) with 
advancing age.

Neurogenic identities are preserved across the adult lifespan
Neurogenic lineages can be resolved into qNSCs, aNSPCs and NB/IMNs 
(Fig. 2a). Their abundance decreased with advancing age based on 
relative sequencing frequencies, a finding that was confirmed with his-
tological analyses (Fig. 2b and Extended Data Fig. 3a–g) and spatial tran-
scriptomics (ST) by the measurement of Igfbpl1, a neuroblast-specific 
gene (Extended Data Fig. 3h)34. qNSCs can be distinguished from 
aNSPCs based on the upregulation of astrocytic/stem cell markers 
(for example, Gfap and Aldoc) and the lack of cell cycle activity and 
neuronal specification (for example, Stmn2 and Calb2) (Fig. 2c). Gene 
regulatory networks (GRNs) of transcription factors (TFs) consisting 
of TFs, their co-factors and downstream targets were shown to detect 
subtle molecular variations more accurately than individual genes37,38. 
Indeed, we confirmed our annotation using individual marker genes by 
their corresponding GRNs (Extended Data Fig. 3i). Next, we constructed 
the lineage trajectory (pseudo-differentiation) of the entire neurogenic 
lineage and identified a molecular progression ordered from qNSCs to 
aNSPCs and NB/IMNs (Fig. 2d and Extended Data Fig. 3j) that correlated 
with gene expression programs associated with maintenance of quies-
cence and stemness (for example, Rfx4 and Sox9), NSC activation (for 
example, Ascl1 and Ybx1) and subsequent differentiation into neuronal 
progeny (for example, Neurod1 and Sema5a) (Extended Data Fig. 3k). 
Lineage progression was confirmed by graph edges representing shared 
nearest neighboring (SNN) cells that demonstrated the uni-directional 
lineage transition from qNSCs to aNSPCs and NB/IMNs (Fig. 2e).

qNSCs share several molecular markers with parenchymal astro-
cytes and have been assumed to undergo astrocytic transformation 
in the aging DG39,40. Thus, we analyzed if aging affects the molecu-
lar identity of qNSCs41,42. qNSCs and astrocytes occupied distinct 
UMAP spaces and displayed a robust number of DEGs (Extended Data 
Fig. 3l,m), indicative of distinct molecular profiles between these two 
populations. We classified gene expression patterns between qNSCs 
and astrocytes into three classes: genes expressed by astrocytes and 
qNSCs (that is, Gfap and Sox2); astrocyte-specific genes (that is, S100b 
and Igfbp2); and qNSC-specific genes (that is, Ascl1 and Stmn1) (Fig. 2f 
and Extended Data Fig. 3n). To examine whether qNSCs acquire astro-
cytic identity with advanced aging, we analyzed the expression of the 
Ca2+-binding protein S100b, chosen from the astrocyte-specific gene 
set, to perform immunofluorescent staining using two independent 
mouse lines to genetically target NSCs, Nestin-GFP and Gli1CreERT
2::R26-LSL-tdTOM43–45. NSCs were identified as GFP-expressing or 
tdTOM-expressing cells located in the subgranular zone (SGZ) with a 
single radial process oriented toward the molecular layer (ML). Across 
all three ages, NSCs were positive for both GFAP and SOX2 with only 
very few cells expressing S100b (Fig. 2g and Extended Data Fig. 3o). 

neurogenic niche of rodents—the subventricular zone (SVZ) lining the 
lateral ventricles—to characterize age-related changes in gene expres-
sion and to identify novel regulators of neurogenesis in the context of 
aging27,28. Despite its usefulness to identify molecular signatures of indi-
vidual cells, current scRNA-seq-based approaches require the destruc-
tion of tissues to isolate single cells or nuclei and, therefore, lack spatial 
information about the localization of sequenced cells within the ana-
lyzed brain area. To overcome this limitation, several approaches have 
been established that allow for genome-wide spatially resolved tran-
scriptomics or multiplexed in situ analyses of genes and/or proteins29,30. 
Spatially resolved transcriptomics have been used to study cellular 
interactions and regional differences of tissues in health and disease31,32. 
Furthermore, multiplexed, candidate-based approaches to analyze the 
expression of multiple proteins in individual cells have been used to 
identify regional and single-cell heterogeneity of age-related changes 
in the aging DG33. However, genome-wide data with sufficient spatial 
resolution are currently missing for the mammalian DG across the adult 
lifespan. In the present study, we used whole-cell scRNA-seq combined 
with spatially resolved transcriptomics in young adult, middle-aged 
and aged mice to characterize age-associated molecular changes in the 
DG. Our data reveal heterogeneity in the course of molecular changes 
associated with age; identify regional inflammatory cell invasion to be 
associated with age and to be sufficient to reduce neurogenic activity; 
and provide a powerful resource to reveal the mechanisms that are 
linked with aging in the mammalian hippocampus.

Results
Transcriptional architecture of the aging DG
We isolated whole cells from young adult (3-month-old (3 MO)), 
middle-aged (9–11 MO) and old (16–21 MO) C57Bl/6 mice of mixed sex 
to perform scRNA-seq (Fig. 1a and Supplementary Fig. 1). After filtering 
out poor-quality cells and doublets, we obtained transcriptomes of 
35,189 cells that clustered into 17 distinct cell populations (Extended 
Data Fig. 1a,b). Of note, some of them were peripheral immune cells 
that could represent either contamination or infiltration. Thus, we first 
focused on DG resident cell populations that consisted of 34,732 cells 
from 11 distinct cell populations (Fig. 1b). These cell populations were 
well separated by their global transcriptome (Fig. 1c). Top marker genes 
for each cell type were summarized (Fig. 1d and Supplementary Table 2). 
Relative proportions of identified cells were dependent on age, with a 
substantial decrease of cells of the neurogenic lineage—for example, 
quiescent neural stem cell (qNSC), active neural stem/progenitor cell 
(aNSPC) and neuroblast/immature neuron (NB/IMN)—as expected 
(Fig. 1e). Despite the proportional difference, all DG resident popula-
tions partitioned into distinct uniform manifold approximation and 
projection (UMAP) spaces after re-clustering according to individual 
ages and displayed conserved transcriptional structure (Extended 
Data Fig. 1c,d). Sex only mildly influenced the relative frequency 
of sequenced cell populations while the transcriptional structure 
remained conserved (Extended Data Fig. 1e–g). Proportional changes 
of distinct cell populations may be used to reflect relative changes in 
cellular compositions (even though absolute sequenced cell numbers 
cannot be used to draw conclusions regarding the composition of the 
tissue given differences in dissociation properties). However, such 
interpretation may be affected by differential dissociation efficiencies 
in different tissue and cell types. Thus, we used proportional changes in 
this study only as the starting point for further tissue validation using 
immunohistochemistry. To this end, we performed tissue validation 
of several cell types, including all three neurogenic populations and 
microglia. These histological results were consistent with scRNA-seq 
data. Robustness of annotation was further confirmed by high homol-
ogy with previously obtained perinatal, juvenile and adult hippocampal 
scRNA-seq data34 (Extended Data Fig. 1h).

In parallel, we obtained spatial transcriptomes throughout the 
adult lifespan using cage littermates of the scRNA-seq experiment 
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Fig. 1 | Multimodal transcriptomics of the mouse hippocampal neurogenic 
niche during aging. a, Schematic illustration summarizing experimental design 
of the multimodal transcriptional atlas of mouse hippocampal neurogenic niche. 
b, UMAP visualization of all DG resident cells in the scRNA-seq dataset.  
c, Hierarchical clustering of all DG resident cells showing distinct transcriptional 
profiles among all 11 cell types. d, Feature plots of selected genes showing 
cell-type-specific expression profiles of all DG resident cells. Color gradient 
indicates the log-normalized gene expression level. e, Relative proportions of all 

cell populations in the mouse DG. f, UMAP visualization of all spots of the whole 
mouse brain in the ST dataset. g, Spatial projection of all spots into each age.  
h, Spatial mapping of annotated hippocampal cell populations from the  
Yao et al.35 dataset to the current ST dataset using the Seurat CCA tool. Computed 
enrichment score of each cell type (color gradient) to hippocampus shown over 
the H&E images. CCA, canonical correlation analysis; C–R, Cajal–Retzius;  
MO, months old; OPC, oligodendrocyte precursor cell; PN, pyramidal neuron; 
SMC, smooth muscle cell.
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Fig. 2 | Neurogenic programs are preserved in the aging DG. a, UMAP 
visualization of the whole neurogenic lineages. b, Relative proportions of  
each neurogenic cell type in the mouse DG. c, Expression of cell-type-specific 
genes. Color gradient indicates the log-normalized gene expression level.  
d, Heatmap shows gene expression dynamics of neurogenic lineage progression 
across pseudotime. Numbers in circle indicate gene modules. Color gradient 
indicates the z-score of gene expression. e, SNN graphs of the whole neurogenic 
populations (left) and the individual age (right) showing that the uni-directional 
neurogenic trajectory is preserved in advancing ages as well as the temporal 

expression patterns of individual pseudotime modules. f, Violin plots showing 
three classes of DEGs between astrocytes and qNSCs. Upper, shared genes 
include Slc1a3, Sox2 and Gfap; middle, astrocyte-specific genes include S100b, 
Kcnk1 and Igfbp2; lower, qNSC-specific genes include Ascl1, Stmn1 and Cd9. 
g, Immunofluorescent staining showing that most radial NSCs (GFAP+SOX2+) 
labeled by Nestin-GFP in the SGZ across all three ages do not overlap with 
astrocytic marker S100b (n = 3 mice for each condition). Arrowheads indicate the 
soma of qNSCs. Scale bars, 20 μm. MO, months old.
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Thus, our data show that qNSCs retain their neurogenic potential 
and distinct molecular profiles compared to parenchymal astrocytes 
(despite stable S100b expression levels, astrocytic transformation of 
NSCs with old age cannot be ruled out).

Neurogenic aging is a lifelong and multi-step process
Adult neurogenesis is a multi-step process, consisting of the activation 
of qNSCs and differentiation of their fate-committed progeny11,46. We 
previously used intravital imaging to define age-dependent cellular 
alterations of hippocampal neurogenesis and found, in accordance 
with previous snapshot-based analyses22,23, deeper quiescence, a more 
frequent return to long-term quiescence and extended cell division 
length47. To identify molecular mechanisms of how aging affects dis-
tinct cell types of the neurogenic lineage (hereafter referred to as neu-
rogenic aging), we performed pseudotime trajectory analysis of qNSCs 
and their fate-committed progeny. First, we selected the qNSC cluster 
from all analyzed timepoints and recalculated their pseudotime values 
to construct the qNSC-only trajectory (Fig. 3a–c). However, it is impor-
tant to note that the unbiased isolation approach used here does not 
allow to distinguish long-term self-renewing versus more exhausting 
qNSC pools23,45. The qNSC trajectory displayed age-dependent dif-
ferential distribution (Fig. 3d) and mirrored gene expression dynam-
ics of the whole neurogenic trajectory (including qNSC, aNSPC and  
NB/IMN): astrocytic/progenitor genes (for example, Mfge8 and Luzp2) 
were downregulated and cell cycle and neuronal genes (for example, 
Ccnd2 and Stmn2) were upregulated along the qNSC trajectory (Fig. 3e).  
A molecular cascade of TFs underlying neurogenic activation was pre-
viously identified, showing that a list of TFs for the maintenance of 
quiescence is highly expressed in qNSCs, whereas another list of TFs 
for activation and neurogenesis is upregulated in aNSPCs48. Indeed, we 
first curated and mapped these two lists of TFs onto the qNSC trajectory 
to validate that the expression of TFs upregulated and downregulated 
upon qNSC activation increased and decreased along the qNSC tra-
jectory, respectively (Extended Data Fig. 4a). Then, we further found 

that the qNSC trajectory across the lifespan validated the expression 
dynamics of this molecular cascade where qNSCs from advancing ages 
remained in deeper quiescence compared to younger qNSCs (Fig. 3d,f). 
Thus, we refer to the qNSC trajectory as the pseudo-activation trajec-
tory. This result was further supported by a random forest regression 
model in which we took the whole neurogenic lineage as the training 
dataset to query the qNSC population and found a clear difference 
between young and aged qNSCs in terms of their differentiation state 
(Fig. 3g–i). Thus, our findings identify molecular changes in aging 
qNSCs that may underlie previously characterized functional altera-
tions of qNSC behavior47.

One major limitation of pseudotime-based trajectory analyses 
is that they do not necessarily report the same changes that would 
be observed with real-time progression49. To overcome this, we con-
structed the real-time gene expression trajectory (Methods) to exam-
ine the intersection between real-time and pseudotime trajectories 
(Extended Data Fig. 4b). In brief, we first used soft clustering to iden-
tify the temporal trajectory of gene expression signatures ordered 
along biological ages (for example, from young to middle-age and old;  
Supplementary Table 3). This clustering approach allows any data 
point to have more than one cluster label, offering the flexibility for 
the nuanced representation of imprecise data50. We then intersected 
gene modules ordered in real-time series with gene modules identified 
using the Monocle algorithm. Indeed, the real-time upregulation trajec-
tory largely overlapped with the qNSC-enriched pseudotime module 
(module 1), whereas the real-time downregulation trajectory largely 
overlapped with fate-committed population-enriched pseudotime 
modules (modules 3 and 4) (Extended Data Fig. 4b). These data fur-
ther suggest that qNSCs undergo molecular changes with advancing 
age in terms of their activation and differentiation states, identifying 
pathways that may be targeted in future experiments to ameliorate 
age-dependent changes of qNSCs.

