
1Scientific Data | (2024) 11:548 | https://doi.org/10.1038/s41597-024-03392-z

www.nature.com/scientificdata

ACcoding: A graph-based dataset
for online judge programming
Kairui Chen1,5, Fuqun Huang2, Zejing Liu1,5, Haomiao Yu1, Liuchang Meng1, Shasha Mo3,
Li Zhang4 & You Song1 ✉

A well-designed educational programming dataset is a valuable asset for students and educators.
Such a dataset enables students to improve their programming performances continuously, provides
researchers with significant data sources to identify students’ learning behaviours and enhance the
quality of programming education. Several existing datasets for programming education are either
limited by a small number of participating students or a short span of learning records, bringing great
challenges to investigate students’ learning patterns in programming. We present a graph-based large-
scale dataset specialized in programming learning on Online Judge (OJ) platform. The dataset, named
ACcoding, was built by a university teaching group. As of the submission date of the initial manuscript
of this paper (May 6, 2022), the dataset contains 4,046,652 task-solving records submitted by 27,444
students on 4,559 programming tasks over a span of 6 years. The large size of the dataset, combined
with rich functional features, empowers educators to trace students’ programming progress and
choose appropriate programming tasks for specific training purposes. We also presents examples of
applications used by the dataset.

Background & Summary
Online learning systems1 and intelligent tutoring systems2 have progressed significantly in recent years. Higher
educational institutions started incorporating online learning systems into courses. To better understand stu-
dents’ learning behaviours, researchers use various data mining technologies to analyse heterogeneous educa-
tional data collected from different online learning systems, leading to the emerging area of Educational Data
Mining (EDM).

Educational data mining involves various tasks, including tracing the knowledge state of a student3, provid-
ing personalised feedback4, and making recommendations on learning activities5. The existing EDM studies
focus on educational datasets of Math (ASSITments), English (EdNet), and Physics (USNA Physics), and limited
studies have been found on datasets of computer programming6.

The existing studies on EDM of programming are similar to that of Math, English and Physics, such as
improving the adaptive learning capabilities of online learning platforms by mining student interaction data,
predicting students’ programming behaviours and analysing the error messages of source codes7–9. However,
the education scenario of computer programming is significantly different from the aforementioned subjects in
the following aspects: (1) The answer to a question is not simple options (e.g. A, B, C, D), but source codes in the
text format; (2) A question may have multiple correct answers (source codes) and these source codes could be
completely different; (3) An online programming platform often has various feedback types beyond simple cor-
rectness, including the running state of the code, such as memory and time overhead incurred during execution;
(4) Repeated answering is often restricted or ignored in traditional scenarios, but questions can be answered
repeatedly in online programming platforms. Therefore, the programming scenario is more complicated than
traditional educational scenarios, which brings great challenges to analysing the programming learning behav-
iours of different students.

Another limitation of existing programming datasets is a small number of tasks or a short span of records.
This limitation makes it hard to reveal students’ learning patterns. For instance, the Hour of Code dataset10
has only two tasks. The Blackbox dataset11 boasts over one hundred thousand users. However, the types of
data collected are restricted to information that can be gathered through Integrated Development Environment

1Beihang University, School of Software, Beijing, 100191, China. 2Western Washington University, Department of
Computer Science, Bellingham, 98225, USA. 3Beihang University, School of Cyber Science and Technology, Beijing,
100191, China. 4Beihang University, School of Computer Science and Engineering, Beijing, 100191, China. 5These
authors contributed equally: Kairui Chen, Zejing Liu. ✉e-mail: songyou@buaa.edu.cn

Data Descriptor

OPEN

https://doi.org/10.1038/s41597-024-03392-z
mailto:songyou@buaa.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-024-03392-z&domain=pdf

2Scientific Data | (2024) 11:548 | https://doi.org/10.1038/s41597-024-03392-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

(IDE) tools. This includes activities such as editing, compiling, execution, and instantiation of objects. The
Code4Bench12 dataset lacks task labels, and focuses more on the area of code analysis than on computer pro-
gramming education. The dataset presented in this paper, ACcoding, has overcome these limitations. It contains
4,046,652 programs submitted by 27,444 students for 4,559 programming tasks over a span of 6 years. Each task
is tagged with a 10-point scale difficulty level and a coverage rating of skill sets on a 100-point scale. The dataset
was collected through programming contests and the students’ daily exercises. In addition, the ACcoding dataset
is constructed as dynamic programming knowledge graphs. With this graphic representation feature, a user’s
submission history and the feedback he/she has received can be extracted.

Overall, the main advantages of the proposed dataset are: (1) This dataset is large-scale and versatile, targeted
at improving programming studies of university students. (2) This dataset supports various EDM tasks, includ-
ing knowledge tracing, learning path recommendation and error messages analysis. (3) This dataset encom-
passes extensive student records across various grades and programming proficiency levels. It boasts the highest
number of submissions among existing programming datasets. (4) This dataset has multiple feedback types for
submissions, making it unique among educational datasets and bringing challenges for knowledge tracing tasks.
(5) To the best of our knowledge, it is the first dataset to describe programming learning entirely in knowledge
graph structures, which offers unprecedented intelligibility and interpretability for EDM research.

The comparisons between ACcoding and existing educational datasets are summarized in Table 1.

The framework of ACcoding.  An online judge (OJ) is an online platform that provides programming
tasks for users to solve, and ideally may provide feedback to submissions in time. Most existing OJ platforms
are designed for programming contestants (e.g. CodeForces) or job seekers (e.g. LeetCode13). These OJs are not
targeted at early learners in computer programming. Therefore, such platforms do not offer functions for contin-
uously improving users’ programming performances, such as tracking the programming learners’ learning paths,
nor supporting computer education in higher education institutions. In contrast, ACcoding is an online interac-
tive programming learning platform that focuses on the needs of college students, aiming to improve students’
programming ability and assist professors’ teaching, through analyzing students’ learning behaviors and regularly
evaluating their programming performances. This is a public platform where any student and teacher can register.

