Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Seq-Scope: repurposing Illumina sequencing flow cells for high-resolution spatial transcriptomics

Abstract

Spatial transcriptomics technologies aim to advance gene expression studies by profiling the entire transcriptome with intact spatial information from a single histological slide. However, the application of spatial transcriptomics is limited by low resolution, limited transcript coverage, complex procedures, poor scalability and high costs of initial setup and/or individual experiments. Seq-Scope repurposes the Illumina sequencing platform for high-resolution, high-content spatial transcriptome analysis, overcoming these limitations. It offers submicrometer resolution, high capture efficiency, rapid turnaround time and precise annotation of histopathology at a much lower cost than commercial alternatives. This protocol details the implementation of Seq-Scope with an Illumina NovaSeq 6000 sequencing flow cell, allowing the profiling of multiple tissue sections in an area of 7 mm × 7 mm or larger. We describe the preparation of a fresh-frozen tissue section for both histological imaging and sequencing library preparation and provide a streamlined computational pipeline with comprehensive instructions to integrate histological and transcriptomic data for high-resolution spatial analysis. This includes the use of conventional software tools for single-cell and spatial analysis, as well as our recently developed segmentation-free method for analyzing spatial data at submicrometer resolution. Aside from array production and sequencing, which can be done in batches, tissue processing, library preparation and running the computational pipeline can be completed within 3 days by researchers with experience in molecular biology, histology and basic Unix skills. Given its adaptability across various biological tissues, Seq-Scope establishes itself as an invaluable tool for researchers in molecular biology and histology.

Key points

  • The protocol repurposes an Illumina NovaSeq 6000 flow cell for spatial transcriptomics, generating high-resolution datasets and integrating a streamlined data-analysis pipeline.

  • Leveraging commonly available Illumina equipment, the protocol offers researchers ultra-high, submicrometer resolution in spatial transcriptomics analysis with a comprehensive analytical pipeline, whole-transcriptome coverage, rapid turnaround, cost efficiency and versatility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of experimental procedures.
Fig. 2: An overview of computational procedures.
Fig. 3: Example outputs from the Illumina SAV application.
Fig. 4: Flow cell disassembly and dicing.
Fig. 5: Liquid handling in Seq-Scope chip surface treatment.
Fig. 6: Tissue-freezing chamber.
Fig. 7: Tissue sectioning and attachment.
Fig. 8: Liquid- and chip-handling procedure.
Fig. 9: Seq-Scope adapter frame and silicone isolator used in Part 3: library construction.
Fig. 10: Conceptual representation of the NovaScope workflow based on the ‘Request’ option.
Fig. 11: Spatial arrangement between tiles in the NovaSeq 6000 S4 flow cell.
Fig. 12: An output sbcd image from Step 168 illustrates the distribution of all spatial barcodes (i.e., HDMIs).
Fig. 13: An output smatch image from Step 172, showing the distribution of spatial barcodes (i.e., HDMIs) that matched to the 2nd-Seq FASTQ files.
Fig. 14: An output sge image from Step 174, showing the distribution of spatial barcodes (HDMIs) that align to the reference genome.
Fig. 15: Comparison between sge (left) and aligned histology (right) images.
Fig. 16: An exemplary multidimensional clustering result obtained by using Seurat.
Fig. 17: An exemplary output image from Step 191, illustrating distinct zonation of hepatocellular factors.
Fig. 18: An exemplary pixel-level output image from LDA-based analysis showing clear zonation of hepatocellular factors.
Fig. 19: An exemplary pixel-level output image from Seurat-based analysis showing hepatocellular and non-parenchymal cell factors.
Fig. 20: An exemplary black-and-white segmentation image.
Fig. 21: An exemplary overlay analysis to inspect the cell segmentation performance.
Fig. 22: An exemplary multidimensional clustering result obtained by using Seurat, based on the single-cell data, segmented through Watershed implemented in ImageJ.
Fig. 23: An exemplary multidimensional clustering result obtained by using Seurat, based on the single-cell data, segmented through Cellpose.
Fig. 24: Seq-Scope analysis using shallowly sequenced liver data (~163 million 2nd-Seq read inputs).