Gene sets that detect the quiescent state of NSCs at different ages 
are currently missing. Thus, we generated a gene signature, hereafter 

Fig. 3 | Neurogenic lineages undergo functional aging with biological aging. 
a, Working hypothesis of biological aging of qNSCs associated with functional 
aging. b, Selection of qNSCs from the whole neurogenic lineages. c, Heatmap 
shows gene expression dynamics of qNSCs across pseudotime. Numbers in circle 
indicate gene modules. Color gradient indicates the z-score of gene expression. 
d, Pseudotemporal ordering of qNSCs showing differential distribution along 
the pseudotemporal axis (one-way ANOVA, ****P < 0.0001). e, Pseudotemporal 
ordering of selected gene expression (Stmn1, Ccnd2, Mfge8 and Luzp2) related  
to neurogenic activation. Shading indicates 95% confidence interval.  
f, Pseudotemporal ordering of selected GRN activity from the Shin et al.47 TF list 
related to neurogenic activation (upper, upregulation: Sox11, Sox4, Hmgb3 and 
Ybx1; lower, downregulation: Bhlhe41, Hes1, Rfx4 and Sox2). Shading indicates 
95% confidence interval. g–i, A random forest regression model was trained to 
predict the differentiated state of qNSCs from different ages. g, A core of  
100 genes was identified in terms of neurogenic lineage progression state.  
h, Differentiation score of the whole neurogenic lineages as the training input 
(qNSC: 0.1308 ± 0.0042; aNSPC: 0.5490 ± 0.0049; NB/IMN: 0.8199 ± 0.0057; 
two-tailed unpaired t-test with Welch’s correction, ****P < 0.0001 between qNSC 
and aNSPC, ****P < 0.0001 between aNSPC and NB/IMN, ****P < 0.0001 between 
qNSC and NB/IMN). i, Differentiation score of qNSC as the query output (young: 
0.1540 ± 0.0051; middle-age: 0.1235 ± 0.0072; old: 0.1044 ± 0.0079; two-tailed 
unpaired t-test with Welch’s correction, ***P = 0.0007 between young and 
middle-age, NS P = 0.0757 between middle-age and old, ****P < 0.0001 between 
young and old). Box plots depict the median and interquartile range, with 
whiskers indicating minimum and maximum values. j–o, In situ hybridization of 
candidate genes verifies the NAS. j, Representative images of RNAscope probes 
Mfge8 and Luzp2 together with labeling of radial NSCs by Gli1-CreERT2::tdTOM 
mouse line. k, Quantification of the number of Mfge8 puncta in radial NSCs 
(young: 30 ± 1 puncta; middle-age: 35 ± 1 puncta; old: 43 ± 1 puncta; two-tailed 
unpaired t-test with Welch’s correction, **P = 0.0089 between young and middle-
age, ***P = 0.0003 between middle-age and old, ****P < 0.0001 between young 
and old). l, Quantification of the number of Luzp2 puncta in radial NSCs (young: 

12 ± 1 puncta; middle-age: 18 ± 1 puncta; old: 18 ± 1 puncta; two-tailed unpaired 
t-test with Welch’s correction, ****P < 0.0001 between young and middle-age, NS 
P = 0.5875 between middle-age and old, ****P < 0.0001 between young and old). 
m, Representative images of RNAscope probes Sox11 and Insm1 together with 
labeling of radial NSCs by Gli1-CreERT2::tdTOM mouse line. n, Quantification 
of the number of Sox11 puncta in radial NSCs (young: 5 ± 1 puncta; middle-age: 
1 ± 0 puncta; old: 1 ± 0 puncta; two-tailed unpaired t-test with Welch’s correction, 
****P < 0.0001 between young and middle-age, NS P = 0.3867 between middle-
age and old, ****P < 0.0001 between young and old). o, Quantification of the 
number of Insm1 puncta in radial NSCs (young: 3 ± 0 puncta; middle-age: 1 ± 0 
puncta; old: 1 ± 0 puncta; two-tailed unpaired t-test with Welch’s correction, 
***P = 0.0002 between young and middle-age, **P = 0.0088 between middle-
age and old, ****P < 0.0001 between young and old). p, Selection of aNSPCs and 
NB/IMNs (fate-committed populations). q, Upper, visualization of monocle 
trajectories of the neuronal fate-committed populations; lower, projection 
of pseudotime value in the UMAP space. r, Heatmap shows gene expression 
dynamics of fate-committed populations across pseudotime. Numbers in 
circle indicate gene modules. Color gradient indicates the z-score of gene 
expression. s, Gene expression dynamics along pseudotemporal trajectory of 
selective genes representing putative active radial NSC (Hopx and Gfap), IPC 
(Eomes and Sox2), NB (Neurod1 and Neurod2) and IMN (Camk2b and Sema5a) 
stages. Shading indicates 95% confidence interval. t, Pseudotemporal ordering 
of fate-committed populations showing differential distribution along the 
pseudotemporal axis (one-way ANOVA, ****P < 0.0001). u,v, Projection of GRN 
activity in the pseudotemporal trajectory of selective TFs. Gray bar indicates 
putative transition zone between aNSPC and NB/IMN. u, GRN activity of Sox2 and 
Ascl1 along the pseudotemporal trajectory. Upper, visualization by the transition 
from aNSPC to NB/IMN; lower, visualization by individual ages. v, GRN activity of 
Neurod1 and Neurod2 along the pseudotemporal trajectory. Upper, visualization 
by the transition from aNSPC to NB/IMN; lower, visualization by individual ages. 
Shading indicates 95% confidence interval. Max, maximum; NS, not significant. 
All data are presented as mean ± s.e.m. Scale bars, 5 μm.
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referred to as Neurogenic Aging Signature (NAS), by selecting genes 
overlapping between the real-time and pseudotime modules to reflect 
both real-time and pseudotime changes in qNSCs (Extended Data 
Fig. 4c,d and Methods). We found that qNSCs from different ages 
could indeed be ordered by both upregulation and downregulation 
signatures, suggesting that qNSCs undergo constant age-dependent 
molecular changes (Extended Data Fig. 4e,f). Interestingly, the propor-
tion of TFs was higher in the downregulation signature compared to 
the upregulation signature, indicating that reduced ability of activation 
might represent a key property of neurogenic aging (Extended Data 
Fig. 4g)14,51. Moreover, using ST, we noticed that the NAS upregulation 
signature was constitutively expressed in the ML, whereas the NAS 
downregulation signature was constitutively expressed in the neuronal 
layer of hippocampus, in line with their functional annotation that the 
upregulation and downregulation signatures are mostly related to 
glia-related and neuronal-related functions (Extended Data Fig. 4f,h). 
These results were in line with their functional annotation that the 
upregulation and downregulation signatures largely overlapped with 
astrocyte-enriched and qNSC-enriched genes, respectively. We further 
confirmed it by dissecting astrocyte-enriched and qNSC-enriched 
genes (Extended Data Fig. 3m) that largely overlapped with the upreg-
ulation and downregulation signatures, respectively, and showed 
age-dependent expression changes (Extended Data Fig. 4i,j). Our 
results highlight that qNSCs enhance their molecular features of the 
glial identity, whereas their gene expression features related to neu-
ronal differentiation decrease with age.

We validated the NAS using RNA in situ hybridization in 
Gli1CreERT2::R26-LSL-tdTOM mice targeting qNSCs. We analyzed the 
expression of Mfge8 and Luzp2 from the NAS upregulation signature 
and Sox11 and Insm1 from the NAS downregulation signature and veri-
fied their age-dependent regulation of expression (Fig. 3j–o). Further-
more, we tested the NAS using a published dataset that comprises three 
early developmental stages—perinatal (embryonic (E) day 16.5 to post-
natal (P) day 5), juvenile (P18–P23) and young adult (4 MO)34—and found 
that, even at earlier ages, qNSCs showed similar age-dependent relative 
changes in the NAS value, further demonstrating that hippocampal 
NSCs undergo continuous changes from early development to adult-
hood to old age34 (Extended Data Fig. 4k,l). Indeed, qNSCs could still be 
identified in the 2-year-old mouse DG but with very limited neurogenic 
output (Extended Data Fig. 4m,n). Our findings provide insights into 
the age-dependent decrease of hippocampal neurogenesis that appear 
to be mainly driven by a constant decrease in gene expression profiles 
required for qNSC activation.

After cell cycle entry, neurogenic cells undergo fate commitment 
and eventually give rise to granule cells (GCs). We and others previously 
revealed that aging strongly affects the differentiation and maturation 
of neuronal progeny, but little is known about the effects of aging 
on molecular mechanisms regulating neural differentiation47,52. We 
analyzed the molecular programs regulating neural differentiation 
of fate-committed neural progeny (Fig. 3p) and re-clustered aNSPCs 
and NB/IMNs after regressing out cell cycle genes to remove the influ-
ence of cell cycle state on cell differentiation. Cells were ordered into 
a single trajectory (Fig. 3q,r), in which gene modules related to radial 
NSC identity (module 1—for example, Gfap and Hopx), intermediate 
progenitor cell (IPC) identity (module 2—for example, Eomes and Sox2), 
neuronal specification (module 3—for example, Neurod1 and Neurod2) 
and maturation (module 4—for example, Camk2b and Sema5a) were 
sequentially expressed, reflecting putative stages of active NSCs and 
IPCs (collectively termed aNSPCs) as well as neuroblasts and immature 
neurons (collectively termed NB/IMNs) (Fig. 3s). Notably, different 
ages showed differential distribution along the pseudotime axis, cor-
relating with the transition from a progenitor state (module 2) to a 
neuronal state (module 3) (Fig. 3t). Neuronal differentiation requires 
the orchestration of TF regulatory networks to transition from progeni-
tor/glial to neuronal cell fate53. We speculated that the TF regulatory 

networks for the transition from progenitor state (module 2) to neu-
ronal identity (module 3) could be altered with advancing age. Thus, 
we constructed GRNs of TFs and investigated their dynamics along a 
pseudotime trajectory. In total, we constructed GRNs of 37 TFs among 
all 112 TFs in modules 2 and 3 (Extended Data Fig. 5a and Supplementary 
Table 4). Interestingly, select TFs in module 2 (for example, Sox2 and 
Hes6) displayed a lag of downregulation in aged lineages, whereas many 
other TFs of module 2 shared similar temporal dynamics (for example, 
Neurod1 and Neurod2) (Fig. 3u,v and Extended Data Fig. 5b,c). This 
finding was confirmed using protein expression analyses of newborn 
neuronal progeny (DCX+NEUROD1+) co-stained with SOX2 where we 
found that the fraction of SOX2+ newborn neuronal progeny strongly 
increased with age (Extended Data Fig. 5d,e). Thus, our results identify 
altered progression from the progenitor state to a committed neuronal, 
GC identity in the aged hippocampus (Extended Data Fig. 5f).

Together, our data reveal that aging impairs the activation of 
qNSCs, as suggested previously in the DG of younger mice22,23, but 
also affects lineage progression of fate-committed neural progeny. 
Age-dependent molecular alterations affect the entire neurogenic 
lineage, from qNSCs to immature neurons, that are detectable at 
middle-age but become more pronounced in the aged DG.

Age-dependent changes of the neurogenic niche in the DG
The DG stem cell niche provides a permissive environment allowing 
to respond to stimuli causing the activation of qNSCs and subsequent 
maturation of their neuronal progeny54,55; however, little is known about 
molecular alterations of the hippocampal niche during aging11,55. Thus, 
we characterized the expression profiles of main hippocampal niche 
populations—astrocytes, vasculature and microglia—that have been 
reported to play critical roles not only in the regulation of neurogenesis 
but also in various neurodegenerative diseases11,56–59.

We observed two molecularly distinct subpopulations of astro-
cytes, hereafter referred to as Astro 1 and Astro 2 (Fig. 4a–c and 
Extended Data Fig. 4). All astrocytes highly expressed pan-astrocytic 
markers (for example, Gfap, S100b and Hopx) (Figs. 1d and 4c). Astro-
cyte subpopulations expressed distinct sets of genes (for example, 
Astro 1: Kcnk1 and Thrsp; Astro 2: Sparc and Nnat) (Fig. 4c). The rela-
tive proportion of the two astrocyte subpopulations, with most rep-
resenting Astro 1, remained stable across the adult lifespan (Fig. 4b 
and Extended Data Fig. 6a). Notably, deconvoluted ST data revealed 
regional heterogeneity across astrocyte subpopulations: Astro 1  
mainly distributed in the dorso-medial DG, whereas Astro 2 was 
enriched in the ventro-lateral DG (Extended Data Fig. 6b). Interest-
ingly, this regional pattern mirrored two subtype-specific genes, Kcnk1 
of Astro 1 and Nnat of Astro 2, indicating potential differential functions 
across different hippocampal subregions. To validate our findings, we 
re-analyzed a previously published dataset profiling the mouse DG and 
were able to project Astro 1 and Astro 2 identities onto adult astrocytes 
that have been described using scRNA-seq34 (Extended Data Fig. 6c–f). 
Thus, astrocyte populations remain stable in the aging DG.

The vascular compartment comprises three main cell types—
endothelial cells, pericytes and smooth muscle cells (together known 
as mural cells)—that are essential for the formation of the blood–brain 
barrier (BBB) in the central nervous system60. To examine their molecu-
lar profiles and abundances, we re-clustered the three vascular popula-
tions (Fig. 4d–f). The relative fraction of each cell type remained similar 
at each age, indicating a stable cellular composition of the vascular 
network throughout lifetime (Fig. 4e). Previous work showed molecular 
zonation of vascular cells in the central nervous system, with cellular 
phenotypes gradually changing along an anatomical axis59,61. In line 
with these studies, we observed that both endothelial and mural cells 
displayed clear molecular zonation based on gene expression profiles 
fitting an anatomical axis (hereafter called pseudo-zonation), although 
the cellular diversity within each cell type of the whole vascular com-
partment was limited (Extended Data Fig. 6f,g).
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Microglia are brain resident immune cells that are essential for 
the maintenance of neurogenic cells62. Notably, the proportion of 
microglia increased with advancing age as judged by relative sequenc-
ing frequency (Fig. 1e), which we confirmed by measuring the num-
ber and IBA-1 coverage in the aged DG using immunohistochemistry 
(Fig. 4g–i). After re-clustering, we identified three subpopulations: 
Microglia 1, 2 and 3 (Fig. 4j). Unlike astrocytes or cells of the vascula-
ture, microglial cells showed a selective enrichment of age-dependent 
subpopulations, with an increase in relative proportions of Microglia 
2 and Microglia 3 (Fig. 4k). In addition to pan-microglia markers, such 
as Cx3cr1 and C1qa, Microglia 2 preferentially expressed cell cycle 
genes (for example, Mcm4 and Mcm5), and Microglia 3 showed an 

upregulation of genes related to various inflammatory responses (for 
example, Ifit3 and Ifitm3) (Fig. 4l), representing putative proliferative 
and inflammatory subpopulations, respectively. We confirmed the 
age-dependent change in microglia subpopulations (that is, Micro-
glia 2 and 3) by using immunofluorescent staining against the micro-
glia markers IBA-1, Ki67 and STAT1 (Extended Data Fig. 6k–n), in line 
with previous work that analyzed alterations of microglia in the aging  
mouse brain63.

Although the cellular composition of astrocytes and cells of the  
vasculature remains relatively stable during aging, there is an increase  
in both the number and diversity of microglia in the aged DG. Given  
that microglia play a pivotal role in the immune surveillance during 

Astrocyte 1
Astrocyte 2

UMAP_1

U
M

AP
_2

a

0

25

50

75

100
b

Pa
n-

as
tr

oc
yt

e
As

tr
oc

yt
e 

1
As

tr
oc

yt
e 

2

Young Middle Old

Young Middle Old

15

20

25

N
um

be
r o

f
m

ic
ro

gl
ia

 ×
10

3

NS **
***

Microglia 1
Microglia 2
Microglia 3

UMAP_1

U
M

AP
_2

j

k

0

5

10

15

Young

Middle
Old

Fr
ac

tio
n 

of
 c

el
ls

 (%
)

l
Cx3cr1 C1qa

Mcm4 Mcm5

Ifit3 Ifitm3

Pa
n-

m
ic

ro
gl

ia
M

ic
ro

gl
ia

 2
M

ic
ro

gl
ia

 3

h

i

g

Yo
un

g
M

id
dl

e-
ag

e
O

ld

IBA-1

IBA-1

IBA-1

0

5

10

15

20

C
ov

er
ag

e 
of

m
ic

ro
gl

ia
 (%

)

* ***
***

Slc1a3 Sox2

Thrsp Kcnk1

Sparc Nnat

UMAP_1

U
M

AP
_2 Endothelial

Pericyte
SMC

d

0

20

40

60

80

100e

En
do

th
el

ia
l c

el
l

Pe
ric

yt
e

SM
C

Cldn5 Pecam1

Vtn Rgs5

Tagln Acta2

Young

Middle
Old

Fr
ac

tio
n 

of
 c

el
ls

 (%
)

Young

Middle
Old

Fr
ac

tio
n 

of
 c

el
ls

 (%
)

c f

4.0

3.0
2.4
1.6

2.5

1.5

3.0

1.5

3.0

1.5

3.0
1.5

4.5

3.6

5
2

4
2

2.7

1.5

5

2

2.5

1.5

3.75
3.25

1.4

0.8

2.0

0.8

1.4

0.8

2.1

0.9

4.6
4.2

Astrocyte 
(7,004 cells)

Vascular 
(3,239 cells)

Microglia 
(17,060 cells)

Fig. 4 | Age-dependent changes of main populations in the mouse DG.  
a, UMAP visualization of the heterogeneity of astrocytes. b, Composition of each 
astrocyte subpopulation in the mouse DG. c, Selected expression of subtype-
specific genes of astrocytes. Color gradient indicates the log-normalized gene 
expression level. d, UMAP visualization of the entire vascular compartment. 
e, Composition of each cell type within the vascular compartment in the 
mouse DG. f, Selective expression of cell-type-specific genes of the vascular 
compartment. Color gradient indicates the log-normalized gene expression 
level. g, Representative images of IBA-1+ microglia in the DG of young (upper), 
middle-aged (middle) and old (lower) mice showing increased number and 
signal coverage with aging. h,i, Quantification of the number of IBA-1+ microglia 
(young: 16,940 ± 221.0 cells; middle-age: 17,636 ± 250.7 cells; old: 20516 ± 536.5 

cells; two-tailed unpaired t-test with Welch’s correction, NS P = 0.0646 between 
young and middle-age, **P = 0.0011 between middle-age and old, ***P = 0.0003 
between young and old) (h) and the coverage of IBA-1 signal in the DG (young: 
7.317 ± 0.3516%; middle-age: 8.550 ± 0.2837%; old: 14.01 ± 0.9075%; two-tailed 
unpaired t-test with Welch’s correction, *P = 0.0220 between young and middle-
age, ***P = 0.0006 between middle-age and old, ***P = 0.0001 between young 
and old) (i). j, UMAP visualization of the heterogeneity of microglia. k, Relative 
proportions of each subtype of microglia in the mouse DG. l, Selective expression 
of subtype-specific genes of different microglia subpopulations in the UMAP 
space. Color gradient indicates the log-normalized gene expression level. NS, 
not significant; SMC, smooth muscle cell. All data are presented as mean ± s.e.m. 
Scale bars, 100 μm.
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aging and degenerative diseases64,65, we further investigated the global 
cues of the entire DG niche and their relevance to neurogenic aging.

Core Aging Signature in the aging DG
Next, we aimed to identify gene sets reporting age-dependent 
molecular changes of the entire niche. To this end, we employed two 
approaches to quantify differential gene expression profiles: pairwise 
comparisons (Extended Data Fig. 7) and real-time trajectories (Fig. 5). 
We first performed pairwise comparisons for each cell type between 

each age to calculate DEGs (Extended Data Fig. 7a). In agreement with 
previous studies66, the number of DEGs between the neighboring time-
points was smaller than the number of DEGs across multiple time-
points (that is, young versus old) (Extended Data Fig. 7b), suggesting 
that gradual changes develop into significance across multiple time-
points. We observed similar results when we performed pairwise com-
parisons for the entire DG in the ST dataset (Extended Data Fig. 7c,d). 
Nevertheless, classical pairwise comparisons are inherently limited 
by several factors, such as number of cells sequenced and number of 
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and old; t = 20.92, ****P < 0.0001 between young and old) (g); and microglia (two-
tailed unpaired t-test with Welch’s correction; CAS-Up: t = 17.23, ****P < 0.0001 
between young and middle-age; t = 4.486, ****P < 0.0001 between middle-age 
and old; t = 15.61, ****P < 0.0001 between young and old; CAS-Down: t = 18.94, 
****P < 0.0001 between young and middle-age; t = 17.16, ****P < 0.0001 between 
middle-age and old; t = 31.36, ****P < 0.0001 between young and old) (h). Upper, 
ridge plot showing CAS-Up; lower, ridge plot showing CAS-Down score in each 
cell type. qNSC, quiescent neural stem cell; GC, granule cell; EC, endothelial cell; 
NS, not significant.
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Fig. 6 | Age-dependent accumulation of T cells in the mouse hippocampus. 
a, Representative images showing age-dependent accumulation of T cells in 
the mouse hippocampus. b, Representative images showing age-dependent 
accumulation of IFN-γ-responding (STAT1+) cells in the mouse hippocampus.  
c, Quantitation of T cells (upper) in hippocampus among different ages (young: 
20 ± 9 cells; middle-age: 374 ± 63 cells; old: 1,055 ± 271 cells; two-tailed unpaired 
t-test with Welch’s correction, **P = 0.0023 between young and middle-age, 
*P = 0.0346 between middle-age and old, **P = 0.0042 between young and old) 
and STAT1+ cells (lower) in hippocampus among different ages (young: 28 ± 6 cells; 
middle-age: 373 ± 82 cells; old: 1,297 ± 344 cells; two-tailed unpaired t-test with 
Welch’s correction, **P = 0.0054 between young and middle-age, *P = 0.0363 
between middle-age and old, *P = 0.0102 between young and old). d, Illustration 
of hippocampal subregions. e, Radar plots showing the spatial distribution of  
T cells (left) (young: hilus 5.0%, GCL 5.0%, ML 27.5%, SLM 41.3%, SR 11.3%, SP 7.5%,  
SO 2.4%; middle-age: hilus 5.6%, GCL 3.2%, ML 11.5%, SLM 47.2%, SR 16.3%, SP 8.5%,  
SO 7.7%; old: hilus 4.5%, GCL 6.9%, ML 11.5%, SLM 43.9%, SR 17.4%, SP 8.9%,  

SO 6.9%) and STAT1+ cells (right) (young: hilus 0.0%, GCL 7.3%, ML 4.2%,  
SLM 28.1%, SR 9.4%, SP 20.8%, SO 30.2%; middle-age: hilus 5.4%, GCL 7.8%,  
ML 14.8%, SLM 37.9%, SR 13.2%, SP 7.8%, SO 13.1%; old: hilus 3.0%, GCL 5.7%,  
ML 12.2%, SLM 43.9%, SR 16.1%, SP 8.8%, SO 10.3%) within hippocampal 
subregions. f, Correlation between the number of T cells and STAT1+ cells in the 
old hippocampus. g, Rendered images showing correlated spatial distribution of 
T cells (blue dots) and STAT1+ cells (red dots) in the old mouse hippocampus.  
h, Representative images showing that most T cells in the old mouse DG were 
CD8+ (n = 10 mice). i, Representative images showing the inflammatory  
and cytotoxic phenotypres of CD8+ T cells in the old mouse DG (n = 4 mice).  
j, Schematic illustration of the pro-inflammatory and cytotoxic phenotypes of 
T cells in the old mouse hippocampus. GCL, granule cell layer; ML, molecular 
layer; SLM, stratum lacunosum-moleculare; SO, stratum oriens; SP, stratum 
pyramidale; SR, stratum radiatum. All data are presented as mean ± s.e.m.  
Scale bars, 100 μm (20 μm zoom-in panels) (a,b,d) and 20 μm (5 μm zoom-in 
panels) (h–l).

http://www.nature.com/natureneuroscience


Nature Neuroscience | Volume 28 | February 2025 | 415–430 425

Resource https://doi.org/10.1038/s41593-024-01848-4

genes detected, that largely influence obtained P values (Extended 
Data Fig. 7a). Furthermore, pairwise comparisons are not able to fully 
capture dynamic changes of gene expression patterns over multiple 
timepoints66.

Thus, we took an alternative approach to create gene expres-
sion signatures using real-time ordering67,68. We first calculated genes 
ordered in temporal sequence (that is, young to middle-age to old) 
of the entire DG derived from the ST data. We then chose the genes 
in temporal order from the main neurogenic niche populations that 
overlapped with the entire DG and were shared by at least two niche 
populations (Fig. 5a and Methods). We curated one core gene set of 
95 genes for the upregulation signature (hereafter referred to as Core 
Aging Signature (CAS)-Up signature) and another core gene set of 
248 genes for the downregulation signature (hereafter referred to as 
CAS-Down signature) (Fig. 5b). These genes represented a minimal 
number of genes showing the same trend across multiple cell types 
and within the entire DG (1.5% and 3.6% of all regulated genes). Gene 
set enrichment analysis (GSEA) revealed that top Gene Ontology (GO) 
terms enriched with the CAS-Up signature were related to various 
inflammatory responses, whereas the top GO terms enriched with the 
CAS-Down signature were related to neuronal physiology (Fig. 5c). 
CAS-Up and CAS-Down were able to detect age-dependent changes 
already in middle-aged mice (Fig. 5d–h). Indeed, we cross-validated our 
CASs using a published dataset of aging hippocampus and SVZ of the 
lateral ventricle27,69 (Extended Data Fig. 7e–h). We further confirmed the 
robustness of the CAS by using a generalized linear model (GLM)-based 
machine learning strategy and found that, in most cell types, the pre-
dicted cellular age was consistent with their original age (Extended Data 
Fig. 7i,j and Methods). Of note, some cell types could be more robustly 
classified than others: for example, qNSC has relatively non-specific 
prediction of the old age, suggesting an early transcriptomic alteration 
that made it challenging to separate middle-age from old age. This find-
ing is in agreement with gene expression analyses within the population 
of qNSCs, showing that qNSCs already undergo substantial molecular 
changes at middle-age (Fig. 3), and also corroborates previous data 
suggesting that qNSCs undergo relatively early molecular aging22.

Regional inflammation is a hallmark of DG aging
Top enriched GO terms of CAS-Up were related to T-cell-mediated 
inflammation (Fig. 5c). Even though the transcriptomic analyses had 
been limited to cells that are unambiguously of DG origin, we detected 
several immune populations, including T cells, that may have infiltrated 
brain parenchyma (Extended Data Figs. 1a and 8a). Thus, we further 
analyzed their transcriptional profile and found that T cells, mainly 
detected in the aged DG (Extended Data Fig. 8b), were mostly CD8+, 
expressing markers of the effector memory phenotype (Cd62L−Cd44+) 
and showed high expression levels of genes associated with tissue reten-
tion (Itga4 and Itgal) and activation (Cd69 and Xcl). These findings are 
fully in line with recent studies showing age-dependent accumulation 
of T cells in multiple brain regions, including the SVZ27,70,71 (Extended 
Data Fig. 8c). Notably, T cells in aged mice showed upregulation of IFN-γ 
and Pdcd1, genes that are nearly absent in aged T cells of the peripheral 

blood27, indicative of brain resident, inflammatory T cells (Extended 
Data Fig. 8d). Using immunofluorescent staining, we confirmed the 
emergence of T cells and STAT1+ cells that respond to their key cytokine, 
IFN-γ, in the aged mouse hippocampus (Fig. 6a–g and Extended Data 
Fig. 8e–g). Notably, accumulation of T cells was not unique to the DG 
but, rather, detected across the entire hippocampus and white matter 
tracts. Although most of the age-dependent T cells in the old brain 
are CD8+ and STAT1+, a few of them are GZMB+ that display a cytotoxic 
phenotype (Fig. 6h,i and Extended Data Fig. 8h–j). We also noticed 
there are some GZMB+CD8− cells, presumably natural killer (NK) cells, 
as described previously (Extended Data Fig. 8k,l)72.

As T cells are the major source of IFN-γ, we next examined gene 
expression patterns directly on spatially profiled tissues and identified 
an age-dependent increase of spots enriched with an IFN-γ response 
signature (hereafter referred to as inflammatory spots (ISs)) in the aged 
mouse hippocampus (Fig. 7a, Extended Data Fig. 9a and Methods). ISs 
displayed distinct transcriptional profiles compared to their nearest 
neighbor spots (NNSs) with upregulation of various inflammatory 
pathways (Extended Data Fig. 9b–d). We confirmed the emergence 
of ISs by immunohistochemical detection of STAT1 expression in sev-
eral resident populations, including astrocytes, endothelial cells and 
microglia, in old age (Fig. 7b). Furthermore, we detected a spatial cor-
relation of T cells, STAT1+ inflammatory cells and reactive microglia 
displaying activated morphology, suggesting a putative causal rela-
tionship between T cell accumulation and inflammation in the aged 
hippocampus (Extended Data Fig. 9e,f).