The running process of the ACcoding is illustrated in Fig. 1. First, the ACcoding displays a programming task
to users through a web page, a user reads the task description, works out a solution and submit the source code.
In the second phase, a judge machine compiles and executes the source code to determine whether the program
passes all test cases, and whether it satisfies the predefined time and memory limit. Finally, the feedback of the
program is returned to the user almost instantly, and the submission information is recorded in the ACcoding
database.

Like most OJs, ACcoding provides two types of usage scenarios: daily exercises and programming contests.
In an everyday exercise scenario, students are allowed to freely choose tasks in the task base and submit their
solutions at any time. For the programming contests, a set of well-designed tasks is displayed to students; the
students can choose the tasks from the set and try to solve as many tasks as possible within a limited time. In
addition to the instant feedback for each submission, the students also receive their rankings of the contest. The
ranking is calculated based on the number of correctly solved tasks and the total time of all the submissions.

Methods
Raw data.  The main part of ACcoding is raw submission logs of daily and contest exercises. The submission
logs elaborately record the programming learning behaviors of 27,444 undergraduates for about six years. The raw
log records are organized in chronological order, as shown in Table 2.

Except for an extra “contest_id” field in the contest exercise records, other fields remain identical for contest
and daily exercise records, including the source code information (programming language, submission time,
time cost and memory cost, etc.), the feedback information (feedback type, detail, score) and the identification
information (user id, task id, judge id). Specifically, lang, t_cost and m_cost are short for language, time cost (ms)
and memory cost (KB), respectively. The variable created_at indicates the time of submission and creator indi-
cates the id of the student who created this submission. Similarly, task, contest, judge denote the corresponding

Datasets ACcoding

Hour of Code

Code4Bench CodeChef

ASSISTments Junyi
AcademyHoc4 Hoc18 2009 2012

#users 27,444 509,405 263,569 57,775 61,245 4,417 46,674 247606

#tasks 4,559 1 1 2,990 1,474 26,688 179,999 722

#submissions 4,046,652 1,138,506 1,263,360 3,421,357 935,543 346,860 6,123,270 25,925,922

#submissions
per student 147.45 2.23 4.79 58.22 15.28 78.53 131.19 104.71

#contests 606 — — 541 — — — —

#tags 100 — — — — 124 266 41

Subject Programming Programming Programming Programming Math Math

User Group University students K-8 students Programming contestants Programming contestants Grade 4–12
students K-8 students

Time Range 2015.10-2022.5 2013.12-2014.3 2010.5-2017.8 — 2009–2010 2012-2013 2012.10-2015.1

Table 1.  Comparison between ACcoding and existing educational datasets.

https://doi.org/10.1038/s41597-024-03392-z

3Scientific Data | (2024) 11:548 | https://doi.org/10.1038/s41597-024-03392-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

IDs. “NA” in the contest column means the corresponding task belongs to daily exercises. ACcoding provides
multiple types of feedback to the users, as described below:

•	 Accepted (AC): The output of the program is the same as the standard answer, which means the program is
correct.

•	 Wrong Answer (WA): The output of the program is incorrect.
•	 Time Limit Exceed (TLE): The program runs for longer than the specified maximum time.
•	 Memory Limit Exceed (MLE): The memory required for running the program exceeds the specified limit.
•	 Runtime Error (RE): The program performs an illegal operation, resulting in failure. Division by zero and

out-of-bounds are examples of run-time failures.
•	 Presentation Error (PE): The data output by the program is correct, but the format does not conform to the

requirements.
•	 Compile Error (CE): Source code fails during compiling.
•	 Other Error (OE): Errors that cannot be classified into any of the above categories.

Data extraction and process.  To build a comprehensive dataset for computer programming education, we
collected raw submission logs of daily and contest exercises from the ACcoding. The collection and use of data are
explained at the user registration stage, details of ACcoding service terms can be found at the bottom of website14,
where we point out and emphasize that we will only collect information such as codes and submission records
without involving any personal information related data, such as email address, student ID, school, and ultimately
the user’s consent is obtained. These daily or competition exercises are drawn from a range of courses cover-
ing introductory to advanced computer programming, such as C programming, data structures, and algorithm
analysis. The exercises encompassed in this set were created by educators or teaching assistants responsible for
instructing the respective courses. These exercises, as well as the students who participated, effectively span the
various phases of the programming learning journey, ranging from introductory levels for juniors to advanced
levels for seniors.

Online Programming Platform

Display problems

Submit code

Return result

Judge Machine
Webpage

Judge

code

Students

Database

Fig. 1  The framework of the ACcoding platform.

id lang result score t_cost m_cost length detail created_at creator task contest judge

… … … … … … … … … … … … …

499270 c AC 1 8 1496 622 Accepted | 1 * (1/7) |... 2017/12/15 19:23 14824 1070 NA 3

499271 c++ PE 0.2 8 1512 254 Presentation Error | 0 *... 2017/12/15 19:23 14815 925 NA -

499272 c PE 0.2 8 1512 254 Presentation Error | 0 *... 2017/12/15 19:23 14815 925 NA 4

499273 c WA 0 0 1428 422 ... 2017/12/15 19:24 15944 1076 191 4

499274 c AC 1 6 1504 256 Accepted | 1 * (1/10) |... 2017/12/15 19:24 14815 925 NA 4

499275 c++ AC 1 3 2680 319 Accepted | 1 * (1/3) | 1... 2017/12/15 19:25 14711 1069 NA 3

499276 c AC 1 3 1436 814 Accepted | 1 * (1/3) | 1... 2017/12/15 19:25 15209 840 NA 3

… … … … … … … … … … … … …

Table 2.  A sample of the raw data.

https://doi.org/10.1038/s41597-024-03392-z

4Scientific Data | (2024) 11:548 | https://doi.org/10.1038/s41597-024-03392-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

Logs of submissions come from 27,444 undergraduates for about 6 years of programming study. A sample of
the submission log is shown in Table 2. Based on these submission logs, we collected information of entities that
appeared in the submission logs, including user attributes, task and contest entities, and relations between these
entities. As depicted in Fig. 2(a), we associate one submission record with its corresponding table based on the
information provided in fields such as problem ID, contest ID. This association allows for the extraction of addi-
tional information, including the difficulty of the corresponding problem and knowledge points, as defined below:

•	 Difficulty level: the extent of how difficult to solve the problem. Difficulty level is measured in 10-point scale,
where 1 indicates very easy while 10 indicates very difficult.