Similar content being viewed by others

Data availability

All source data described in this protocol are available online via public repositories, such as Zenodo and Deep Blue Data: minimal test run dataset (https://doi.org/10.5281/zenodo.10835761), shallow-sequenced liver dataset (https://doi.org/10.5281/zenodo.10840696), deep-sequenced liver dataset (https://doi.org/10.7302/tw62-4f97) and exemplary downstream analysis input (https://doi.org/10.5281/zenodo.10841777).

Code availability

All source code described in this protocol is available online via GitHub: NovaScope pipeline, v1.0.0 (https://github.com/seqscope/novascope) and NEDA, v1.0.0 (https://github.com/seqscope/NovaScope-exemplary-downstream-analysis).

References

  1. Stahl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Bergenstrahle, J., Larsson, L. & Lundeberg, J. Seamless integration of image and molecular analysis for spatial transcriptomics workflows. BMC Genomics 21, 482 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat. Biotechnol. 39, 313–319 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu, Y. et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 183, 1665–1681.e18 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sergio Marco, S. et al. Optimizing xenium in situ data utility by quality assessment and best practice analysis workflows. Preprint at https://www.biorxiv.org/content/10.1101/2023.02.13.528102v1 (2023).

  7. He, S. et al. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. Nat. Biotechnol. 40, 1794–1806 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, M. et al. Molecularly defined and spatially resolved cell atlas of the whole mouse brain. Nature 624, 343–354 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Slovin, S. et al. Single-cell RNA sequencing analysis: a step-by-step overview. Methods Mol. Biol. 2284, 343–365 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Cho, C.-S. et al. Microscopic examination of spatial transcriptome using Seq-Scope. Cell 184, 3559–3572.e22 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 10x Genomics. Visium HD: whole transcriptome spatial discovery at the resolution you need. https://www.10xgenomics.com/library/8012d2 (accessed 25 February 2024).

  12. Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792.e21 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Fu, X. et al. Polony gels enable amplifiable DNA stamping and spatial transcriptomics of chronic pain. Cell 185, 4621–4633.e17 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. BD_Biosciences BD Rhapsody™ system—mRNA whole transcriptome analysis (WTA) library preparation protocol. https://scomix.bd.com/hc/article_attachments/13726971063565 (2022).

  16. Salmen, F. et al. Barcoded solid-phase RNA capture for spatial transcriptomics profiling in mammalian tissue sections. Nat. Protoc. 13, 2501–2534 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. 10x Genomics. Visium spatial tissue optimization reagents kits user guide. https://www.10xgenomics.com/support/spatial-gene-expression-fresh-frozen/documentation/steps/tissue-optimization/visium-spatial-tissue-optimization-reagents-kits-user-guide (2022).

  18. 10x Genomics. Visium spatial gene expression reagent kits user guide. https://www.10xgenomics.com/support/spatial-gene-expression-fresh-frozen/documentation/steps/library-construction/visium-spatial-gene-expression-reagent-kits-user-guide (2023).

  19. Kaminow, B., Yunosov, D. & Dobin, A. STARsolo: accurate, fast and versatile mapping/quantification of single-cell and single-nucleus RNA-seq data. Preprint at https://www.biorxiv.org/content/10.1101/2021.05.05.442755v1 (2021).

  20. Xi, J., Lee, J. H., Kang, H. M. & Jun, G. STtools: a comprehensive software pipeline for ultra-high-resolution spatial transcriptomics data. Bioinform. Adv. 2, vbac061 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Do, T. H. et al. TREM2 macrophages induced by human lipids drive inflammation in acne lesions. Sci. Immunol. 7, eabo2787 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ma, F. et al. Single cell and spatial sequencing define processes by which keratinocytes and fibroblasts amplify inflammatory responses in psoriasis. Nat. Commun. 14, 3455 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hsu, J. et al. High-resolution spatial transcriptomic atlas of mouse soleus muscle: unveiling single cell and subcellular heterogeneity in health and denervation. Preprint at https://www.biorxiv.org/content/10.1101/2024.02.26.582103v1 (2024).

  24. Poovathingal, S. et al. Nova-ST: Nano-patterned ultra-dense platform for spatial transcriptomics. Cell Rep. Methods 4, 100831 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schott, M. et al. Open-ST: high-resolution spatial transcriptomics in 3D. Cell 187, 3953–3972.e26 (2024).

