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A database of human gait 
performance on irregular and 
uneven surfaces collected by 
wearable sensors
Yue Luo   1, Sarah M. Coppola2,6, Philippe C. Dixon3,4, Song Li1, Jack T. Dennerlein5,6 & 
Boyi Hu1,6 ✉

Gait analysis has traditionally relied on laborious and lab-based methods. Data from wearable sensors, 
such as Inertial Measurement Units (IMU), can be analyzed with machine learning to perform gait 
analysis in real-world environments. This database provides data from thirty participants (fifteen males 
and fifteen females, 23.5 ± 4.2 years, 169.3 ± 21.5 cm, 70.9 ± 13.9 kg) who wore six IMUs while walking 
on nine outdoor surfaces with self-selected speed (16.4 ± 4.2 seconds per trial). This is the first publicly 
available database focused on capturing gait patterns of typical real-world environments, such as grade 
(up-, down-, and cross-slopes), regularity (paved, uneven stone, grass), and stair negotiation (up and 
down). As such, the database contains data with only subtle differences between conditions, allowing 
for the development of robust analysis techniques capable of detecting small, but significant changes in 
gait mechanics. With analysis code provided, we anticipate that this database will provide a foundation 
for research that explores machine learning applications for mobile sensing and real-time recognition of 
subtle gait adaptations.

Background & Summary
Gait analysis is the science of functional assessment of human locomotion, and it has been applied in multiple 
areas such as medicine, sport, and ergonomics with promising results1–3. One specific successful application of 
gait analysis is to assess fall risk exposure and prevent falling injuries4. Fall risk is associated with multiple factors 
including human characteristics, health conditions, and the physical environment5. In particular, irregular walk-
ing surfaces in the outdoor built and natural environment expose people to potential fall injuries6. Unfortunately, 
traditional gait analysis requires expensive engineering technologies that are time and labor intensive, especially 
when the analysis involves heuristic hand-crafted feature extraction7–9. To overcome this limitation, machine 
learning methods are increasingly being integrated into gait and posture related investigations10–12.

This data descriptor aims to contribute to machine learning research of gait performance when walking 
in different outdoor environments, which has surprisingly been limited in previous literature. Previous work 
has shown that gait adaptations utilized when walking on irregular surfaces may reflect reduced stability and 
increased fall risk13–15. However, one limitation of such previous studies is that they were conducted in simulated 
laboratory environments and thus lack real world validity. With the recent development of wearable motion 
tracking technologies such as Inertial Measurement Units (IMU), we now have the capability to extend gait anal-
ysis into outdoor settings to maximize ecological validity.

In order to develop accurate, robust and generalizable machine learning algorithms to recognize subtle gait 
alterations, it is necessary to have sufficient amounts of properly annotated data. Unfortunately, very limited 
gait related data sets are publicly accessible. Among these, most were primarily generated for human activity 
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recognition purposes so the activity tasks included have a very broad spectrum of coverage16–24. For example, 
gait is usually one category accompanied by other activities that have substantial differences (sitting, lying down, 
climbing stairs, running, etc.). Subtle gait alterations due to internal/external factors have never been considered 
or properly annotated in existing public data sets. A second category of data sets are focused on utilizing human 
gait performance as a biometrics characteristic for human identification12,25–30. Therefore, creators of those data 
sets usually only considered between subject differences and only collected short duration of gait trials from each 
participant which is not sufficient to train advanced machine learning models. Furthermore, the environmental 
conditions in which these data were collected are not always reported in sufficient detail. In order to advance 
machine learning for the recognition of human gait changes caused by walking surface characteristics, there is 
an urgent need to create large data sets that have an exhaustive set of walking surfaces representative of the real 
environment outside the laboratory, preferably with wearable and non-intrusive sensors.

Therefore, in this descriptor, we present a publicly accessible data set collected with wearable motion sensors 
where participants walked on different real-world outdoor surfaces. We anticipate that this data set will provide 
a foundation for subsequent research that explores the application of machine learning to mobile sensing and 
real-time recognition of subtle gait adaptations.