•	 Knowledge point: an area of knowledge that is essential for solving the problem. Each knowledge point is
assigned a tag, such as sorting, iteration, greedy algorithm.

By traversing through all the submission records, the complete contents of the corresponding user table,
topic table, and other related tables can be obtained. It is essential to emphasize that we did not gather the precise
content of all the tasks, as only a subset of questions is publicly accessible to all users. We believe that the availa-
ble information regarding difficulty levels, tags, and related details is adequate for the purposes of EDM research.

In the process of data extraction and processing from ACcoding, we first remove users’ personal information:
The data we collect does not contain any important personal information such as phone numbers, addresses, etc.
Users’ passwords, student ID numbers, and other information are encrypted by SHA-1 algorithm so that even
the developers cannot know its real content when they view the database. After skipping these fields, we obtain
users’ activity and submission results from logs by SQL. An example of writing SQL statements to extract users’
contest records is shown in Fig. 2(b).

Furthermore, when corresponding entities are extracted from the submission logs, tags of programming
tasks are also extracted, even though they do not directly appear in logs. This is because these tags, which are
annotated by experts, reflect knowledge points of programming tasks and help to conduct EDM tasks, such as
knowledge tracing. Knowledge points (KP) refer to the knowledge of algorithms included or involved in a pro-
gramming task, e.g., quick sort, finding the shortest path.

The graphic representation.  Since the ACcoding dataset has multiple types of entities and relations, it
is intuitive to organize the ACcoding dataset into a knowledge graph structure, as illustrated in Fig. 3. As stu-
dents submit task solutions dynamically, the programming graph pertains to be a dynamic knowledge graph.
Figure 3(a) shows that the entity-to-entity relations are shown by lines. In particular, the solid line for BELONG
TO relation means that the contest is currently in progress, while the dotted line indicates the contest has ended
or has not started yet. The graph structure shown in Fig. 3(b) is a subgraph extracted from a programming graph
in (a) based on the submission behavior. The repetitive submissions are aggregated into a single edge with a
tuple (repeat count, correct or incorrect) as its attribute. Figure 3(c) shows another graph structure, a subgraph

Fig. 2  (a) Extract information of entities that appeared in submission logs. (b) A SQL example that extracts
users’ number of submissions in contests from submission logs.

https://doi.org/10.1038/s41597-024-03392-z

5Scientific Data | (2024) 11:548 | https://doi.org/10.1038/s41597-024-03392-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

extracted from a programming graph in Fig. 3(a) based on the feedback results. The edge attribute in (c) is a Tuple
with three elements, that is (time, solution id, feedback result).

A Submission Subgraph, as illustrated in Fig. 3(b), can be regarded as a lightweight graph that simplifies the
details of repetitive submissions and ignores the diversity of feedback result types. It resembles traditional educa-
tion datasets in terms of the content, and therefore, the Submission Subgraph can be used for generic EDM appli-
cations. On one hand, the Submission Subgraph can be used to infer the task preference of a student, and then
provide task recommendations. On the other hand, the sequence of task-answer pair can be easily extracted from
multiple Submission Subgraphs, which are the standard input data formats for general knowledge tracing models.

The submission graph provides a concise summary of students’ submission activities, while more fine-grained
information are provided by the Feedback Subgraph, shown in Fig. 3(c).

A Feedback Subgraph is a knowledge graph with multiple edges, as one student can submit several solu-
tions for a task, while different submissions could get different feedback types. The Feedback Subgraph makes
the knowledge tracing tasks more challenging because various feedback types are introduced. Meanwhile, the
detailed feedback information would be helpful for knowledge tracing models to depict the potential knowledge
state of a student.

The knowledge graph structure reflects potential non-Euclidean structure in the ACcoding dataset, thus
making it possible to utilize knowledge graph representation. From the application perspective, incorporating
graphic structures into the knowledge tracing model as a relational inductive bias can improve performance, and
enable a seamless integration of the corresponding knowledge into EDM applications.

Data Records
Dataset description and storage.  The latest release of ACcoding dataset15 is available at https://zenodo.
org/record/6522395, with https://doi.org/10.5281/zenodo.6522395, under a Creative Commons Attribution 4.0
International license. Entities are extracted and stored in a relational database in the form of tables. Note that
in Table 3, names in lower cases are entities, and those in upper cases are relations between the entities. The
programming graphs and subgraphs in Fig. 3 can be obtained from these tables, e.g., user-task information in
the Feedback subgraph can be obtained from the Solutions table; similarly, a SQL statement like select-count-
group_by can be used to obtain the user-submission records needed for the Submission subgraph.

The final tables in dataset are described in Fig. 4. The relationships between users-submissions,
problems-submissions are one-to-many relations, while the relationships between problems-contests,
problems-tags are many-to-many relations. To explore the problems-contests relationship, one can query the
submissions table to identify submission records sharing the same problem ID across multiple distinct contest
IDs. This scenario illustrates that identical problem may feature in different contests, while each contest may
encompass various problems, thereby establishing a many-to-many relationship.