    Article  CAS  PubMed  Google Scholar 

  26. Bahar Halpern, K. et al. Nuclear retention of mRNA in mammalian tissues. Cell Rep. 13, 2653–2662 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gurkar, A. U. et al. Spatial mapping of cellular senescence: emerging challenges and opportunities. Nat. Aging 3, 776–790 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cao, J. et al. Decoder-seq enhances mRNA capture efficiency in spatial RNA sequencing. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02086-y (2024).

  29. Bai, Z. et al. Spatially exploring RNA biology in archival formalin-fixed paraffin-embedded tissues. Cell https://doi.org/10.1016/j.cell.2024.09.001 (2024).

  30. Wulf, M. G. et al. Non-templated addition and template switching by Moloney murine leukemia virus (MMLV)-based reverse transcriptases co-occur and compete with each other. J. Biol. Chem. 294, 18220–18231 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hughes, T. K. et al. Second-strand synthesis-based massively parallel scRNA-seq reveals cellular states and molecular features of human inflammatory skin pathologies. Immunity 53, 878–894.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 42, 293–304 (2024).

    Article  CAS  PubMed  Google Scholar 

  33. Si, Y. et al. FICTURE: scalable segmentation-free analysis of submicron-resolution spatial transcriptomics. Nat. Methods 21, 1843–1854 (2024).

    Article  CAS  PubMed  Google Scholar 

  34. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pierre, S. & Luc, M. V. Determining watersheds in digital pictures via flooding simulations. Proc. SPIE Int. Soc. Opt. Eng. 1360, 240–250 (1990).

    Google Scholar 

  36. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Pachitariu, M. & Stringer, C. Cellpose 2.0: how to train your own model. Nat. Methods 19, 1634–1641 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dries, R. et al. Giotto: a toolbox for integrative analysis and visualization of spatial expression data. Genome Biol. 22, 78 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Palla, G. et al. Squidpy: a scalable framework for spatial omics analysis. Nat. Methods 19, 171–178 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, D. et al. Spatial epigenome-transcriptome co-profiling of mammalian tissues. Nature 616, 113–122 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Llorens-Bobadilla, E. et al. Solid-phase capture and profiling of open chromatin by spatial ATAC. Nat. Biotechnol. 41, 1085–1088 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Deng, Y. et al. Spatial profiling of chromatin accessibility in mouse and human tissues. Nature 609, 375–383 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vickovic, S. et al. SM-Omics is an automated platform for high-throughput spatial multi-omics. Nat. Commun. 13, 795 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao, T. et al. Spatial genomics enables multi-modal study of clonal heterogeneity in tissues. Nature 601, 85–91 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Engblom, C. et al. Spatial transcriptomics of B cell and T cell receptors reveals lymphocyte clonal dynamics. Science 382, eadf8486 (2023).

    Article  CAS  PubMed  Google Scholar 

  46. Benotmane, J. K. et al. High-sensitive spatially resolved T cell receptor sequencing with SPTCR-seq. Nat. Commun. 14, 7432 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hudson, W. H. & Sudmeier, L. J. Localization of T cell clonotypes using the Visium spatial transcriptomics platform. STAR Protoc. 3, 101391 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu, Y., Enninful, A., Deng, Y. & Fan, R. Spatial transcriptome sequencing of FFPE tissues at cellular level. Preprint at https://www.biorxiv.org/content/10.1101/2020.10.13.338475v2.full (2020).

  49. Gracia Villacampa, E. et al. Genome-wide spatial expression profiling in formalin-fixed tissues. Cell Genom. 1, 100065 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Heiser, C. N. et al. Molecular cartography uncovers evolutionary and microenvironmental dynamics in sporadic colorectal tumors. Cell 186, 5620–5637.e16 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Illumina sequencing library QC on the MiSeq system. https://www.illumina.com/content/dam/illumina-marketing/documents/products/appnotes/appnote_miseq_libqc.pdf (2014).

  52. Illumina bcl2fastq2 conversion software v2.20 software guide. https://support.illumina.com/content/dam/illumina-support/documents/documentation/software_documentation/bcl2fastq/bcl2fastq2-v2-20-software-guide-15051736-03.pdf (2019).