Methods
Participants.  Thirty young participants with no reported neurological or musculoskeletal conditions that 
affected their gait or posture and no history of falling injuries in the previous two years volunteered for this 
study. The sample of participants is in proximity to normal urban US campus. Their anthropometry information 
is provided in Table 1. The Harvard and Northeastern Institutional Review Boards approved this study and all 
participants provided written consent.

Data collection.  Participants performed several walking trials over nine different surfaces while wearing 
six IMU sensors (MTw Awinda, Xsens, Enschede, Netherlands). The sensors were secured to the body using the 
bands provided by the manufacturer such that they were: 1) centered on the wrist on the dorsal forearm, 2 & 3) 

Participant Age Sex Height (cm)
Body mass 
(kg)

1 28 F 154.5 49.1

2 24 F 158.6 54.1

3 22 F 167 53.6

4 22 F 166 56

5 23 F 168.2 61.4

6 33 M 175 99

7 27 M 184 75.3

8 18 M 187 82.3

9 22 F 162.1 53.6

10 19 F 162 61.7

11 28 M 180 70.4

12 18 M 177.9 81

13 22 F 174.2 58.6

14 19 F 66.5 67.3

15 19 M 181 72.4

16 31 M 176 101.2

17 19 F 173 73.9

18 30 M 165.4 82.9

19 32 F 165 53

20 22 F 167.1 74.8

21 19 M 169 73.9

22 22 M 178.5 80.2

23 24 F 179.6 61.6

24 26 F 174.6 62.5

25 22 F 157 61.6

26 22 M 175.6 66

27 22 M 192.7 85.9

28 22 M 180 91.1

29 26 M 172 78.1

30 22 M 188 84.4

Summary 23.5 (4.2) 15M, 15F 169.3 (21.5) 70.9 (13.9)

Table 1.  Anthropometry information of participants.
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centered on both the anterior thighs, 4 & 5) centered 5 cm above the bony processes of both ankles, and 6) poste-
rior level of L5/S1 joint (Fig. 1).

Researchers palpated participant’s bones to place the sensors. Participants were instructed to face southwest 
and perform a sensor calibration procedure three times prior to the experimental trial collection. The calibra-
tion procedure was: 1) line up directly centered with experiment computer; 2) forward trunk flexion about 30 
degrees 3 times; 3) raise right arm 3 times; 4) raise right leg three times; 5) raise left leg three times. A researcher 
performed these movements with the participant. The calibration data are also included in this data set. The nine 
walking surfaces were: 1) flat even (horizontal, 0 grade, paved); 2) up stairs (cement); 3) down stairs (cement); 
4) sloped up (cement); and 5) sloped down (cement) 6) grass; 7) banked left (paved); 8) banked right (paved); 9) 
uneven stone brick (Fig. 2).

Participants were instructed to walk at their normal pace and to let their arms swing naturally. Participants 
stood still at the starting position and waited for the verbal cue from a researcher to start their walking trials. Each 
walking trial lasted for 16.4 ± 4.2 seconds until stop. Within each trial, walking was performed by participants 
without changes of direction (i.e. straight walking). Between trials, only walking on flat even, grass, and uneven 
stone brick were conducted with direction changes every other trial (i.e. walking forward for the first trial and 
walking back for the next trial). Surfaces were presented in a randomized order and adequate rest was provided 
to prevent fatigue between trials. Participants walked six times on each of these surfaces, and a researcher walked 
next to them with the experimental data capture machine to ensure a strong signal connection. A summary of the 
data collection conditions includes weather (‘N/A’ was filled if weather was not recorded), temperature, and time 
of day for each participant is provided in Table 2.

Fig. 1  Sensor placement setup.

Fig. 2  Measurement sites for walking trials.
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Data processing.  Wearable data were collected using the MTw Awinda software (Xsens, Enschede, 
Netherlands). The sampling frequency was set at 100 Hz. Raw sensors’ outputs were synchronized by the software 
and then exported to a standard txt file format. Subsequently, all the data files were imported and processed under 
MATLAB (R2019a, The MathWorks, Natick, USA). Trajectories were smoothed using a 2nd order Butterworth 
low pass filter with a 6 Hz cut-off frequency. Figure 3 is presented to give an example of the filtered signal pattern 
of the trunk sensor while walking on different surfaces.

Data Records
Raw data.  All raw data files exported from MTw are stored as .txt format and have been uploaded into 
figshare31 to provide free accessibility to the public. A total of 10,260 (30 participants * 57 trials * 6 sensors) files 
are available from the database. Files are grouped by folders with labels from 1–30 representing the participant 
number (30 participants in total). Each file was named systematically as ‘#-000_00B432**.txt’, where ‘#’ repre-
sents the walking surface condition (Table 3) and ‘**’ represents the sensor location (Table 4). For example, file 
‘9-000_00B432CC.txt’ stands for the trunk sensor (‘CC’) data while walking on the flat even surface (‘9’) for all 
participants. Furthermore, for each trial there was a .mtb file (i.e. binary motion tracker file).

Sensors’ outputs (e.g. 3D acceleration, 3D gyroscope data) as well as the recording information (e.g. start time, 
update rate, filter profile, and firmware version) are stored in each file with labels. The average duration for each 
surface condition (across all participants) is summarized in Table 3. A comprehensive description of the data 
structure and variable labels are given in Table 5.

Processed data.  A processed data file was also provided as a .mat format (data file format of MATLAB) in 
the repository. Raw sensor data from 30 participants were aggregated into one single file with participant as the 
first layer and sensor as the second layer.

The outline of the MATLAB script is described as following: 1. import the raw txt files; 2. apply Butterworth 
low-pass filter (2nd order, cutoff frequency: 6 Hz, sampling frequency: 100 Hz); 3. count the missing frames; 4. 
export processed data into .mat file.

Participant Temperature (°C) Wind (m/s) Weather Time of day

1 −1.1 11.2 N/A Morning (9:30 am)

2 4.4 8.9 Sunny Afternoon (2:30 pm)

3 4.4 8.0 Cloudy Noon

4 0 7.6 Sunny Morning (9:30 am)

5 5.0 5.8 Sunny Afternoon (2 pm)

6 6.7 3.1 Sunny Afternoon (6 pm)

7 2.8 2.2 Cloudy Morning (8 am)

8 2.2 3.1 N/A Morning (11 am)

9 11.7 6.3 Partly cloudy Afternoon (2:40 pm)

10 16.7 4.0 Partly cloudy Morning (10 am)

11 6.1 8.5 Sunny Morning (9 am)

12 7.2 8.0 Partly cloudy Morning (10:30 am)

13 9.4 8.0 Cloudy Afternoon (3:30 pm)

14 7.8 7.6 Cloudy Afternoon (noon)

15 10.6 7.6 N/A Afternoon (4 pm)

16 10.0 6.7 N/A Afternoon (6 pm)

17 8.9 8.0 N/A Afternoon (1 pm)

18 8.3 5.8 Sunny Morning (10 am)

19 10.0 5.8 Sunny Morning (11 am)

20 12.2 4.5 Sunny Morning (11:30 am)

21 12.8 5.4 Sunny Afternoon (1 pm)

22 14.4 4.5 Cloudy Morning (9:30 am)

23 15.0 3.1 Cloudy Morning (11:30 am)

24 20.0 4.5 Sunny Afternoon (2 pm)

25 22.8 4.9 Sunny Afternoon (5:30 pm)

26 20.0 6.7 Partly cloudy Morning (10:30 am)

27 9.4 0.4 Cloudy Morning (9:30 am)

28 17.8 3.1 Cloudy Afternoon (4 pm)

29 10.6 4.0 Partly cloudy Afternoon (5 pm)

30 15.6 2.2 Cloudy Morning (9:40 am)

Table 2.  Data collection conditions.
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Technical Validation
Sensor placement.  Participants were required to wear tight clothes during the experiment to prevent sen-
sor movement. As described in the procedures (see Data Collection), the wearable sensor placement followed 
the instructions available in the manufacturer’s documentation. In addition, before each experiment, the signal 
quality of each IMU sensor was manually verified through the system’s acquisition software. IMU sensors were 
positioned by the same researchers (Authors BH and SC) for consistency.

Missing data.  The trial-wise data missing rate is recorded in the database for each participant (under the 
second layer of the .mat file). Due to transmission errors between the data collection computer and the IMU 

Fig. 3  Signal pattern of trunk sensor on different walking surfaces: resultant acceleration amplitude (m/s2, blue 
solid lines) and resultant angular velocity amplitude (rad/s, red dotted lines) from subject #1.

Trial number (#)
Walking surface 
condition

Sample 
duration (s) 
Mean (standard 
deviation)

1–3 Calibration (CALIB) 19.29 (3.14)

4–9 Flat even (FE) 13.55 (2.19)

10–15 Cobble stone (CS) 16.12 (1.93)

16,18,20,22,24,26 Upstairs (StrU) 12.48 (1.17)

17,19,21,23,25,27 Downstairs (StrD) 11.84 (1.42)

28,30,32,34,36,38 Slope up (SlpU) 22.70 (1.89)

29,31,33,35,37,39 Slope down (SlpD) 22.77 (2.22)

40,42,44,46,48,50 Bank left (BnkL) 16.06 (1.90)

41,43,45,47,49,51 Bank right (BnkR) 16.29 (1.67)

52–57 Grass (GR) 14.48 (1.52)

Table 3.  Table for walking surface condition and sample duration (across all participants).

Orange Sensor number/** Sensor location

CC.txt Trunk

95.txt Wrist

93.txt Right thigh

8B.txt Left thigh

9B.txt Right shank

B6.txt Left shank

Table 4.  Table for sensor locations of each trial based on last 2 digits of filenames.
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sensors, some data frames/packages were dropped. However, we have confirmed that missing data is not a major 
issue for this data set, only a small fraction of data packages were dropped (0.23% ± 0.69%). Data missing rate is 
summarized by sensor location in Table 6 and by walking surface in Table 7.

Comparison with published data sets.  The age of the participants differed significantly from previously 
published data sets, which varied from ages 2 to 78 years18–20,22,24–27,29, whereas this data set only included young 
adults. The number of participants of previous data sets also varied significantly from 8 to 744. Subject number is 
an important technical component for database selection considering the need for large amounts of data during 

Labels Unit Description

PacketCounter N/A
Packet counter, value will be same if 
data frames were recorded at the same 
time (increase 1 unit per data frame)

SampleTimeFine N/A Not recorded in this study

Acc_X m/s2 Acceleration in the vertical direction 
(w/gravity)

Acc_Y m/s2 Acceleration in the medio-lateral 
direction (w/gravity)

Acc_Z m/s2 Acceleration in the anterior-posterior 
direction (w/gravity)

FreeAcc_X m/s2 Acceleration in the vertical direction 
(w/o gravity)

FreeAcc_Y m/s2 Acceleration in the medio-lateral 
direction (w/o gravity)

FreeAcc_Z m/s2 Acceleration in the anterior-posterior 
direction (w/o gravity)

Gyr_X rad/s Rate of turn along the vertical 
direction

Gyr_Y rad/s Rate of turn along the medio-lateral 
direction

Gyr_Z rad/s Rate of turn along the anterior-
posterior direction

Mag_X a.u. 3D magnetic field in the vertical 
direction

Mag_Y a.u. 3D magnetic field in the medio-lateral 
direction

Mag_Z a.u. 3D magnetic field in the anterior-
posterior direction

VelInc_X m/s Delta_velocity (dv) in the vertical 
direction

VelInc_Y m/s Delta_velocity (dv) in the medio-
lateral direction

VelInc_Z m/s Delta_velocity (dv) in the anterior-
posterior direction

OriInc_q0 N/A Delta_quaternion (q0)

OriInc_q1 N/A Delta_quaternion (q1)

OriInc_q2 N/A Delta_quaternion (q2)

OriInc_q3 N/A Delta_quaternion (q3)

Roll deg Euler angles in XYZ Earth fixed type 
(roll)

Pitch deg Euler angles in XYZ Earth fixed type 
(pitch)

Yaw deg Euler angles in XYZ Earth fixed type 
(yaw)

Table 5.  Data stored in .txt files (all variables are with dimension n x 1).

Sensor location Missing rate Mean (standard deviation)

Trunk 0

Wrist 0.13% (0.13%)

Right thigh 0.19% (0.18%)

Left thigh 0.93% (4.08%)

Right shank 0.08% (0.08%)

Left shank 0.06% (0.05%)

Table 6.  Table for data missing rate by sensor locations.
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machine learning model training. Nevertheless, it also obscures the merit of data sets that have relatively few 
participants, but longer recording lengths. For example, although Ravi et al.23 only recruited 10 participants in 
their study, a total of 30 hours of data were collected using different models of smartphones with an unconstrained 
phone placement setting. The data set can be treated as a suitable data resource of models designed for real-world 
application in which the models and placement of smartphones are always unspecified. Our data set includes 30 
participants and each one has a relatively large amount of data collected. The current data set is well aligned with 
previous similar data sets. When using these data sets for gait-related machine learning model development, we 
should be aware that the relative homogeneous samples might restrict the generalizability to more heterogeneous 
data in terms of age distribution.

The annotation of the ground truth for recorded activities is also important for publicly accessible data sets 
because it is needed to validate the predicted outcome. Most of the previous similar data sets have documented 
the types of activities participants performed. Among them, many include walking records on different surfaces 
(walking on concrete/grass field, walking upstairs/downstairs, etc.)16,18–22,24,26,27. Compared to them, the current 
data set provides a larger amount of irregular walking surfaces. Machine learning algorithm developers could 
benefit from the diversified walking records contained in the present data set.

Although some parameters about testing sites (e.g. the grade of the slope and the stair dimensions) were not 
systematically surveyed during the data collection phase, we believe they represent common public architecture 
features. To further improve the usability of the data, more details about measurement sites will be provided in 
the GitHub and publicly accessible data description in the future.

Usage Notes
Previous literature has shown that IMUs are a valid tool for measuring subtle changes in gait kinematics and the 
performance is as sensitive as the current standard in kinematic tracking (i.e. optical motion capture)32. To sup-
port a range of users in accessing the data set, other than raw data, processed data are provided in .mat format in 
the data repository. The .mat data file is readable by both Python and MATLAB environments.

Existing Python and MATLAB open-source tools focused on gait and human motion kinematics could be 
used to analyze this data set. GaitPy provides python functions to read accelerometry data and estimate the clin-
ical characteristics of gait (https://pypi.org/project/gaitpy/). It could be a complementary tool when utilizing this 
data set. For MATLAB, the Kinematics and Inverse Dynamics toolbox (https://www.mathworks.com/matlabcen-
tral/fileexchange/58021-3d-kinematics-and-inverse-dynamics) can be utilized in investigating joint kinematics 
and dynamics. Moreover, biomechZoo, which help users analyze, process, and visualize motion data from various 
sensors33 could support researchers aiming to explore this data set.

Code availability
The custom MATLAB script to process data is provided on the following Github repository: https://github.com/
UF-ISE-HSE/UnevenWalkingSurface.

A Python script (python_version.py) was also provided for converting the processed data into Python compat-
ible format. The .h5py file can be directly use as a standard file object in Python to process.
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