T1

u1

u2

u3

p1

p2

p3

p4

k2

k3

c1

c2

k1

FINISH CONTAIN BELONG_TO

T2

u1

u2

u3

p1

p2

p3

p4

k2

k3

c1

c2

k1

users problems knowledge
points

contestssolutions

(2, 1)

(1, 1)

(5, 0)

(3, 1)

T1

u1

u2

u3

p1

p2

p4

T1

u1

u2

u3

p1

p2

p4

(9:00,s1,WA)

(10:00,s3,AC)

u2

u3

(b) Submission Subgraph

(c) Feedback Subgraph(a) Dynamic Programming Graph

(9:30, s2, PE)

(9:20,s5,CE)
(14:10,s6,AC)

(15:00,s7,WA)
(15:10,s8,WA)

(16:10,s10,WA)

(15:50,s9,TLE)

(16:30,s11,OE)

(9:10,s4,AC)

SUBMIT

Fig. 3  Contents and relationships of ACcoding knowledge graphs and subgraphs.

https://doi.org/10.1038/s41597-024-03392-z
https://zenodo.org/record/6522395
https://zenodo.org/record/6522395
https://doi.org/10.5281/zenodo.6522395

6Scientific Data | (2024) 11:548 | https://doi.org/10.1038/s41597-024-03392-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

Dataset statistics.  Figure 5 shows the statistics of the ACcoding dataset. Figure 5(a–c) are the distribution of
knowledge points, feedback result types and submission languages, respectively.

The ACcoding dataset contains 100 tags for knowledge points collated by professors and teaching assistants.
Figure 5(a) illustrates the percentage of tasks with different knowledge point tags. ACcoding covers various fun-
damental knowledge points such as array and conditional expression, and includes advanced knowledge points
as well, e.g. dynamic programming and computational geometry. Tasks with the top 5 knowledge points are
basic programming tasks, with a total proportion of 36.33%.

Figure 5(b) illustrates the proportion of submissions with different feedback types. We observe that AC sub-
missions account for about 1/3 of the total submissions. Among all feedback types, WA submissions have the
largest proportion, indicating that these submitted solutions commonly involve some elusive bugs and couldn’t
pass all test cases. Furthermore, TLE, RE, PE and CE are relatively evenly distributed, while the remaining feed-
back types are rare in the ACcoding dataset. We also note that all solutions are written in C, C++, Python and Java
programming languages, in which C and C++ submissions holds 91.98% of all submission, as shown in Fig. 5(c).

Technical Validation
In this section, we conduct several EDM tasks on the ACcoding dataset, including programming knowledge trac-
ing and task recommendation, which demonstrate the reliability and better performance of analyzing students’
learning behavior in computer programming study. Furthermore, we illustrate how to combine the ACcoding
knowledge graph structures with relevant EDM applications.

Tracing the programming knowledge students gained.  Task and models.  Knowledge tracing
aims to model students’ knowledge state based on their learning histories and predict their performance for
future interactions. In this task, several widespread knowledge tracing models are evaluated on the ACcoding
dataset, including Deep Knowledge Tracing (DKT), Dynamic Key-Value Memory Networks (DKVMN)16 and

Name Description Attributes Quantity

Users undergraduate users id 27,444

Problems programming tasks difficulty, time_limit, memory_limit 4,559

Contests regular ACM contests start_time, end_time 606

Problem-tags knowledge point (KP) tags of tasks tag_id, problem_id, weight 100

Submissions source code submitted by users code, language, time_cost, memory_cost 4,046,652

FINISH links between users and submissions — 4,046,652

SUBMIT links between submissions and tasks time, result 4,046,652

CONTAIN links between tasks and KPs — 4,397

BELONG TO links between contests and tasks order 4,756

Table 3.  Content of collected data.

Fig. 4  Entity-relation graph in ACcoding dataset.

https://doi.org/10.1038/s41597-024-03392-z

7Scientific Data | (2024) 11:548 | https://doi.org/10.1038/s41597-024-03392-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

Graph-based Knowledge Tracing(GKT). DKT leverages a single hidden vector modeled by a recurrent neu-
ral network (RNN) to represent the knowledge state. DKVMN utilizes memory augmented neural networks
(MANNs)17,18 to model the learning process by two memory matrices: one is a static matrix for storing concepts,
the other is a dynamic matrix for storing and updating knowledge states. GKT considers the complex graph
structure of concepts and reformulates the knowledge tracing task as a time-series node-level classification task
in the GNN. To construct the implicit concept graph of a dataset, GKT utilizes statistics approaches, including
Dense graph, Transition graph and learning-based approaches, including Parametric adjacency matrix (PAM),
Multi-head Attention (MHA)19, Variational autoencoder (VAE)20 based graphs.

Cross-dataset validations.  We chose both the ACcoding dataset and ASSISTment2009, a popular benchmark
math dataset, to evaluate the performance of all compared knowledge tracing models. For fairness, we only utilized
the daily exercise data of the Submission Subgraph in 2019 for comparison, namely OJ2019, since the submission
data in 2019 contains 131,612 interaction logs of 3650 students, which achieves the highest data density among
all years. We organized the knowledge tracing data of both datasets as answer sequences with knowledge-point
and answer result pairs (kt, at) for each student, where kt is the knowledge point and at ∈ {0, 1}. Hence, traditional
knowledge tracing can be regarded as a binary classification task. The experiments also extended the traditional
knowledge tracing task as multiple classification tasks for the programming education scenario. As discussed in
Section Data Records, an OJ platform often contains multiple feedback types, such as AC, WA, TLE, etc. These
feedback types were chosen prediction targets in the multi-class knowledge tracing task of the OJ2019 dataset.

Parameters and training.  For the ASSISTment2009 dataset, the settings and hyper-parameters were kept the
same as shown in the GKT paper for the best performance. For the ACcoding dataset, we set the dimension of
hidden layers as 200, 32, 32, and the learning rate of Adam21 optimizers as 0.001, 0.01, 0.001 for DKT, DKVMN
and GKT models, respectively. In this case, OJ2019-binary dataset use 0–1 targets, where 1 means AC feedback
type, and 0 means other types. OJ2019-full dataset use all feedback types as prediction targets. The batch size of
all knowledge tracing models was 128, and both datasets were divided into training, validation and test sets with
the proportion of training: validation: test = 6:2:2.

Results analysis.  We utilized the area under the curve (AUC) metric to evaluate the performance of all com-
pared knowledge tracing models, as shown in Table 4. We observed that all knowledge tracing models achieve
better performances on the ACcoding dataset, even though its train set was smaller than that of ASSIST2009,
which implied the intrinsic difference among different subject datasets. Furthermore, the AUC values of all com-
pared knowledge tracing models decreased on the OJ2019-full dataset compared to the OJ2019-binary dataset.
It suggests that predicting feedback types for the programming submissions is more challenging than predicting
for a binary variable that includes either correct or incorrect status. We also see that GKT variants achieved the
best performance across all three knowledge tracing methods and DKVMN performance is better than the DKT
model. It demonstrates that modeling the implicit graph structure of knowledge states in GKT is more effective
than only modeling knowledge states by a single hidden vector in DKT and several memory vectors in DKVMN.
Note that the performances of all GKT variants were similar in these datasets. This indicates that statistical graph
is a simple but effective way of modeling implicit concept relations in the GKT model.

Programming task recommendation for personalized learning.  Task and models.  Due to the
knowledge graph structure of our dataset, it is interesting to explore intelligent task recommendation. We chose
BiNE (Bipartite Network Embedding Ming)22, IGE (Interaction Graph Embedding)23 and RHINE (Relation
Structure-Aware Heterogeneous Information Network Embedding)24, R-GCN (Relational Graph Convolutional
Networks)25, and our modified version of the Feedback Subgraph based on R-GCN (called LSTM-RGCN) to learn
the student and task representations in our dataset, and thus validate the generalizability and tractability of ACcoding
dataset for educational recommendation tasks. We selected these models because they concern heterogeneous net-
works, interactions, relations and adaptive neighborhood sequences for nodes, respectively; these are also the charac-
teristics of our graph. In addition, three classical knowledge graph embedding models TransE26, TransH27, TransR28
were used for reference since they are also applicable to describe the overall structure of the programming graph.

Fig. 5  Statistics of the ACcoding dataset.

https://doi.org/10.1038/s41597-024-03392-z

8Scientific Data | (2024) 11:548 | https://doi.org/10.1038/s41597-024-03392-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

Data generation.  Data were extracted from the Submission and Feedback Subgraphs, and the differences were
reflected in the edges. The data for BiNE came from the Submission Subgraph, with the weight of the edges being
the number of submissions, without feedback results. IGE used a Feedback Subgraph with each edge having
a date (the time of submission) and an attribute (a list of results for users submitting the same task multiple
times). According to the sparsity measure proposed in RHINE, we captured the user-task relation as Interaction
Relations (IRs). In contrast, task-knowledge point and user-task-knowledge point as Affiliation Relations (ARs),
with a single-sided weight of 1 and the relational chain weights were calculated. Knowledge graph embedding
models used a Feedback Subgraph with only relational type attributes on the edges, including, contain/unique
(task and knowledge are one-to-one) contain/multiple (one-to-many) and submit/daily/result(feedback results).
The R-GCN data were extracted from the Submission Subgraph with the final AC as the relationship type and
the number of repeats as the weight. LSTM-RGCN used a Feedback Subgraph with the feedback results type and
time to mark the dynamic process.

Parameters and training.  The classical recommended assessment metrics F1-Score, Mean Reciprocal Rank
(MRR) and Normalized Discounted Cumulative Gain (NDCG) score were used for the final assessment of the
performance of recommendation on encoder models. We chronologically sampled 70% as the training set and
the remaining 30% as the testing set. The last 40% of the training set was used as the validation set. The valida-
tion set was used to evaluate the models during the iterative process (in terms of MRR), and the best-performed
model was selected for testing. For each method’s recommendation experiment, we computed the inner product
of the student and task feature vectors for feature interaction. Then, the student’s preference for the task was
predicted, and the Top-10 results were evaluated for performance.

Results analysis.  The performance of graph embedding models in the recommendation task is shown in Table 5.
RHINE outperforms the other methods, for it distinguishes between interaction and subordination with a larger
granularity. It improves model identification compared to BiNE and IGE, which only considers interaction rela-
tionships. It avoids overfitting compared to the meticulous latter models that consider each feedback result. Our
improved LSTM-RGCN is suboptimal and significantly better than the original RGCN, indicating that capturing
each node’s neighborhood sequence and introducing personalized hidden embeddings can yield better results.

In addition to helping the algorithm improve accuracy, the graphic structure of the ACcoding dataset allows
the algorithm to focus on interpretability improvements. We tested the ACcoding dataset using typical interpret-
able algorithms RippleNet29 and CAML(Co-Attentive Multi-Task Learning for Explainable Recommendation)30.
These algorithms made full use of the relational information in the knowledge graph and pooled the entity vec-
tors of each layer in a weighted manner, and therefore, they can depict the user’s preferences in more detail and
provide recommendation explanations to the user. Table 6 shows the Top 5 recommendation results and their
corresponding recommendation explanations obtained from the interpretable algorithms.

Programming graph analysis.  There are current problems in online education. For instance, during the
teaching process, sometimes teachers do not get timely feedback from students, students’ orientation and learning
paths are not clear, teachers’ and students’ data management is cumbersome, etc. Applying the ACcoding dataset
combined with knowledge graph tools can effectively solve these problems. To demonstrate the potential value
embedded in the ACcoding knowledge graphs, three popular knowledge graph embedding methods—TransE,
TransH, TransR—are used for node information representation and programming graph analysis. Since the
primary function of ACcoding is to provide feedback to users for each task, the most critical nodes are users and
tasks. The popularity and difficulty of tasks provide valuable information regarding the habits and abilities of users.
Analysis of task classification results.  Task and model.  To test whether the programming graph contains
underlying crucial information about the task, we use t-SNE(t-Distributed Stochastic Neighbor Embedding)31 to
map the learned task vectors into 2-dimensional scatter plots. Each task node is labeled with three dimensions:
difficulty, AC ratio and heat, as shown in Fig. 6. The difficulty is assigned by an instructor when the task was
created. Heat and AC Ratio are derived from the submission data,and their definitions are as follows:

•	 AC Ratio: The number of submissions that received the feedback type “Accept” (AC) for a task divided by the
total number of attempted submissions for that task.

•	 Heat: The number of attempted submissions for a task.

KT Model

AUC

ASSIST2009 OJ2019-binary OJ2019-full

DKT 0.709 0.714 0.709

DKVMN 0.710 0.738 0.717

GKT

Dense 0.722 0.744 0.727

Transition 0.721 0.749 0.735

PAM 0.719 0.748 0.728

MHA 0.723 0.753 0.722

VAE 0.722 0.741 0.719

Table 4.  The benchmark performance of programming knowledge tracing tasks on both ASSIST2009 and the
proposed dataset.

https://doi.org/10.1038/s41597-024-03392-z

9Scientific Data | (2024) 11:548 | https://doi.org/10.1038/s41597-024-03392-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

Method F1@10 MRR@10 NDGG

Graph Embedding

Embedding 0.028 0.039 0.025

IGE 0.012 0.057 0.017

RHINE 0.041 0.088 0.043

Knowledge Graph Embedding

TransE 0.022 0.048 0.021

TransH 0.032 0.089 0.034

TransR 0.021 0.044 0.020

Graph Neural Network
RGCN 0.014 0.033 0.016

LSTM-RGCN 0.036 0.063 0.033

Table 5.  Task recommendation performance of all compared methods.

Recommended Tasks Recommendation Explanations

Repeat String Pairs A classmate with similar interests to yours also did this programming task.

Tree Structure Based on the programming task you did, “Mdd’s Chain Table”, we recommend this programming task with similar difficulty.

Minimum spanning
tree algorithm

Based on your mastered knowledge point of the “KD tree”, we recommend this programming task with similar knowledge
point.

Multipacks Based on your mastered knowledge point of the “Knapsack problem”, we recommend this programming task with similar
knowledge point.

Crowdsourcing Issues A classmate with similar interests to yours also did this programming task.

Table 6.  Examples of the top 5 recommendation results and their corresponding recommendation explanations.

Fig. 6  Visualization of task embeddings. Heats: The number of people who attempted the task. AC Ratio: The
percentage of ACs for tasks of submissions.

https://doi.org/10.1038/s41597-024-03392-z

1 0Scientific Data | (2024) 11:548 | https://doi.org/10.1038/s41597-024-03392-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

Results analysis.  Overall, the visualized scatter distribution of each dimension shows a clear trend from the
edge to the center. Taking the results of TransE as an example, there are three dense clusters and several small
clusters at the edges of the plots, which have low difficulties (below 3), high AC ratios (around 0.5), and high
heat (about 1000). Though the main parts do not show clear boundaries, we find that the outer part is the tran-
sition between the edge and the center, while the tasks with great difficulty, low pass rate, and low heat tasks are
concentrated in the centers. Heat is the most obvious among the three dimensions, which can be interpreted as
the absolute quantitative dominance of the interaction edge in the knowledge graph. The results of TransH and
TransR demonstrate similar distribution patterns.

Combining the three dimensions of the task reveals some patterns in student learning. The most popular
and concentrated tasks have the highest accuracy rate but are not the easiest (with difficulties of 2 3). It means
that tasks involving some simple algorithms are the most attractive for students and can be passed quickly. The
cluster with the lowest difficulty corresponds to a medium degree of heat and accuracy, which is not reasonably
as expected. An explanation is that these tasks tend to be selected by beginners who are unfamiliar with the pro-
gramming or the environment. They make multiple attempts to get the correct answers, thus reducing the accu-
racy rate, meanwhile, after getting started, they do not try such simple tasks again, thus reducing the popularity
of such tasks. There is also a hot and moderately complex cluster with an unfocused accuracy distribution at the
edge of the center. These are the tasks including some classical algorithms with a considerable difficulty level, so
there are many attempts with varied accuracies. In addition, the difficulty levels of other clusters are negatively
related to both the AC ratios and the heat.

Looking horizontally at the dimensionality reduction results obtained by different methods, the scatter dis-
tribution is increasingly scattered from left to right. The simplest TransE method has the best aggregation, with
three large clusters evident and dense in the middle, while the clusters of TransR are least aggregated but dis-
tinguished by color. This situation should be the complexity and the number of parameters of the three models.
TransH and TransR introduce hyperplanes and relationship spaces to improve the discrimination of relation-
ships. However, interaction relations account for an absolute majority of ACcoding data, so this distinction does
not work, and homogeneous relations may reduce the differences between the points, making the distribution
unfocused. Moreover, the projection introduces normal vectors and matrices, which require more parameters
to be trained.

Remarks.  As the visual analysis shows, the task vectors obtained by knowledge graph embedding models contain
many features that are hard to observe directly, such as the relevance of the tasks and the choice preferences of
users. This indicates the rich features provided by our dataset that can be further explored by interested researchers.

Analysis of user clustering results.  Task and model.  To analyze the user entities in the programming graph,
we perform a k-means analysis for the user embedding, setting k = 6. The experiments showed that k=6 is the
best performer, with significant differences between individual clusters and higher aggregation of features in
all the same clusters. We analysed the performance of each cluster on five features, including Tasks, AC-ratio,
Repeats, Contests, and Pass-pct. These features provide a comprehensive picture of the users in daily practice and
time-limited competitions. Tasks and Contests reflect users’ activation in learning, AC-ratio and Pass-pct reflect
programming ability, and combined Repeats reflect users’ learning habits. The values are z-score normalized so
that they are distributed around 0. The results obtained by different methods are clustered into similar clusters, as
shown in Fig. 7. In this figure, the first three features are daily practice characteristics. Tasks indicate the number
of tasks submitted by a user. Repeats indicate how many times a user submits each task on average. The last two
features are contest characteristics. Contests indicate how many contests a user has entered, and Pass-pct indicates
the average pass rate of the user in the contest, calculated as the number of AC tasks/total number of contest tasks.

Results analysis.  Intuitively, the C1 C4 features obtained by all three methods are consistent and differ only in
quantity. Cluster C1 consists of the least active student who submit few tasks, participate in occasional contests,
and have a low accuracy rate. C2 contains a minority of students who heavily rely on the feedback from the sys-
tem: repeatedly submitting and fixing bugs. They attempt many tasks with low AC-ratio and high Repeats and
some contests with low passing rates. C3 includes students with low level of persistence in learning. They submit
many tasks with a low AC-ratio, while they often enter contests but have low passing rates. Students in the C4
group also practice less, but their AC-ratio and Repeats are more concentrated than that of C1. Although their
Contests are low, their Pass-pct are the highest. This information is not directly observable in data but is explored
through detailed information mining. The other two clusters yielded less identical results across methods, but
both had high Contests and Pass-pct.

In addition, there are two particular groups, C4 and C5 of TransE and C3 and C5 of TransH. They do not
show significant differences in daily features, but show substantial differences in the time-limited contest fea-
tures. Considering the embedding vectors contain potential information about the students’ performance in
their daily routine, these two particular groups indicate that the knowledge graph embedding has effectively
captured the potential information. Also, it suggests that embedding is a more accurate description of the user,
compared to the results obtained from the three daily performance features alone, has a better ability to predict
student performance in the contest.

Remarks.  The analysis of the above user embedding results implies that the information contained in the
ACcoding data is rich and that students’ learning behavior is well worth studying. Researchers can mine user
behavior through various graph embedding methods to build user profiles, and apply them to research areas
such as personalized learning path recommendations.

https://doi.org/10.1038/s41597-024-03392-z

1 1Scientific Data | (2024) 11:548 | https://doi.org/10.1038/s41597-024-03392-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

Implications.  The graph analysis of the ACcoding dataset can has significantly met the teaching and learning
needs in real courses given by the university. From a student perspective, there are individual differences in
students’ learning effort, learning ability, interests, etc. Based on clustering algorithms to analyze students’ task
submissions and various other information, we can better understand the characteristics of each student, and
thus help them improve their programming performances. From the teacher’s perspective, the Graph analysis
helps teachers analyze how students master different tasks, so as to determine students’ learning levels and abil-
ities to adjust their teaching plans and provide personalized tutorials in a targeted manner.

Usage Notes
We have demonstrated (in the above section) how to use the ACcoding dataset to perform various EDM tasks,
such as knowledge tracing, task recommendation, task classification and student clustering. There are some
other exciting research directions as yet to be explored by using this dataset.

•	 Student Performance Prediction. The ACcoding dataset contains two types of data: daily exercise data and
contest exercise data. Most contests are weekly contests of programming courses at university and the contest
performance is a part of the final score in a specific programming course. Hence, we can use the daily exercise
data to monitor the actual learning state of students and make an early prediction of their contest performances,
this is helpful for lectures to master the class-agnostic student performance and adjust teaching plans flexibly32.

•	 Learning Path Recommendation. As shown in Table 1, the average interaction number of the ACcoding is
the largest among all compared datasets, which provides the possibility for personalized recommendation.
Furthermore, ACcoding has dynamic interaction records across an extended period. We can build personal-
ized learning path recommendation applications on the ACcoding dataset based on these features. Although
we only benchmarked the performances of several static knowledge graph embedding methods, it will be an
exciting direction to incorporate dynamic(temporal) knowledge graph embedding methods with program-
ming tasks or learning path recommendation systems.

•	 Code Message Analysis. The ACcoding dataset not only has massive interaction records (over 4 millions)
but also source codes written by different programming languages. Context information, including feedback
types, time costs, memory costs, and intervals between submissions, can be combined with source codes to
imply whether and how fast a student fixes code errors.

Fig. 7  Clusters and features of user embeddings.

https://doi.org/10.1038/s41597-024-03392-z

1 2Scientific Data | (2024) 11:548 | https://doi.org/10.1038/s41597-024-03392-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

•	 Intelligent Programming Feedback. Based on actual code message analysis results, we can move further
to provide intelligent programming feedback for students. For instance, we can build a code error detection
application that intelligently instructs students to find bugs in their WA solutions, which is especially helpful
for programming beginners.

Code availability
All the code is freely accessible in https://github.com/KarryBramley/ACcoding-Dataset.

Received: 1 January 2024; Accepted: 20 May 2024;
Published: 29 May 2024

References
	 1.	 Thakkar, S. R. & Joshi, H. D. E-learning systems: a review. In 2015 IEEE Seventh International Conference on Technology for Education

(T4E), 37–40 (IEEE, 2015).
	 2.	 Woolf, B. P. Building intelligent interactive tutors: Student-centered strategies for revolutionizing e-learning (Morgan Kaufmann, 2010).
	 3.	 Piech, C. et al. Deep knowledge tracing. In Advances in neural information processing systems, 505–513 (2015).
	 4.	 Piech, C. et al. Learning program embeddings to propagate feedback on student code. In International conference on machine

Learning, 1093–1102 (PMLR, 2015).
	 5.	 Lan, A. S. & Baraniuk, R. G. A contextual bandits framework for personalized learning action selection. In EDM, 424–429 (2016).
	 6.	 Ihantola, P. et al. Educational data mining and learning analytics in programming: Literature review and case studies. In Proceedings

of the 2015 ITiCSE on Working Group Reports, 41–63 (2015).
	 7.	 Altadmri, A. & Brown, N. C. 37 million compilations: Investigating novice programming mistakes in large-scale student data. In

Proceedings of the 46th ACM Technical Symposium on Computer Science Education, 522–527 (2015).
	 8.	 Kohn, T. The error behind the message: Finding the cause of error messages in python. In Proceedings of the 50th ACM Technical

Symposium on Computer Science Education, 524–530 (2019).
	 9.	 Júnior, A. S., de Figueiredo, J. C. A. & Serey, D. Analyzing the impact of programming mistakes on students’ programming abilities.

Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação-SBIE) 30, 369 (2019).
	10.	 Du, J., Wimmer, H. & Rada, R. hour of code”: Can it change students’ attitudes toward programming? Journal of Information

Technology Education: Innovations in Practice 15, 53 (2016).
	11.	 Brown, N. C. C., Kölling, M., McCall, D. & Utting, I. Blackbox: a large scale repository of novice programmers’ activity. In

Proceedings of the 45th ACM technical symposium on Computer science education, 223–228 (2014).
	12.	 Majd, A., Vahidi-Asl, M., Khalilian, A., Baraani-Dastjerdi, A. & Zamani, B. Code4bench: A multidimensional benchmark of

codeforces data for different program analysis techniques. Journal of Computer Languages 53, 38–52 (2019).
	13.	 LeetCode - The World’s Leading Online Programming Learning Platform. https://leetcode.com/ (2024).
	14.	 OJ4TH. https://accoding.buaa.edu.cn (2024).
	15.	 Liu, Z. Accoding-dataset: v1.0.0 Zenodo https://doi.org/10.5281/zenodo.6522395 (2022).
	16.	 Zhang, J., Shi, X., King, I. & Yeung, D.-Y. Dynamic key-value memory networks for knowledge tracing. In Proceedings of the 26th

international conference on World Wide Web, 765–774 (2017).
	17.	 Graves, A., Wayne, G. & Danihelka, I. Neural turing machines. arXiv preprint arXiv:1410.5401 (2014).
	18.	 Weston, J., Chopra, S. & Bordes, A. Memory networks. Eprint Arxiv (2014).
	19.	 Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017).
	20.	 Kingma, D. P. & Welling, M. Auto-encoding variational bayes. In Proc. of ICLR (2014).
	21.	 Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. In Proc. of ICLR (2015).
	22.	 Gao, M., Chen, L., He, X. & Zhou, A. Bine: Bipartite network embedding. In The 41st International ACM SIGIR Conference on

Research & Development in Information Retrieval, 715–724 (2018).
	23.	 Zhang, Y., Xiong, Y., Kong, X. & Zhu, Y. Learning node embeddings in interaction graphs. In Proceedings of the 2017 ACM on

Conference on Information and Knowledge Management, 397–406 (2017).
	24.	 Lu, Y., Shi, C., Hu, L. & Liu, Z. Relation structure-aware heterogeneous information network embedding. Proceedings of the AAAI

Conference on Artificial Intelligence 33, 4456–4463 (2019).
	25.	 Schlichtkrull, M. et al. Modeling relational data with graph convolutional networks. In European semantic web conference, 593–607

(Springer, 2018).
	26.	 Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Translating embeddings for modeling multi-relational data.

In Neural Information Processing Systems (NIPS), 1–9 (2013).
	27.	 Wang, Z., Zhang, J., Feng, J. & Chen, Z. Knowledge graph embedding by translating on hyperplanes. In Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 28 (2014).
	28.	 Lin, Y., Liu, Z., Sun, M., Liu, Y. & Zhu, X. Learning entity and relation embeddings for knowledge graph completion. In Twenty-ninth

AAAI conference on artificial intelligence (2015).
	29.	 Wang, H. et al. Ripplenet: Propagating user preferences on the knowledge graph for recommender systems. In Proceedings of the

27th ACM international conference on information and knowledge management, 417–426 (2018).
	30.	 Chen, Z. et al. Co-attentive multi-task learning for explainable recommendation. In IJCAI, 2137–2143 (2019).
	31.	 Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008).
	32.	 Riestra-Gonz, M., del Puerto Paule-Ruiz, M. & Ortin, F. Massive lms log data analysis for the early prediction of course-agnostic

student performance. Computers & Education 104108 (2020).

Acknowledgements
This work was supported by the key Research and Development Program of Hebei Province (21310101D).

Author contributions
Kairui Chen, Zejing Liu: Conceptualization, Methodology, Experiment, Validation and Result Analysis, Writing -
Original Draft. Haomiao Yu, Liuchang Meng: Data Curation, Experiment. Shasha Mo: Methodology, Experiment,
Validation and Result Analysis. You Song, Fuqun Huang, Li Zhang: Conceptualization, Supervision, Project
administration, Writing - Review & Editing. Additionally, we would like to express gratitude to Mr. Jingxin Liu
and Ms. Nan Wu for providing invaluable assistance during the experiments and writing of this paper.

Competing interests
The authors declare no competing interests.

https://doi.org/10.1038/s41597-024-03392-z
https://github.com/KarryBramley/ACcoding-Dataset
https://leetcode.com/
https://accoding.buaa.edu.cn
https://doi.org/10.5281/zenodo.6522395

13Scientific Data | (2024) 11:548 | https://doi.org/10.1038/s41597-024-03392-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/
10.1038/s41597-024-03392-z.
Correspondence and requests for materials should be addressed to Y.S.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024, corrected publication 2024

https://doi.org/10.1038/s41597-024-03392-z
https://doi.org/10.1038/s41597-024-03392-z
https://doi.org/10.1038/s41597-024-03392-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	ACcoding: A graph-based dataset for online judge programming

	Background & Summary

	The framework of ACcoding.

	Methods

	Raw data.
	Data extraction and process.
	The graphic representation.

	Data Records

	Dataset description and storage.
	Dataset statistics.

	Technical Validation

	Tracing the programming knowledge students gained.
	Task and models.
	Cross-dataset validations.
	Parameters and training.
	Results analysis.

	Programming task recommendation for personalized learning.
	Task and models.
	Data generation.
	Parameters and training.
	Results analysis.

	Programming graph analysis.
	Analysis of task classification results.
	Analysis of user clustering results.
	Implications.

	Usage Notes

	Acknowledgements

	Fig. 1 The framework of the ACcoding platform.
	Fig. 2 (a) Extract information of entities that appeared in submission logs.
	Fig. 3 Contents and relationships of ACcoding knowledge graphs and subgraphs.
	Fig. 4 Entity-relation graph in ACcoding dataset.
	Fig. 5 Statistics of the ACcoding dataset.
	Fig. 6 Visualization of task embeddings.
	Fig. 7 Clusters and features of user embeddings.
	Table 1 Comparison between ACcoding and existing educational datasets.
	Table 2 A sample of the raw data.
	Table 3 Content of collected data.
	Table 4 The benchmark performance of programming knowledge tracing tasks on both ASSIST2009 and the proposed dataset.
	Table 5 Task recommendation performance of all compared methods.
	Table 6 Examples of the top 5 recommendation results and their corresponding recommendation explanations.