Notably, inflammatory signatures were not evenly distributed in 
the mouse hippocampus but, rather, peaked around the stratum lacu-
nosum moleculare (SLM), the marginal zone between the CA and the 
DG (Fig. 6e). Thus, we characterized the spatial molecular architecture 
of the pro-inflammatory microenvironment in the old mouse brain by 
dissecting the ISs, NNSs and two additional layers of extended neighbor 
spots (ENSs) (hereafter referred to as ENS1 and ENS2) (Fig. 7c). First, we 
examined the global transcriptional structure and found that, although 
all three types of spots formed their own clusters, the ISs segregated 
from the NNSs and the ENSs despite their location in hippocampal 
subregions, indicating their distinct transcriptomes and bona fide 
inflammatory nature (Extended Data Fig. 9g,h). The transcriptional 
profile of inflammatory gradients also showed correlation with the 
CASs, suggesting that ISs show enhanced aging features compared to 
neighboring areas (Extended Data Fig. 9i).

We further constructed a continuous expression trajectory 
ordered from IS to NNS to ENS, with all three types of spots showing 
differential distribution along the pseudotime axis (Fig. 7d). Gene 
expression patterns along the pseudotime trajectory were sequen-
tially expressed from IS to ENS, with modules 1 and 2 enriched for genes 
related to inflammatory response, gliogenesis and vasculature remod-
eling and modules 3 and 4 enriched for genes related to ion channel 
homeostasis and neurotransmitter transport (Fig. 7e). Furthermore, 
these modules showed an obvious spatial distribution, ordered in an 
inside-out pattern from the IS to adjacent regions (Fig. 7f). We per-
formed microniche analysis by tiling the DG into spots with a 55 μm 

Fig. 7 | T-cell-associated inflammation with advancing ages. a, Spatial feature 
plots of the hallmark of IFN-γ response showing age-dependent increase  
in DG. Color gradient indicates the log-normalized gene expression level.  
b, Representative images showing age-dependent IFN-γ-responding (STAT1+) 
astrocyte (upper), endothelial cell (middle) and microglia (lower) in the marginal 
zone between the DG and the CA (n = 4 mice for each condition). c, Schematic 
illustration of the distance-based spatial hierarchy of Visium spots. d, Pseudo-
spatial alignment of different types of spots showing differential distribution 
along the pseudo-spatial axis (upper; one-way ANOVA, ****P < 0.0001) and 
dynamic expression patterns (lower). Numbers in circle indicate gene modules. 
Color gradient indicates the z-score of gene expression. e, Pseudo-spatial gene 
expression trajectories showing different expression patterns of different types 

of spots in the old mouse hippocampus. All GO terms are shown by an adjusted 
P < 0.05 with Benjamini–Hochberg correction. Shading indicates 95% confidence 
interval. f, Spatial visualization of all four pseudo-spatial modules shows an 
inside-out ordering. Color gradient indicates the expression level of individual 
module score. g, Schematic illustration of microniche analysis and proximity 
analysis. h, Representative images illustrating microniche analysis (upper) and 
proximity analysis (lower). i, Venn diagram indicating the overlap between the 
Ki67+ cell-containing spot and the STAT1+ cell-containing spot. j, Pie chart of the 
percentage of inclusive spots that contained both Ki67+ cells and STAT1+ cells. 
All data are presented as mean ± s.e.m. Scale bars, 100 μm (20 μm in zoom-in 
panels).
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radius to measure the co-occurrence of STAT1+ cells and proliferating 
progenitors33 (Fig. 7g,h). These analyses showed that Ki67+ progeni-
tors and STAT1+ inflammatory cells are largely exclusive to each other 
(Fig. 7i,j). Thus, our results identified an inflammation-associated gene 
expression gradient, suggesting that age-dependent accumulation of 
T cells in the marginal zone of the DG may represent an initial step of 
age-dependent neuroinflammation that spreads to adjacent regions, 
causing eventually age-related impairment of hippocampal plasticity.

Early onset of inflammation decreases neurogenic activity
As characterized above, the age-dependent accumulation of T cells 
mainly peaked at the SLM, the embryonic homology to the brain bor-
der that also displayed enhanced aging features (Fig. 6e and Extended 
Data Fig. 9h). We wondered whether the SLM-related bordering func-
tion may be impaired during aging. To this end, we subsetted Visium 
spots located at the SLM and identified downregulation of several 
BBB-specific genes—that is, Mfsd2a, Tfrc and Slc16a1 (Extended Data 
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correction, **P = 0.0037). f, Representative images showing the existence of 
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g, Quantitation of the percentage of SOX2+NEUROD1+ neuroblasts among all 
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Welch’s correction, NS P = 0.2057). h, Schematic illustration of the interaction 
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delayed maturation of neuroblasts is not affected in Pdgfbret/ret mice. All data are 
presented as mean ± s.e.m. Scale bars, 100 μm (a,c) and 20 μm (e). MO, months 
old; NS, not significant.
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Fig. 10a,b). This transcriptional change is associated with a reciprocal 
correlation between the response to IFN-γ signaling and BBB-related 
function (Extended Data Fig. 10c,d). To directly examine how inflam-
mation affects neurogenic activity, we used the Pdgfbret/ret mouse 
model that shows BBB deficiency due to the loss of pericytes and 
that develops early-onset neuroinflammation (Fig. 8a)73–75. We first 
confirmed the previously described phenotype of Pdgfbret/ret mice, 
showing a decrease in pericyte coverage that was associated with the 
infiltration of T cells, especially CD8+ T cells, and increased inflamma-
tory response, as measured by STAT1 expression, and the presence of 
reactive microglia labeled with IBA-1 in the hippocampus (gray matter) 
and the corpus callosum (white matter) in middle-aged mice (Fig. 8b 
and Extended Data Fig. 10e–g). Next, we measured the number of 
proliferative progenitors and newborn, DCX-labeled neurons in the 
DG. Strikingly, we observed a significant decrease in the numbers of 
proliferative progenitors and newborn neurons in the DG of Pdgfbret/ret 
mice, indicating impaired neurogenesis in the context of a dysregulated 
immune microenvironment (Fig. 8c–e). However, the fraction of SOX2+ 
neuroblasts, which we had identified to be increased with advancing 
age (Extended Data Fig. 5d–f), remained constant between mutant and 
control animals, suggesting that the maturation of early neuronal prog-
eny may be, at least partially, regulated by additional age-dependent 
mechanisms (Fig. 8f–h). Thus, our findings provide insights into the 
functional relevance of age-dependent inflammation in the regulation 
of hippocampal neurogenesis and show that early-onset inflammation 
in the DG is sufficient to impair neurogenesis.

Discussion
Using scRNA-seq combined with spatially resolved transcriptomics, 
we characterized age-associated molecular changes in the mouse 
DG across the entire adult lifespan. Single-cell technologies allowed 
for insights in the mechanisms of aging in a plethora of tissues and in 
the context of disease66,76,77. Our data provide a powerful resource to 
reveal the mechanisms that are linked with aging in the mammalian 
hippocampus. First, our findings reveal the lifelong molecular changes 
of the entire neurogenic lineages that conceptually extends current 
knowledge: age-dependent changes of neurogenesis start not only as 
early as middle-age but also last throughout the entire adult lifespan. 
Beyond the activation of qNSCs, neurogenic aging also affects the 
differentiation of fate-committed neural progeny. Early entry to qui-
escence was suggested as a protective approach to avoid premature 
depletion of the stem cell pool78,79. The data presented here suggest 
that a continuous deepening of NSC quiescence, together with delayed 
maturation of neuronal progeny, may eventually cause impaired neu-
rogenesis in later stages of life. We focused and extensively analyzed 
age-dependent molecular alterations within the neurogenic lineage. 
However, the scRNA-seq and ST data provided will allow for future 
in-depth transcriptomic analyses of a plethora of brain cell types across 
the adult lifespan.

Several recent studies used single-nuclei RNA sequencing 
(snRNA-seq) to derive molecular maps of the human and non-human 
primate DG across the lifespan21,25,26,80,81. Despite the possibility to use 
snRNA-seq of human tissues, mechanistic attempts to causally link 
gene expression with functional outcomes will largely rely on rodent 
models of aging. Thus, the mouse transcriptomic dataset of the aging 
DG provided here will be a valuable resource to the field and a funda-
mentally important addition to existing human and primate datasets. 
Furthermore, whole-cell scRNA-seq versus snRNA-seq may have its 
respective advantages: within the dataset presented here, we could, 
for example, clearly distinguish qNSCs from parenchymal astrocytes, 
a distinction that is apparently critical to identify age-related changes 
within the neurogenic lineage. However, clear classification of qNSCs 
versus astrocytes appeared to be highly challenging or impossible 
in previously obtained datasets using single-nuclei approaches of 
mouse or human tissues25,26,82. The dataset provided here represents a 

transcriptomic reference that may eventually allow for the identifica-
tion of bona fide neural stem cells apart from astroglia combined with 
advanced computational approaches—for example, refs. 83,84—that 
may be of particular importance to address the remaining uncertainties 
regarding adult hippocampal neurogenesis in humans85.

Seminal work previously identified neuroinflammation as a key 
aging signature of the other main neurogenic niche in the mouse 
brain, the SVZ27. Indeed, it was found that T cells invade the SVZ and 
appear to clonally expand within the brain parenchyma. Together 
with other work, these previous data strongly support the idea that 
aging within the brain is associated with inflammation, which has been 
coined as inflammaging27,86. Our data recapitulate findings derived 
from the SVZ and show that aging causes global changes in the tran-
scriptome of the entire DG that are associated with T-cell-mediated 
inflammatory responses, which we confirmed by detecting increased 
T cell numbers within the DG. Notably, spatially resolved transcrip-
tomics allowed for the identification of the regional emergence of 
inflammatory hotspots in the marginal zone. Given that the marginal 
zone in the hippocampus shows embryonic homology to the brain 
border—that is, meninges—which show an age-dependent accumula-
tion of T cells, it may represent a target to attenuate age-dependent 
alterations of hippocampal neurogenesis. Future work, guided by 
the molecular signatures at inflammatory hotspots and their sur-
rounding tissues, will aim to identify the cause and regulatory cas-
cades that mediate the invasion and consequences of T-cell-mediated 
inflammation in the aging hippocampus. Notably, we show here 
that invasion of inflammatory T cells is not just a bystander effect 
but that experimental enhancement of immune cell invasion causes 
reduced neurogenesis. However, premature invasion of immune cells 
did not cause a complete recapitulation of the effects of aging on 
neurogenesis, as the delayed maturation and extended expression 
of progenitor markers (such as SOX2) was not affected by Pdgfb dele-
tion. Thus, future work will aim to dissect the exact contributions of 
distinct mechanisms causing molecular consequences of age within 
the DG circuit. The single-cell and spatially resolved transcriptomics 
data provided here represent a starting point to the field to reveal the 
molecular consequences that are associated with advancing age in 
the mammalian hippocampus.
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Methods
Experimental animals
All animal experiments were approved by the Cantonal Commission 
for Animal Experimentation of the Canton of Zurich, Switzerland 
(ZH190/19 and ZH126/20), in accordance with national and cantonal 
regulations and the Stockholms Norra Djurförsöksetiska Nämnd 
(20785-2020), Sweden, performed in accordance with the respective 
guidelines. Mice were group housed in ventilated cages (21–23 °C) 
under a 12-h dark/light cycle with ad libitum access to food and water.

The C57BL/6JRj mice (3 MO, 9–11 MO and 16–21 MO) were obtained 
from Janvier France and maintained in local animal facilitates for 1 week 
before experiments. For scRNA-seq and ST experiments, mice at the 
age of 3 months, 9–11 months and 16–21 months, referred to as ‘young’, 
‘middle-age’ and ‘old’, of mixed sex were used. For histological analysis, 
mice at the age of 3 months, 10 months and 18 months of mixed sex 
were used. The Gli1-CreERT2;tdTomato mouse line (Gli1-Cre+/−Ai14+/−) 
was generated by crossing Gli1-CreERT2 mice (Gli1tm3(cre/ERT2)Alj; The  
Jackson Laboratory, 007913) and CAG tdTomato (Ai14;B6.Cg-Gt 
(ROSA)26Sortm14(CAG-tdTomato)Hze; The Jackson Laboratory, 007914) reporter 
line45,47. At the age of 3 months, 10 months and 17 months, referred to 
as ‘young’, ‘middle-age’ and ‘old’, mice of mixed sex underwent the labe-
ling of NSCs that was achieved by two consequential intraperitoneal 
(i.p.) injections of TAM (180 mg kg−1 (body weight); Sigma-Aldrich). The 
Nestin-EGFP (B6.Cg-Tg(Nes-EGFP)1Yamm/Rbrc) mouse line was described 
previously43,47. Mice at the age of 3 months, 10 months, 18 months and 
24 months, referred to as ‘young’, ‘middle-age’, ‘old’ and ‘very old’, of mixed 
sex were used for experiments. The Pdgfbret/ret (Pdgfb-tm(ret)) mouse line 
was described previously73–75. Homozygous (Pdgfbret/ret) and heterozygous 
(Pdgfbret/+) female mice at the age of 6 months were used for experiments.

Tissue processing for scRNA-seq
In total, 17 mice were used for the young (n = 5), middle-aged (n = 6) 
and aged (n = 6) groups (Supplementary Fig. 1). Mice were first eutha-
nized via cervical dislocation, followed by taking out brains and then 
microdissection of the DG87. The dissected DGs from the same age 
were pooled and dissociated using Neural Tissue Dissociation Kit (P) 
(Miltenyi Biotec) and further cleaned using Myelin Removal Beads II 
(Miltenyi Biotec) according to the manufacturer’s instructions. In brief, 
pooled tissue was enzymatically digested for 35 min at 37 °C, followed 
by manual trituration with fire-polished pipette tips and filtered with 
40-μm strainers. Cell suspension was incubated with Myelin Removal 
Beads for 15 min on ice, followed by cleaning with passing through a 
magnet LS column (Miltenyi Biotec). Single-cell suspension was sorted 
from debris with the target number of 50,000 in an influx cell sorter 
using a 130-μm nozzle (BD FACSAria II).

Tissue processing for ST
In total, 12 mice were used for the young (n = 4), middle-aged (n = 4) and 
aged (n = 4) groups (Supplementary Fig. 2). Mice were first anesthetized 
via i.p. injection of a lethal dose of pentobarbital and then transcardially 
perfused with warm HBSS (CaCl2

−, MgCl2
−, HEPES 10 mM and D-glucose 

5 mM), followed by taking out brains. Brains were embedded in OCT 
(Tissue-Tek) and snap frozen at −50 °C to −60 °C in a bath of isopentane 
and dry ice and stored at −80 °C until use. Two to three coronal sections 
per brain were cyrosectioned, referring to anterior and posterior hip-
pocampus at a thickness of 10 μm onto the Visium Spatial Gene Expres-
sion Slide. For anterior sections, we fitted two into one sequencing 
area. For posterior sections, we fitted one into one sequencing area. All 
sections had an RNA integrity number (RIN) greater than 8, measured 
in a Bioanalyzer (Agilent). In total, 16 sequencing areas with 24 brain 
sections were profiled (Supplementary Fig. 2).

Library preparation and sequencing for scRNA-seq and ST
Single-cell cDNA libraries were constructed using a Chromium Single 
Cell 3′ Reagent Kit (version 3.1; 10x Genomics). In brief, 20,000 cells 

were loaded for each library with the aim to recover 10,000 cells. All 
downstream steps of library construction followed the manufacturer’s 
instructions. Spatial cDNA libraries were constructed using a Visium 
Spatial Gene Expression Kit (10x Genomics). Permeabilization time 
was determined as 18 min using a Visium Spatial Tissue Optimization 
Slide & Reagent Kit (10x Genomics). All downstream steps of library 
construction followed the manufacturer’s instructions. All reagents 
used in this study are detailed in Supplementary Table 1.

Single-cell and spatial cDNA libraries were pooled and indexed 
using a Dual Index Kit (10x Genomics), fitting into one batch, and 
sequenced on an Illumina NovaSeq 6000 according to 10x Genom-
ics recommendations. Raw data of sequencing were analyzed using 
Cell Ranger (version 6.0.2) for scRNA-seq and Space Ranger (version 
1.2.0) for ST.

scRNA-seq data analyses
Output of Cell Ranger was processed using Seurat (version 4.3) 
package. Low-quality cells were filtered out (genes detected < 800, 
mitochondrial genes > 20%). Standard data processing workflow 
of Seurat was performed for each timepoint using ‘NormalizeData’ 
(scale.factor = 10,000), ‘FindVariableFeatures’ (nfeatures = 5,000), 
‘RunPCA’ (npcs = 50), ‘RunUMAP’ (number of principal components 
(PCs) between 10 and 30), ‘RunTSNE’ (number of PCs between 10 and 
30), ‘FindNeighbors’ (number of PCs between 10 and 30, decided by 
running ‘ElbowPlot’) and ‘FindClusters’ (resolution = 1.0) functions. 
We performed DoubletFinder (version 2.0.3) to remove potential 
doublets before we merged all libraries. Estimated doublet rate was 
adjusted according to 10x Genomics.

ST data analyses
Output of Space Ranger was processed using Seurat (version 4.3) pack-
age and Cloupe software (Loupe Browser version 6; 10x Genomics). 
Spots with technical artifacts (for example, folding and cryo-damage) 
were removed on Cloupe. Standard data processing workflow of Seurat 
was first performed for each section using ‘SCTransform’ (variable.
feature.n = 5,000). SCTransform builds regularized negative binomial 
models of gene expression. It is suggested that, compared to the log 
normalization, SCTransform accounts for technical artifacts while 
preserving biological variance88. All libraries were then merged to per-
form dimensionality reduction using ‘RunPCA’, ‘RunUMAP’, ‘RunTSNE’, 
‘FindNeighbors’ and ‘FindClusters’ functions.

Cell and spot type annotation
For scRNA-seq, we first determined cluster-specific DEGs by perform-
ing the ‘FindAllMarkers’ (test.use = mast) function from Seurat. Then, 
we annotated cell type using cell-type-specific markers from literature 
(Extended Data Fig. 1a)23,34. For ST, regional identity was assigned by 
intersection between unsupervised clustering results mentioned 
above and hematoxylin and eosin (H&E) staining visualized on Loupe 
software. Manual annotation of hippocampal subregions (for example, 
CA1, CA2, CA3 and DG) was carried out on Loupe software using results 
from data integration with Yao et al.35 and landmarks of H&E staining 
as reference.

Data integration
scRNA-seq data were integrated with a previously published dataset 
(Dataset C)34. The cell type annotation from the original study was 
used. Batch correction was performed using the ‘harmony’ (version 
0.1.0) package89. ST data were integrated with a previously published 
dataset35. Only hippocampal cells from the Smart-seq version 4 experi-
ment were selected. The cell type annotation from the original study 
was used. Cell type prediction was calculated for each spot using the 
‘FindTransferAnchors’ and ‘TransferData’ functions in Seurat. In par-
ticular, the ‘FindTransferAnchors’ function was used to identify the 
anchors between scRNA-seq and ST using ‘SCT’ normalization. The 
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‘TransferData’ function was used to transfer the cluster identities of 
scRNA-seq to the Visium spots. Default parameters were used.

Cell type mapping onto Visium spots
Cell type mapping of spatial data was performed using tangram-sc 
version 1.0.4 (ref. 36). The workflow was based on the available squidpy 
version tutorial. All spatial samples were loaded in one data object and 
filtered on coordinates to include only the ML, hilus and GC layer spots. 
For scRNA-seq data, the mitochondrial genes were filtered out, and 
the data were normalized. Tangram built-in methods were used for 
pre-processing, which left 1,104 marker genes as training genes. Before 
running the alignment, the spatial data were normalized and log1p trans-
formed using scanpy version 1.10.1. The alignment was run in ‘cells’ mode 
with 1,000 epochs and rna_count_based as density prior. To visualize the 
annotation of cell types in space, the colormap argument ‘perc’ was set 
to 0.02 and spot_size to 500 to better display the selected coordinates.

Differential gene expression and GSEA
For scRNA-seq, we performed pairwise differential gene expression 
to identify DEGs using the ‘FindAllMarkers’ or ‘FindMarkers’ (test.
use = mast) functions from Seurat. DEGs were selected using cutoffs 
of adjusted P < 0.05 and avg_log2fc > 0.25. For ST, raw data were first 
pooled to generate pseudo-bulk aggregates and processed using 
DESeq2 to identify DEGs. DEGs were selected using a cutoff of adjusted 
P < 0.05. GSEA was performed using the Metascape database related to 
GO Biological Process and KEGG pathway. An overrepresentation test 
was carried out with a hypergeometric test of P < 0.05 and a minimal 
overlap of three genes. The list of TFs was curated from the AnimalTFDB 
(version 3.0) database90.

Pseudotemporal trajectory analysis
We first calculated pseudotime score of individual cells or spot in terms 
of age or annotation (for neurogenic lineages), zonation (for vascular 
compartment) and inflammatory status (for inflammatory gradient in 
ST) and constructed gene expression trajectories using the Monocle 2 
package with default parameters. Next, we ordered genes with similar 
expression dynamics into modules that reflect lineage progression 
(neurogenic lineages), functional aging (qNSC), vascular zonation 
(vascular populations) and inflammatory gradient (ST).

Real temporal trajectory analysis
We clustered gene expression patterns in time series using a fuzzy 
c-means clustering algorithm, ‘Mfuzz’, as described previously91. First, 
we selected the top 5,000 variable genes from Seurat objects of each 
cell type to make temporally ordered genes comparable among differ-
ent cell types and calculated their average expression value. Then, we 
clustered gene expression data using soft threshold (‘mestimate’ with 
default parameters, number of clusters = 8).

GRN analysis
To identify GRNs and infer their activity, we performed the SCENIC 
(version 1.24.1) algorithm. First, we sequentially ran GENIE3 to identify 
co-expressed genes and RcisTarget to link TFs and their putative targets 
using default parameters. TFs of mm9 were used as reference. Then, we 
used AUCell to score activity of each GRN (regulon). Finally, the regulon 
activity was visualized either by UMAP or onto pseudotime trajectory.

Random forest regression model
To predict differentiation scores for qNSCs across ages, we employed 
a random forest regression model from the ‘caret’ package. We first 
took the whole neurogenic lineages (for example, qNSC, aNSPC and 
NB/IMN) and identified the top DEGs between each cell types using 
the ‘FindAllMarkers’ function from Seurat. Cells were projected onto 
a pseudo-differentiation axis by fitting a principal curve over the 
first seven PCs. We then trained a random forest regression using 

the ‘train’ function (method = ‘ranger’) from ‘caret’ to predict the 
pseudo-differentiation score of cells using the top variable genes.  
The top 100 most important features from the random forest regres-
sion model were selected as an input to re-optimize the regression 
model that was used to predict the age dependent for qNSCs in  
our dataset.

Age prediction model
We performed GLM-based age prediction to predict cells with cor-
responding ages using the ‘caret’ package. First, we performed the 
‘FindVariableFeatures’ function to identify highly variable genes and 
selected the top 5,000 variable genes. Next, we split the scRNA-seq data 
into a training set and a testing set, where the training set consisted 
of 70% of cells from the least populated class, and the correspond-
ing number of cells was taken from the more populated classes. To 
predict cells with corresponding ages in the testing set, we used the 
‘train’ function (method = glmnet) from ‘caret’. Cross-validation was 
performed 10 times with 10% of the training data for the parameter 
tuning (lambda and alpha). Finally, the model was used to predict 
on the remaining 30% of data (test set) using the ‘predict’ function  
in ‘caret’.

Module score calculation
For the module score of aging signatures in scRNA-seq data, we took 
the gene lists of ‘Neurogenic Aging Signature’ and ‘Core Aging Signa-
ture’ and computed the module score using the ‘AddModuleScore’ 
function with default parameters from Seurat. The complete gene 
lists are provided in Supplementary Table 3. For ‘S.Score’ and ‘G2M.
Score’, we used the ‘CellCycleScoring’ function in Seurat to calculate 
the cell cycle activity of individual cells. For the module score of IFN-γ 
pathways in ST data, we first took the gene list of ‘Hallmark of IFN-γ 
response’ from the ‘msigdbr’ (version 7.4.1) package92 and then cal-
culated the module score using the ‘AddModuleScore’ function with 
default parameters from Seurat. Spots with module score greater 
than 0 were assigned as ISs. The ‘STUtility’ (version 0.1.0) package was  
used to compute nearest neighborhood of ISs. The ‘AddModuleScore’  
function calculates the average expression levels of a given gene set 
on single-cell level, subtracted by the aggregated expression of con-
trol feature sets. All analyzed features are binned based on averaged 
expression, and the control features are randomly selected from  
each bin.

Tissue processing, immunostaining and confocal imaging
Mice were first anesthetized via i.p. injection of a lethal dose of pento-
barbital and then transcardially perfused with warm D-PBS (CaCl2

− and 
MgCl2

−), followed by 4% formaldehyde (Sigma-Aldrich) post-fixed over-
night at 4 °C. Then, brains were transferred to 30% sucrose solution 
for cryoprotection before being cut at a thickness of 40 μm on a cry-
otome (Leica, SM2010R). Every sixth coronal section along the entire 
DG was used for immunostaining. For immunostaining, brain sections 
were first washed in PBS and blocked in the staining buffer (3% donkey 
serum and 0.5% Triton X-100 in PBS). Then, sections were incubated 
with primary antibodies against S100b (1:500, rabbit; Abcam), SOX2 
(1:200, rat; eBioscience), GFAP (1:500, chicken; Aves Labs), Ki67 (1:500, 
rat; eBioscience), DCX (1:500, guinea pig; Millipore), NEUROD (1:250, 
goat; Santa Cruz Biotechnology), IBA-1 (1:500, goat; Novus Biologicals), 
CD3 (1:200, rabbit; Novus Biologicals), CD8a (1:200, rat; eBioscience), 
STAT1 (1:200, rabbit; Cell Signaling Technology), GZMB (1:100, goat; 
R&D Systems), Collagen IV (1:750, rabbit; Bio-Rad), CD13 (1:500, goat; 
Novus Biologicals), GFP (1:500, goat; Rockland Immunochemicals), 
tdTomato (1:500, goat; Rockland Immunochemicals) and tdTomato 
(1:500, goat; SICGEN) for two overnights in the staining buffer at 4 °C. 
After washing in PBS, sections were incubated with secondary antibod-
ies against respective species (Alexa Fluro 488, Cy3 and Cy5) and DAPI 
(1 μg ml−1; Thermo Fisher Scientific) in the staining buffer for 2 h at room 
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temperature. After washing, sections were mounted with Immun-Mount 
(Thermo Fisher Scientific) and stored at 4 °C until imaging. Images 
were taken on confocal laser scanning microscopes (Zeiss LSM800 
using ZEN Pro software). All antibodies used in this study are detailed 
in Supplementary Table 1.

Every sixth coronal section along the entire DG was imaged per 
mouse using a ×20 objective (obtained numbers were multiplied by 6 
to represent the number of all cells per DG/hippocampus). Fiji (ImageJ) 
was used for image analysis. For cell counting, radial NSCs were defined 
as GFAP+/SOX2+/S100b− cells with a single radial process residing at the 
SGZ. Given that GFAP is cytoplasmic and SOX2 is nuclear, we combined 
them together in one channel. aNSPCs and neuroblasts were defined as 
Ki67+ or DCX+ cells residing at the SGZ, respectively. Microglia, endothe-
lial cells, pericytes and T cells were identified as IBA-1+, CD31+, CD13+ or 
CD3+ cells, respectively. IFN-γ-responding cells were defined as STAT1+ 
cells. For signal coverage of IBA-1, all confocal images were taken under 
the same setting. Maximum z-stack projection was performed, and the 
IBA-1 channel was converted into binary mask using the same intensity. 
We manually drew hippocampus and DG using the ‘ROI’ function and 
measured the %Area using the ‘measure’ function. For the microniche 
analysis, a line of the SGZ at the bottom of the granule cell layer (GCL) was 
drawn manually, leaving the space of 2 cells apart from the hilus. Then, 
55-μm circles were placed along this SGZ line with 50% overlap between 
each neighbor circle. For the proximity analysis, each Ki67+ proliferat-
ing progenitor in the SGZ was placed with a 55-μm circle where the Ki67+ 
proliferating progenitor was in the center.

Single-molecule RNA fluorescence in situ hybridization
Tissue preparation was described above the same as for immuno-
fluorescent staining. Instead of 40 μm, tissue was cut at a thickness 
of 20 μm. We first treated the tissue with hydrogen peroxide for 5 min 
at room temperature. To perform RNA in situ hybridization using 
RNAscope, we first performed antigen retrieval using target retrieval 
reagent (ACDBio) for 15 min at 85 °C. Sections were then treated 
with protease IV reagents (ACDBio) for 20 min at room temperature. 
Probes (Mm-Mfge8, 408771; Mm-Luzp2, 492551-C3; Mm-Sox11, 852061; 
Mm-Insm1, 430621-C2; ACDBio) were incubated at 40 °C for 2 h and 
revealed with RNAscope Multiplex Fluorescent v2 reagents (ACDBio) 
using TSA amplification. After in situ hybridization was completed, 
samples were processed for immunofluorescent staining and imag-
ing as described above. All molecular probes and reagents used in this 
study are detailed in Supplementary Table 1.

Statistics and reproducibility
Statistical analyses were performed in GraphPad Prism (version 9.5.1) 
or R (version 3.6.3). All results in graphs are presented as mean ± s.e.m. 
unless specified otherwise. All software used in this study is detailed 
in the Reporting Summary. Statistical significance was determined 
using two-tailed unpaired t-tests with Welch’s correction (between 
two groups) and one-way ANOVA (between multiple groups) with 
a cutoff of P < 0.05. Particular tests and statistical significance for 
individual comparisons in figures are detailed in Supplementary  
Table 5.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Transcriptomics data generated and analyzed in this study are avail-
able under Gene Expression Omnibus accession number GSE233363. 
Processed data (for example, Seurat object and tables of meta informa-
tion) can be found at https://github.com/JessbergerLab/AgingNeu-
rogenesis_Transcriptomics (ref. 93). Source data are provided with  
this paper.

Code availability
Codes used to analyze the transcriptomics presented in this study  
are available at https://github.com/JessbergerLab/AgingNeuro-
genesis_Transcriptomics (ref. 93).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Single-cell transcriptomics of the mouse dentate gyrus. 
a, UMAP visualization of all cells in the scRNA-seq dataset. Periphral immune cell 
populations are highlighted. b, Dot plots of selected genes showing cell type-
specific expression patterns. Color gradient indicates the log-normalized gene 
expression level. c, UMAP visualization of all DG resident cell types in individual 
age. d, Pearson correlation of average gene expression profile between different 
ages. e, UMAP visualization of all DG resident cell types in each sex group.  
f, Pearson correlation of average gene expression profile between different  
sexes. g, Relative proportions of all DG resident cell types in each sex group.  
h, UMAP visualization of integration of the current and Hochgerner 2018 dataset. 

Left: Highlighting cells from the current dataset; Middle: Highlighting cells 
Hochgerner 2018 dataset; Right: Visualization of dataset origin in the UMAP 
space. aNSPC, active neural stem and progenitor cells, CA, cornu Ammonis, 
C-R, Cajal-Retzius, GABA, GABAergic neuron, GC, granule cell, MOL, mature 
oligodendrocyte, NB/IMN, neuroblast and immature neuron, NFOL, newly 
formed oligodendrocyte, nIPC, neurogenic intermediate progenitor cell, OPC, 
oligodendrocyte precursor, PVM, perivascular macrophage, Pyr, pyramidal 
neuron, qNSC, quiescent neural stem cell, RGL, radial glia-like, scRNA-seq, 
single-cell RNA-sequencing, SMC, smooth muscle cell, UMAP, uniform manifold 
approximation and projection and VLMC, vascular and leptomeningeal cell.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Spatial transcriptomics of the mouse dentate gyrus.  
a, Upper: UMAP visualization of all spots after re-clustering according to 
individual ages showing concordance of their regional identity across  
different ages. Lower: Spatial projection of all spots into each Visium section. 
 b, Hierarchical clustering of all spots showing distinct transcriptional structure 
among all 6 regional identities and concordance between different ages.  
c, Featured expression patterns of selected genes representing each of the six 
identified regions. Color gradient indicates the log-normalized gene expression 

level. d, Validation of selected region-specific genes using Allen Brain Atlas  
in situ hybridization database. e, Cell type mapping of the spatial transcriptomics 
data using tangram. Estimated mapping probability of each cell type (color 
gradient) to DG shown over the H&E images. aNSPC, active neural stem and 
progenitor cells, CA, cornu Ammonis, DG, dentate gyrus, GC, granule cell,  
H&E, Haematoxylin and eosin, NB/IMN, neuroblast and immature neuron,  
PN, pyramidal neuron and PVM, perivascular macrophage. Scale bars, (d) 100 μm 
and (e) 200 μm.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Both neurogenic activity and distinct molecular profile 
between astrocytes and qNSCs are largely preserved with advancing age. 
a-d, Representative images of neurogenic lineages in SGZ of (upper) young, 
(middle) middle-age and (lower) old mice showing decreased neurogenesis with 
aging. (a) Radial NSCs were labeled by GFAP and SOX2 with radial morphology 
in SGZ. Note that GFAP and SOX2 are detected simulataneously (SOX2: nucleus; 
GFAP: radial process) in the same channel to facilitate identification of radial 
glia-like progenitors, as used by others before23. (b) aNSPCs were labeled by 
Ki67 including (c) radial and non-radial proliferating progenitors. Radial and 
non-radial aNSPCs were distinguished by the existence of the radially oriented 
GFAP-process (pointed out by arrowhead). (d) NB/IMNs were labeled by DCX.  
e-g, Quantification of (e) radial NSCs (young: 11151 ± 375 cells; middle-age: 3923 ± 
200 cells; old: 1324 ± 154 cells; two-tailed unpaired t-test with Welch’s correction, 
****P < 0.0001 between young and middle-age, ****P < 0.0001 between middle-
age and old, ****P < 0.0001 between young and old), (f) aNSPC (young: 1902 ± 73 
cells; middle-age: 433 ± 22 cells; old: 74 ± 17 cells; two-tailed unpaired t-test  
with Welch’s correction, ****P < 0.0001 between young and middle-age,  
****P < 0.0001 between middle-age and old, ****P < 0.0001 between young and 
old), and (g) NB/IMN (young: 12131 ± 392 cells; middle-age: 1079 ± 32 cells; old: 
173 ± 25 cells; two-tailed unpaired t-test with Welch’s correction, ****P < 0.0001 
between young and middle-age, ****P < 0.0001 between middle-age and old,  
****P < 0.0001 between young and old) in SGZ of mice in different ages.  

h, Spatial feature plots of Igfbpl1 showing age-dependent decrease in DG.  
Color gradient indicates the log-normalized gene expression level. i, Feature 
plots of selected TFs and their GRNs showing good agreement between 
individual gene expression and their GRN activity. Color gradient indicates the 
(upper) log-normalized gene expression level and (lower) GRN activity score. 
 j, Projection of pseudotime value in the UMAP space. k, Gene expression 
dynamics along pseudotemporal trajectory of selective genes representing qNSC 
(Rfx4 and Sox9), aNSPC (Ascl1 and Hmgb3) and NB/IMN (Neurod1 and Neurod2). 
Shading indicates 95% confidence interval. l, UMAP plot of astrocytes and qNSCs 
showing distinct molecular profiles. m, Volcano plot showing DEGs between 
astrocytes and qNSCs. For all dots shown in color by an adjusted P < 0.05 with 
Bonferroni correction, MAST differential test. n, Feature plots of selected genes 
showing (left) shared, (middle) astrocyte-specific and (right) qNSC-specific 
genes. Color gradient indicates the log-normalized gene expression level.  
o, Immunofluorescent staining showing the majority of radial NSCs 
(GFAP+SOX2+) labeled by Gli1-tdTOM in the SGZ across all three ages do not 
overlap with astrocytic marker, S100b (n = 3 mice for each condition).  
DEG, differentially expressed gene, GFP, green fluorescent protein, GRN, gene 
regulatory network, MO, month-old, qNSC, quiescent neural stem cell,  
Sac, sacrifice, TOM, tomato, UMAP, uniform manifold approximation and 
projection, Scale bars, (a) 100 μm, (b-d and o) 20 μm and (h) 200 μm.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Resource https://doi.org/10.1038/s41593-024-01848-4

Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Continuous decrease in neurogenic activity  
is a hallmark of neurogenic aging. a, Projection of module score of  
Waterfall-defining TFs in pseudotemporal trajectory of qNSCs. Shading indicates 
95% confidence interval. b, Alluvial plot between (left) real-time and (right) 
pseudotime gene expression trajectories of qNSC during aging shows  
age-dependent upregulation gene modules (in red) largely overlap with  
qNSC-enriched pseudotime gene modules while age-dependent downregulation 
gene modules (in blue) largely overlap with fate-committed population-enriched 
pseudotime gene modules. The line plots of the real-time gene expression 
trajectories depict the standardized gene expression signals, with each pink 
line representing the signal of the same gene in different cell populations and 
the black lines indicating the mean values for each gene cluster. c, Schematic 
overview of the Neurogenic Aging Signature calculation. d, Venn diagram 
indicating the overlap between the real-time and pseudotime trajectories.  
Upper: Between Real-age (real-time) upregulation and functional-age 
(pseudotime) downregulation; Lower: Between Real-age (real-time) 
downregulation and functional-age (pseudotime) upregulation. e, Module 
scores of Neurogenic Aging Signature of qNSCs. Upper: Neurogenic Aging 
Signature-UP score of qNSCs (two-tailed unpaired t-test with Welch’s correction; 
t = 6.217, ****P < 0.0001 between young and middle-age, t = 3.739, ***P = 0.0003 
between middle-age and old, t = 9.396, ****P < 0.0001 between young and old; 
young, n = 141 cells, middle-age, n = 84 cells, old, n = 69 cells). Lower: Neurogenic 
Aging Signature-DOWN score of qNSCs (two-tailed unpaired t-test with Welch’s 
correction; t = 6.843, ****P < 0.0001 between young and middle-age, t = 4.930, 
****P < 0.0001 between middle-age and old, t = 13.55, ****P < 0.0001 between 
young and old; young, n = 141 cells, middle-age, n = 84 cells, old, n = 69 cells). 
Box plots depict the median and interquartile range, with whiskers indicating 
minimum and maximum values. f, GO terms enriched in (upper) Neurogenic 
Aging Signature-UP and (lower) Neurogenic Aging Signature-DOWN. All GO 
terms shown by an adjusted P < 0.05 with Benjamini–Hochberg correction.  
g, Pie charts of the percentage of TFs in Neurogenic Aging Signature (upper) -UP 
and (lower) -DOWN. h, Spatial feature plots of (left) Neurogenic Aging Signature-
UP and (right) Neurogenic Aging Signature-DOWN showing regional-specific 
expression patterns in hippocampus. Color gradient indicates the expression 
level of individual module score. i, Venn diagram indicating the overlap between 
(upper) the Astrocyte-enriched genes and Neurogenic Aging Signature-UP and 
(lower) the qNSC-enriched genes and Neurogenic Aging Signature-DOWN.  
j, Expression of Astrocyte- and qNSC-enriched genes in qNSCs among different 
ages. Upper: Module scores of the Astrocyte-enriched genes in qNSC (two-tailed 
unpaired t-test with Welch’s correction; t = 5.241, ****P < 0.0001 between young 

and middle-age, t = 2.462, *P = 0.0151 between middle-age and old, t = 7.172,  
****P < 0.0001 between young and old; young, n = 141 cells, middle-age, n = 84 
cells, old, n = 69 cells) and expression of selected Astrocyte-enriched genes, 
Grm3, Slc15a2 and Bcan. Lower: Module scores of the qNSC-enriched genes in 
qNSC (two-tailed unpaired t-test with Welch’s correction; t = 5.035, ****P < 0.0001 
between young and middle-age, t = 3.037, **P = 0.0028 between middle-age and 
old, t = 8.787, ****P < 0.0001 between young and old; young, n = 141 cells, middle-
age, n = 84 cells, old, n = 69 cells). Box plots depict the median and interquartile 
range, with whiskers indicating minimum and maximum values. k, UMAP plot of 
neurogenic lineages in Hochgerner 2018 dataset. l, Module scores of Neurogenic 
Aging Signature of RGL. Upper: Neurogenic Aging Signature-UP score of RGL 
(two-tailed unpaired t-test with Welch’s correction; t = 12.79, ****P < 0.0001 
between perinatal and juvenile, t = 1.098, NS, P = 0.2745 between juvenile and 
adult, t = 9.396, ****P < 0.0001 between perinatal and adult; perinatal, n = 461 cells, 
juvenile, n = 57 cells, adult, n = 127 cells). Lower: Neurogenic Aging Signature-
DOWN score of RGL (two-tailed unpaired t-test with Welch’s correction; t = 16.10, 
****P < 0.0001 between perinatal and juvenile, t = 3.501, ***P = 0.0007 between 
juvenile and adult, t = 25.22, ****P < 0.0001 between perinatal and adult; perinatal, 
n = 461 cells, juvenile, n = 57 cells, adult, n = 127 cells). Box plots depict the median 
and interquartile range, with whiskers indicating minimum and maximum  
values. m, Immunofluorescent staining of radial NSCs (GFAP+SOX2+S100b−  
cells with radial morphology) and newly born neuronal progeny (DCX+ cells). 
n, Quantification of (upper) the number of radial NSC (young: 11151 ± 375 cells; 
middle-age: 3923 ± 200 cells; old: 1324 ± 154 cells; very old: 934 ± 100 cells; two-
tailed unpaired t-test with Welch’s correction, ****P < 0.0001 between young and 
middle-age, ****P < 0.0001 between middle-age and old, NS, P = 0.0558 between 
old and very old), (middle) the number of neuroblast (young: 12131 ± 392 cells; 
middle-age: 1079 ± 32 cells; old: 173 ± 25 cells; two-tailed unpaired t-test with 
Welch’s correction, ****P < 0.0001 between young and middle-age, ****P < 0.0001 
between middle-age and old, ****P < 0.0001 between old and very old) and (lower) 
the ratio of radial NSCs to neuroblasts from young (3 MO) to very old (24-25 MO) 
(young: 0.9 ± 0.0; middle-age: 3.7 ± 0.2; old: 8.3 ± 0.7; very old: 16.7 ± 1.3; two-
tailed unpaired t-test with Welch’s correction, ****P < 0.0001 between young and 
middle-age, ****P < 0.0001 between middle-age and old, ****P < 0.0001 between 
old and very old). aNSPC, active neural stem and progenitor cells, GO, gene 
ontology, GRN, gene regulatory network, IPC, intermediate progenitor cell,  
MO, month-old, NB/IMN, neuroblast and immature neuron, NS, not significant, 
NSC, neural stem cell, SGZ, subgranular zone, TF, transcription factor. All data 
were presented as mean ± SEM. Scale bars, 20 μm.
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Extended Data Fig. 5 | Impaired lineage progression of fate-committed neural 
progeny with aging. a, List of TFs in each pseudotime modules of which the 
GRN have been successfully reconstructed. b-c, Projection of GRN activity in the 
pseudotemporal trajectory of addtional transcription factors. Grey bar indicates 
putative transition zone between aNSPC and NB/IMN. (b) GRN activity of Hes6, 
Tfdp and E2f1 along the pseudotemporal trajectory. Left: Visualization by the 
transition from aNSPC to NB/IMN. Right: Visualization by individual ages. (c) GRN 
activity of Nhlh, Bhlhe22 and Mafb along the pseudotemporal trajectory. Upper: 
Visualization by the transition from aNSPC to NB/IMN. Lower: Visualization by 
individual ages. Shading indicates 95% confidence interval. Gray zone indicates 
the transition from aNSPC to NB/IMN. d, Immunofluorescent staining of SOX2 

and neuroblasts (NEUROD1 and DCX) showing this transitional stage of neural 
progeny differentiation is delayed in advancing ages. e, Quantification of the 
percentage of SOX2+ neuroblasts among all neuroblasts (NEUROD1+DCX+) at 
different ages (young: 2.8 ± 0.1%; middle-age: 12.1 ± 0.8%; old: 33.0 ± 2.0%; two-
tailed unpaired t-test with Welch’s correction, **P = 0.0012 between young and 
middle-age, ***P = 0.0001 between middle-age and old, ****P < 0.0001 between 
young and old). f, Schematic illustration of delayed lineage progression from 
aNSPC to NB/IMN. aNSPC, active neural stem and progenitor cells, GRN, gene 
regulatory network and NB/IMN, neuroblast and immature neuron. All data were 
presented as mean ± SEM. Scale bars, 20 μm.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Characterization of main populations in the neurogenic 
niche with advancing age. a, UMAP visualization of astrocyte subtypes in 
(left) Young, (middle) Middle-age and (right) Old mice. b, Spatial distribution 
of astrocyte subtypes among different ages using tangram cell type mapping. 
Estimated mapping probability of each astrocyte subtype (color gradient)  
to DG shown over the H&E images. c, UMAP visualization of astrocyte from 
Hochgerner 2018 dataset. d, Projection of predicted identities of Astrocyte 1 
and Astrocyte 2 in adult astrocytes of Hochgerner 2018 dataset. e, Violin plots 
showing similar expression of Astrocyte 1- (Igfbp2 and Kcnk1) and 2-specific 
(Sparc and Nnat) genes in adult astrocytes of Hochgerner et al.34 dataset. f, Pie 
chart showing the composition of Astrocyte 1 and Astrocyte 2 of adult astrocytes 
in Hochgerner 2018 dataset (Astrocyte 1: 59.8% and Astrocyte 2: 40.2%).  
g, UMAP visualization of vascular cell types in (left) Young, (middle) Middle-age 
and (right) Old mice. h-i, Molecular zonation of vascular compartment. Lower: 
Smoothened heat map of molecular patterns of the zonation of (h) endothelial 
and (i) mural cells. Gene expression was ordered based on the peak expression 
level along the pseudotemporal axis. Color gradient indicates the z-score of  
gene expression. Upper: Projection of gene expression dynamics of selective 
genes in pseudotemporal trajectory representing (h) endothelial zonation 

(Tgfb2, Slc16a1 and Slc38a5) and (i) mural zonation (Myh11, Acta2, Pdgfrb 
and Kcnj8). Color gradient indicates the log-normalized gene expression 
level. Shading indicates 95% confidence interval. j, UMAP visualization of 
microglia subtypes in (left) Young, (middle) Middle-age and (right) Old mice. 
k, Representative images of proliferating microglia (Microglia 2, indicated by 
arrowhead) co-stained with Ki67 in DG of (upper) young, (middle) middle-age and 
(lower) old mice. l, Representative images of inflammation-responding microglia 
(Microglia 3, indicated by arrowhead) in SGZ of old mice. m-n, Quantification 
of microglia subpopulations in SGZ at different ages. (m) Quantification of the 
number of Ki67+ microglia in SGZ (young: 22 ± 4 cells; middle-age: 98 ± 7 cells; 
old: 36 ± 4 cells; two-tailed unpaired t-test with Welch’s correction, ****P < 0.0001 
between young and middle-age, ****P < 0.0001 between middle-age and old,  
*P = 0.0233 between young and old). (n) Quantification of the number of STAT1+ 
microglia in SGZ (young: 0 ± 0 cells; middle-age: 8 ± 1 cells; old: 31 ± 3 cells;  
two-tailed unpaired t-test with Welch’s correction, ***P = 0.0002 between young 
and middle-age, ***P = 0.0001 between middle-age and old, ****P < 0.0001  
between young and old). UMAP, uniform manifold approximation and 
projection. All data were presented as mean ± SEM. Scale bars, (b) 200 μm and  
(k and l) 20 μm. H&E, Haematoxylin and eosin.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Pairwise comparison and regression model of age-
dependent differential gene expression profile. a, Dot plot showing the 
age-dependent changes for each cell types in dentate gyrus between (left) young 
and middle-age, (middle) middle-age and old, and (right) young and old. For all 
dots shown in color by an adjusted P < 0.05 with Bonferroni correction, MAST 
differential test. b, Wind rose plots showing the number of DEGs of selected cell 
types in dentate gyrus (upper) upregulated and (lower) downregulated between 
young and middle-age, middle-age and old, and young and old. c, Volcano plots 
showing DEGs between each age of the entire DG derived from the ST data. d, Bar 
plot shows the number of DEGs corresponding to c. e, UMAP plot of all cell types 
in Hahn 2023 dataset. f, CAS scores in Astrocyte (CAS-Up: two-tailed unpaired 
t-test with Welch’s correction, t = 17.21, ****P < 0.0001 between young and old; 
CAS-Down: two-tailed unpaired t-test with Welch’s correction, t = 29.91,  
****P < 0.0001 between young and old; young, n = 2,787 cells, old, n = 1,927 cells), 
EC (CAS-Up: two-tailed unpaired t-test with Welch’s correction, t = 7.604,  
****P < 0.0001 between young and old; CAS-Down: two-tailed unpaired t-test with 
Welch’s correction, t = 6.703, ****P < 0.0001 between young and old; young,  
n = 229 cells, old, n = 178 cells), Microglia (CAS-Up: two-tailed unpaired t-test  
with Welch’s correction, t = 27.97, ****P < 0.0001 between young and old;  
CAS-Down: two-tailed unpaired t-test with Welch’s correction, t = 11.59,  
****P < 0.0001 between young and old; young, n = 526 cells, old, n = 336 cells)  
and GC (CAS-Up: two-tailed unpaired t-test with Welch’s correction, t = 33.66, 
****P < 0.0001 between young and old; CAS-Down: two-tailed unpaired t-test  
with Welch’s correction, t = 59.63, ****P < 0.0001 between young and old; young, 
n = 13,516 cells, old, n = 6,033 cells) in Hahn 2023 dataset. Box plots depict 
the median and interquartile range, with whiskers indicating minimum and 

maximum values. g, UMAP plot of all cell types in Dulken 2019 dataset. h, CAS 
scores in Astrocyte/qNSC (CAS-Up: two-tailed unpaired t-test with Welch’s 
correction, t = 12.35, ****P < 0.0001 between young and old; CAS-Down:  
two-tailed unpaired t-test with Welch’s correction, t = 1.830, NS, P = 0.0676 
between young and old; young, n = 1,103 cells, old, n = 476 cells), EC (CAS-Up:  
two-tailed unpaired t-test with Welch’s correction, t = 15.00, ****P < 0.0001 
between young and old; CAS-Down: two-tailed unpaired t-test with Welch’s 
correction, t = 13.18, ****P < 0.0001 between young and old; young, n = 1,389 cells, 
old, n = 1,355 cells), Microglia (CAS-Up: two-tailed unpaired t-test with Welch’s 
correction, t = 21.22, ****P < 0.0001 between young and old; CAS-Down: two-tailed 
unpaired t-test with Welch’s correction, t = 16.29, ****P < 0.0001 between young 
and old; young, n = 1,312 cells, old, n = 1,261 cells) and Neuroblast (CAS-Up: two-
tailed unpaired t-test with Welch’s correction, t = 6.254, ****P < 0.0001 between 
young and old; CAS-Down: two-tailed unpaired t-test with Welch’s correction,  
t = 5.812, ****P < 0.0001 between young and old; young, n = 859 cells, old, n = 146 
cells) in Dulken 2019 dataset. Box plots depict the median and interquartile 
range, with whiskers indicating minimum and maximum values. i, Schematic 
illustration of GLM prediction model. j, Assessment of the ability of the GLM 
prediction model to selected cell types in dentate gyrus. Size of dots corresponds 
to percentage of Precision score in terms of their actual age. Color of dots 
corresponds to their actual age. CAS, core aging signature, C-R, Cajal-Retzius, 
DEG, differentially expressed gene, GC, granule cell, GLM, generalized linear 
model, IPC, intermediate progenitor cell, NB/IMN, neuroblast and immature 
neuron, NS, not significant, OPC, oligodendrocyte precursor, qNSC, quiescent 
neural stem cell, SMC, smooth muscle cell and ST, spatial transcriptomics.
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Extended Data Fig. 8 | Phenotypes of age-dependent accumulative T cells in 
hippocampus with advancing age. a, UMAP plot of immune population in the 
current dataset. b, Pie chart of the proportion of T cells detected in all three ages 
(young: 6.5%; middle-age: 27.6%; old: 65.9%). c, T cells in old brains express Cd8 
and phenotypes of effector memory (Cd62L−Cd44+), tissue retention (Itgal+Itga4+) 
and activation (Cd69+Xcl1+). d, Violin plots showing upregulated expression 
of IFN-γ and Pdcd1 in T cells at the advancing ages. e, Representative images 
showing the emergency of T cells in the white matter of old brains (upper: corpus 
callosum; lower: fimbria) (n = 10 mice). f-g, Representative images showing 
parenchyma-residential status (non-vessel-associated) (f) and local amplification 
(Ki67+) (g) of T cells in old hippocampi (n = 10 mice). h, Representative images 
showing the majority of T cells in the non-DG hippocampal subregions of old 

brains were CD8+. i, Pie chart of the proportion of CD8+ T cells in all CD3+ T cells  
of the old mouse brain (CD8+CD3+ T cells: 82.3%; CD8−CD3+ T cells: 17.7%;  
n = 10 mice). j, Representative images showing the inflammatory and cytotoxic 
phenotypres of CD8+ T cells in the old mouse non-DG jippocampus (n = 4 mice).  
k, Feature plots of NK cell-specific gene (Ncr1), CD8+ T cell-specific gene (Cd8a) 
and cytotoxicity-related gene (Gzmb). Color gradient indicates the log-
normalized gene expression level. l, Representative images of GZMB+CD8− cells 
in the old DG (n = 4 mice). GCL, granule cell layer, ML, molecular layer, NK, natural 
killer, SLM, stratum lacunosum moleculare, SO, stratum oriens, SP, stratum 
pyramidale and SR, stratum radiatum. All data were presented as mean ± SEM. 
Scale bars, (a-b) 100 μm (20 μm zoom-in panels), (d) 200 μm and (h-i) 20 μm  
(5 μm zoom-in panels).
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Neuroinflammatory signature in hippocampus with 
advancing age. a, The proportion of spots enriched with IFN-γ signature is 
increased in the old hippocampus (young: 2.4%; middle-age: 2.5%; old: 5.9%). 
b, Pictogram illustration of inflammatory spots (IS) and their nearest neighbor 
spots (NNS). c, Volcano plot showing the differentially expressed genes between 
IS and their NNS. For all dots shown in color by an adjusted P < 0.05, DESeq2 
differential test. d, Gene Ontology terms enriched in IS and their NNS. All GO 
terms shown by an adjusted P < 0.05 with Benjamini–Hochberg correction.  
e, Representative images showing the spatial correlation between T cells, IFN-γ 
signature (STAT1+ cells) and reactive microglia. f, Quantitation of the coverage of 
IBA-1 signal in hippocampus between young (3 MO), middle-age (10 MO) and old 
(18MO) animals (young: 7.0 ± 0.4%; middle-age: 7.8 ± 0.4%; old: 14.5 ± 1.1%;  
two-tailed unpaired t-test with Welch’s correction, NS, P = 0.2103 between 
young and middle-age, ***P = 0.0004 between middle-age and old, ***P = 0.0002 
between young and old). g, PCA plot of in silico aggregated Visium spots of (left) 
the whole hippocampus, DG and (right) CA in the old mouse brain. h, Hierarchical 

clustering of in silico aggregated Visium spots showing distinct transcriptional 
structure among all three types of spots in (left) the whole hippocampus, DG 
and (right) CA of the old mouse brain. i, Module scores of CAS and expression 
of selected genes among all three types of spots. Upper: (most left) CAS-UP 
score (two-tailed unpaired t-test with Welch’s correction; t = 14.99, ****P < 0.0001 
between IS and NNS, t = 10.35, ****P < 0.0001 between NNS and ENS1, t = 8.256, 
****P < 0.0001 between ENS1 and ENS2; IS, n = 299 spot, NNS, n = 967 spots, ENS1, 
n = 1163 spots, ENS2, n = 1005 spots) and (the rest) H2-D1, C4b, Vim and Vcam1 
among all three types of spots. Lower: (most left) CAS-DOWN score (two-tailed 
unpaired t-test with Welch’s correction; t = 12.29, ****P < 0.0001 between IS and 
NNS, t = 12.62, ****P < 0.0001 between NNS and ENS1, t = 7.295, ****P < 0.0001 
between ENS1 and ENS2; IS, n = 299 spot, NNS, n = 967 spots, ENS1, n = 1163 spots, 
ENS2, n = 1005 spots) and (the rest) Syn2, Snca, Prdm3 and Pcdh20 among all 
three types of spots. Box plots depict the median and interquartile range, with 
whiskers indicating minimum and maximum values. Scale bars, 100 μm.
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Extended Data Fig. 10 | Characterization of phenotypes of Pdgfbret/ret mouse 
model. a, Schematic illustration of the manual selection of SLM spots. b, Violin 
plots showing age-dependent changes in the expression of BBB-specific (Mfsd2a, 
Tfrc and Slc16a1) genes in SLM spots. c, Module scores of the hallmark of IFN-γ 
response (two-tailed unpaired t-test with Welch’s correction; t = 4.167,  
****P < 0.0001 between young and middle-age, t = 13.85, ****P < 0.0001 between 
middle-age and old, t = 21.38, ****P < 0.0001 between young and old; young, 
n = 271 spots, middle-age, n = 274 spots, old, n = 571 spots) and GO term of 
transmembrane transport (two-tailed unpaired t-test with Welch’s correction;  
t = 8.785, ****P < 0.0001 between young and middle-age, t = 19.39, ****P < 0.0001 
between middle-age and old, t = 39.50, ****P < 0.0001 between young and old; 
young, n = 271 spots, middle-age, n = 274 spots, old, n = 571 spots) among all three 
ages in SLM spots. d, Correlation between the module scores of the hallmark of 
IFN-γ response and GO term of transmembrane transport in SLM spots.  

e, Representative images showing infiltration of T cells (CD3+ cells) in the  
Pdgfbret/ret mouse hippocampus. f, Representative images showing emergence 
of CD8+ T cells, IFN-γ signature (STAT1+ cells) and co-localization of reactive 
microglia in (left) DG and (right) CC of (lower) Pdgfbret/ret mouse compared to 
(upper) control (Pdgfbret/+) animals. g, Quantitation of the number of (upper) 
CD3+ T cells (Pdgfbret/+: 32 ± 5 cells; Pdgfbret/ret: 125 ± 20 cells; two-tailed unpaired 
t-test with Welch’s correction, ** P = 0.0051 between Pdgfbret/+and Pdgfbret/ret) 
and (lower) STAT1+ cells in DG between 6 MO Pdgfbret/+ and Pdgfbret/ret animals 
(Pdgfbret/+: 4 ± 2 cells; Pdgfbret/ret: 165 ± 9 cells; two-tailed unpaired t-test with 
Welch’s correction, **** P < 0.0001 between Pdgfbret/+and Pdgfbret/ret). BBB, 
blood-brain barrier, CC, corpus callosum, DG, dentate gyrus and SLM, stratum 
lacunosum moleculare. Scale bars, (e) 100 μm (20 μm in zoom-in panels) and  
(f) 20 μm.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection No software was used for data collection.

Data analysis Softwares used: Cell Ranger (v6.0.2, 10x Genomics), Space Ranger (v1.2.0, 10x Genomics), Loupe Browser software (v6, 10x Genomics), 

ImageJ (v2.9.2), RStudio (v4.0.3), Prism (v9.5.1) 

R packages used: Seurat (v4.3), DoubletFinder (v2.0.3), STUtility (v0.1.0), msigdbr (v7.4.1), DESeq2 (v1.30.1), harmony (v0.1.0), monocle2 

(v2.18.0), Mfuzz (v2.50.0), SCENIC (v1.2.4), GENIE3 (v1.12.0), RcisTarget (v1.10.0), AUCell (1.13.3), caret (v6.0-88), ggplot2 (v3.3.5), ggrepel 

(v0.9.1), ggridges (v0.5.3), cowplot (v1.1.1), dplyr (v1.0.7), igraph (v1.2.6), alluvial (v0.2-0), MAST (v1.16.0), pheatmap (v1.0.12), RColorBrewer 

(v1.1-2), viridis (v0.6.1) 

Python package used: tangram-sc (v.1.0.4)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Data generated and analyzed presented in this study are available under GEO accession number GSE233363.  

Processed data (e.g., Seurat object and tables of meta information) for transcriptomics are available at https://github.com/JessbergerLab/AgingNeurogenesis_ 

Transcrptomics. 

Public/published database used in this study:  

Hochgerner 2018: GSE104323 

Dulken 2019: BioProject PRJNA450425 

Yao 2021: https://portal.brain-map.org/atlases-and-data/rnaseq 

Hahn 2023: GSE212576 

AnimalTFDB (v3.0): http://bioinfo.life.hust.edu.cn/AnimalTFDB/#!/

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender n/a

Reporting on race, ethnicity, or 

other socially relevant 

groupings

n/a

Population characteristics n/a

Recruitment n/a

Ethics oversight n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size A total of 17, 12 and 48 mice were used for scRNA-seq, ST and histological experiments in this study, with a total of 35,189 single cell 

transcriptomes, 42,169 spatial spot transcriptomes and 1048 tissue sections collected. No sample size calculation was performed. 

Data exclusions Cells of poor quality and spots with technical artifacts were excluded from analysis. Detailed description is in the Methods section. 

Replication The main findings in the transcriptomics experiments were validated by histological analysis (immunofluorescent staining and single-molecule 

RNA FISH). Histological experiments were replicated in at least three biological replicates (for details please refer to methods sections). 

Replication experiments were successful. 

Randomization No randomization for transcriptomics or histological experiments was possible due to comparison of different age/genotype groups. 

Blinding Transcriptomics experiments were not blinded for group allocation during data acquisition and analysis. Single-molecule RNA FISH and 

Pdgfbret/ret experimenters were blinded for group allocation during analyses. For the rest histological analysis, due to the nature of aging on 

neurogenic activity, experimenters are aware of animals from certain ages, such that experimenters were not blinded for group allocation 

during data acquisition. For the rest histological analysis of microglia and neuroinflammation, experimenters were not blinded for group 

allocation during analyses. 
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Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies

Antibodies used Primary 

Antigen Host Source Catalog# Concentration 

S100b Rabbit Abcam ab52642 1:500 

SOX2 Rat Thermo Fisher Scientific 14-9811-82 1:200 

GFAP Chicken Aves GFAP 1:500 

Ki67 Rat Thermo Fisher Scientific 14-5698-82 1:500 

DCX Guinea pig Millipore ab2253 1:500 

NEUROD Goat Santa Cruz sc1084 1:250 

IBA-1 Goat Novus NB100-1028 1:500 

CD3 Rabbit Novus NB600-1441SS 1:200 

CD8a Rat Thermo Fisher Scientific 14-0808-80 1:200 

GZMB Goat R&D AF1865 1:100 

STAT1 Rabbit Cell Signaling 14994T 1:200 

Collagen IV Rabbit Bio-Rad 2150-1470 1:750 

CD13 Goat Novus AF2335 1:500 

GFP Goat Rockland 600-101-215 1:500 

tdTomato Goat Rockland 600-401-379 1:500 

tdTomato Goat Sicgen AB8181-200 1:500 

 

Secondary 

Antigen Host Source Catalog# Concentration 

Alexa Fluor 488 anti-goat IgG (H+L) Donkey Jackson Immuno Research 705-545-147 1:250 

Alexa Fluor 488 anti-chicken IgG (H+L) Donkey Jackson Immuno Research 703-545-155 1:250 

Alexa Fluor 488 anti-rabbit IgG (H+L) Donkey Jackson Immuno Research 711-545-152 1:250 

Alexa Fluor 488 anti-rat IgG (H+L) Donkey Jackson Immuno Research 712-545-153 1:250 

Alexa Fluor Cy3 anti-rat IgG (H+L) Donkey Jackson Immuno Research 712-165-153 1:250 

Alexa Fluor Cy3 anti-goat IgG (H+L) Donkey Jackson Immuno Research 705-165-147 1:250 

Alexa Fluor Cy3 anti-rabbit IgG (H+L) Donkey Jackson Immuno Research 711-165-152 1:250 

Alexa Fluor 647 anti-goat IgG (H+L) Donkey Jackson Immuno Research 705-605-147 1:250 

Alexa Fluor 647 anti-rabbit IgG (H+L) Donkey Jackson Immuno Research 711-605-152 1:250 

Alexa Fluor 647 anti-guinea pig IgG (H+L) Donkey Jackson Immuno Research 706-605-148 1:250

Validation Validation links and references for primary antibodies:  

S100b Rabbit abcam ab52642 https://scicrunch.org/resolver/AB_882426 

Sox2 Rat Thermo Fisher Scientific 14-9811-82 https://scicrunch.org/resolver/AB_11219471 

GFAP Chicken Aves GFAP https://scicrunch.org/resolver/AB_2313547/mentions?q=&i=rrid:ab_2313547-127:gfap 

Ki67 Rat Thermo Fisher Scientific 14-5698-82 https://scicrunch.org/resolver/AB_10854564 

DCX Guinea pig Millipore ab2253 https://scicrunch.org/resolver/AB_1586992 

NEUROD Goat Santa Cruz sc1084 https://scicrunch.org/resolver/RRID:AB_630922 

IBA-1 Goat Novus NB100-1028 https://scicrunch.org/resolver/AB_521594 

CD3 Rabbit Novus NB600-1441SS https://www.novusbio.com/products/cd3-antibody-sp7_nb600-1441 

CD8a Rat Thermo Fisher Scientific 14-0808-80 1:200 https://scicrunch.org/resolver/RRID:AB_2572860 

GZMB Goat R&D AF1865 1:100 https://www.rndsystems.com/products/mouse-granzyme-b-antibody_af1865?

gad_source=1&gclid=Cj0KCQjw7ZO0BhDYARIsAFttkCgdLfp5x4DjuTWnNsAb0fkRQp4Qe3iwqc1trYuaEFHGqTIcj5gAFL8aAv88EALw_wc

B&gclsrc=aw.ds 

STAT1 Rabbit Cell Signaling 14994T https://www.cellsignal.com/products/primary-antibodies/stat1-d1k9y-rabbit-mab/14994?

country=CH 

Collagen IV Rabbit Bio-Rad 2150-1470 https://scicrunch.org/resolver/AB_2082660 

CD13 Goat Novus AF2335 https://scicrunch.org/resolver/RRID:AB_2227288 

GFP Goat Rockland 600-101-215 https://scicrunch.org/resolver/AB_218182 
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tdTomato Goat Rockland 600-401-379 https://scicrunch.org/resolver/AB_2209751 

tdTomato Goat Sicgen AB8181-200 https://scicrunch.org/resolver/RRID:AB_2722750

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 

Research

Laboratory animals Wild-type mice:  

C57BL/6JRj; Janvier-labs, France 

3-month-old, 9-11-month-old and 16-21-month-old mice were used for transcriptomics experiments.  

3-month-old, 10-month-old, 18-month-old and 24-month-old mice were used for histological experiments.  

Transgenic mice:  

Ai14;B6.Cg-Gt(ROSA)26Sortm14 (CAG-tdTomato)Hze; The Jackson Laboratory, 007914 

(used to breed experimental Gli1-CreERT2::Rosa26-LSL-tdTomato mice) 

Gli1tm3(cre/ERT2)Alj; The Jackson Laboratory, 007913  

(used to breed experimental Gli1-CreERT2::Rosa26-LSL-tdTomato mice) 

Gli1-CreERT2::Rosa26-LSL-tdTomato (e.g., Pilz et al., 2018 Science (doi: 10.1126/science.aao5056))  

3-month-old, 10-month-old and 17-month-old mice were used.  

B6.Cg-Tg(Nes-EGFP)1Yamm/Rbrc 

3-month-old, 10-month-old and 18-month-old mice were used.  

Pdgfbret/ret (Pdgfb-tm(ret)) (e.g., Lindblom et al., 2003 Genes Dev(doi: 10.1101/gad.266803)) 

6-month-old mice were used.  

Mice were group housed in ventilated cages (21-23 Celsius, 40-60% humidity) under a 12h dark/light cycle with ad libitum access to 

food and water. 

Wild animals No wild animals were used in this study. 

Reporting on sex Mice of mixed sex were used. 

Field-collected samples No field-collected samples were used in this study. 

Ethics oversight Animal experiments were approved by the Cantonal Commission for Animal Experimentation of the Canton of Zurich, Switzerland 

and Stockholms Norra Djurförsöksetiska Nämnd, Sweden in accordance with national and cantonal/county regulations (license 

numbers ZH190/19; ZH126/20; 20785-2020). 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Mice were first euthanized via cervical dislocation, followed by taking out brains and then microdissection of DG. The 

dissected DG from the same age were pooled and dissociated using Neural Tissue Dissociation Kit (P) (Miltenyi Biotec) and 

further cleaned using Myelin Removal Beads II (Miltenyi Biotec) according to manufacturer’s instructions. Briefly, pooled 

tissue was enzymatically digested for 35 minutes at 37°C, followed by manual trituration with fire-polished pipette tips and 

filtered with 40-μm strainers. Cell suspension was incubated with Myelin Removal Beads for 15 minutes on ice, followed by 

cleaning with passing through magnet LS column (Miltenyi Biotec). Single cell suspension was sorted with the target number 

of 50,000 in an influx cell sorter using 130-μm nozzle (BD Influx).

Instrument BD FACSAria II

Software Data was collected using BD FACS software (FACSAria II) and analyzed using FlowJo.

Cell population abundance Samples were sorted at 1000-1500 events/sec using the 130 um nozzle and a cooling unit with sample temperature of 4°C 

achieving >90% purity by FACS analysis. Cell population abundance in single cells.

Gating strategy Gating selecting cells and singlets were chosen to enrich single cells.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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