  53. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lako, A. & Rodig, S. HTAPP_hematoxylin and eosin (H&E) staining protocol of OCT frozen tissue. https://doi.org/10.17504/protocols.io.8pphvmn (2019).

  55. Ma, Z. Y. et al. Comparison of staining quality between rapid and routine hematoxylin and eosin staining of frozen breast tissue sections: an observational study. J. Int. Med. Res. 52, 3000605241259682 (2024).

    Article  CAS  PubMed  Google Scholar 

  56. Molder, F. et al. Sustainable data analysis with Snakemake. F1000Res 10, 33 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was supported by the Taubman Institute Innovation Project (to H.M.K. and J.H.L.), the NIH (T32AG000114 to Y.K. and C.-S.C., K01AG061236 to M.K., R01DK118631 to G.J., R01AG079163 to M.K. and J.H.L., R01HG011031 and HHSN268201800002I to H.M.K. and R01DK133448 and UH3CA268091 to J.H.L.), Technology Transfer Talent Network (T3N) Postdoctoral Fellowship (to Y.K.) and a Gleen Foundation Core grant (to J.H.L.).

Author information

Authors and Affiliations

Authors

Contributions

Y.K., C.-S.C., A.P., M.S., J.-E.H., M.K. and J.H.L. developed the experimental part of the protocol. W.C., Y.H., Y.S., J.X., A.A., C.L., G.J. and H.M.K. developed the computational part of the protocol. E.P., O.I.K., T.W., H.M.K. and J.H.L. developed the sequencing part of the protocol. Y.K., W.C., C.-S.C., H.M.K. and J.H.L. prepared the first draft. All authors revised, reviewed and approved the final version.

Corresponding authors

Correspondence to Hyun Min Kang or Jun Hee Lee.

Ethics declarations

Competing interests

H.M.K. owns stock in Regeneron Pharmaceuticals. J.H.L. is an inventor on a patent and pending patent applications related to Seq-Scope.

Peer review

Peer review information

Nature Protocols thanks Moritz Gerstung and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Cho, C.-S. et al. Cell 184, 3559–3572.e22 (2021): https://doi.org/10.1016/j.cell.2021.05.010

Xi, J. et al. Bioinform. Adv. 2, vbac061 (2022): https://doi.org/10.1093/bioadv/vbac061

Si, Y. et al. Nat. Methods 21, 1843–1854 (2024): https://doi.org/10.1038/s41592-024-02415-2

Do, T. H. et al. Sci. Immunol. 7, eabo2787 (2022): https://doi.org/10.1126/sciimmunol.abo2787

Supplementary information

Supplementary Data 1

3D model (STL) file for the custom frame adapter described in the protocol. The STL file can be used to fabricate the adapter in most 3D printing service centers. We printed the adapter on a Stratasys J850 by using the default white material.

Supplementary Data 2

Sketch drawing and specification of the custom silicone isolator (Grace Bio-Labs, cat. no. JTR25-A-1.0, RD501346). Information in this PDF is sufficient to reproduce the part with the same specifications applied by Grace Bio-Labs.

Supplementary Data 3

README file providing details on running the code and software applied in the protocol

Supplementary Video 1

NovaSeq 6000 S4 flow cell disassembly. The scalpel is used to separate the flow cell into its three main components. This video demonstrates the entire procedure of the flow cell disassembly. During the demonstration, viewers may notice that a small piece was broken off the top layer of the flow cell. This layer is thin and, therefore, prone to breakage. However, as long as the broken piece is outside the imaging area described in Fig. 3d (B02–B10 and T02–T10), it does not interfere with subsequent procedures. Furthermore, even if the breakage damages some imaging areas, other intact areas can still be effectively used without any issues.

Supplementary Video 2

Seq-Scope chip dicing procedure. The chip was diced from the disassembled top and bottom layers of a NovaSeq 6000 S4 flow cell by using a precision glass cutter.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Cheng, W., Cho, CS. et al. Seq-Scope: repurposing Illumina sequencing flow cells for high-resolution spatial transcriptomics. Nat Protoc 20, 643–689 (2025). https://doi.org/10.1038/s41596-024-01065-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-024-01065-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing