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European Union crop map 2022: 
Earth observation’s 10-meter dive 
into Europe’s crop tapestry
Babak Ghassemi  1, Emma Izquierdo-Verdiguier1, Astrid Verhegghen  2, Momchil Yordanov3, 
Guido Lemoine2, Álvaro Moreno Martínez  4, Davide  De Marchi2, Marijn  van der Velde  2, 
Francesco Vuolo1 ✉ & Raphaël d’andrimont  2 ✉

To provide the information needed for a detailed monitoring of crop types across the European Union 
(EU), we present an advanced 10-metre resolution map for the EU and Ukraine with 19 crop types 
for 2022, updating the 2018 version. Using Earth Observation (EO) and in-situ data from Eurostat’s 
Land Use and Coverage Area Frame Survey (LUCAS) 2022, the methodology included 134,684 LUCAS 
Copernicus polygons, Sentinel-1 and Sentinel-2 satellite imagery, land surface temperature and a 
digital elevation model. Based on this data, two classification layers were developed using a Random 
Forest machine learning approach: a primary map and a gap-filling map to address cloud-covered gaps. 
The combined maps, covering 27 EU countries, show an overall accuracy of 79.3% for seven major land 
cover classes and 70.6% for all 19 crop types. The trained model was used to derive the 2022 map for 
Ukraine, demonstrating its robustness even in regions without labelled samples for model training.

Background & Summary
Land Use and Land Cover (LULC) maps are used for a wide range of purposes, from urban planning and devel-
opment1 to environmental monitoring and conservation, such as assessing ecological changes, monitoring 
biodiversity patterns, and supporting habitat conservation2. LULC maps are invaluable for land management, 
such as monitoring and assessing agricultural activities, conducting forest inventories, and developing effective 
watershed management plans3. Furthermore, LULC maps provide data to scientists for studying carbon storage 
dynamics, land-atmosphere interactions4, and ecosystem response to climate change5. Finally, these maps are 
helpful in the context of disaster risk management, such as flood and fire analysis and prevention, where they 
can be used to identify vulnerable areas, analyze hazard-prone regions, and formulate appropriate mitigation 
strategies6,7.

Approximately 42 per cent of the European Union (EU) land area is devoted to agriculture, supporting 
the EU in being the world’s largest exporter of agri-food products4,8. Policies are being developed to promote 
sustainable crop production, which requires up-to-date and accurate maps to provide baseline information 
for assessment and monitoring9. Thematically relevant and up-to-date maps are also essential for optimizing 
resource allocation and increasing crop productivity when using precise agricultural techniques10. Crop type 
maps facilitate the monitoring of crop growth, health, and yield estimation. They allow for informed decisions to 
be made on the timing of planting, fertilization, and pest management11–13. In addition, LULC information can 
be used to assess the suitability of land for a particular crop or agricultural practice in combination with other 
factors such as soil quality and hydrological conditions14–16. Besides contributing to agroecosystem modelling, 
LULC maps can be used to simulate crop growth and assess the effects of different land management prac-
tices17,18. Furthermore, these maps contribute to analyzing historical and future land-use changes and evaluating 
their impact on crop production19–21.

The full, free, and open availability of new Earth Observation (EO) data, together with powerful machine 
learning (ML) algorithms and cloud computing platforms, has revolutionized the production of accurate and 
detailed large-scale LULC maps22–24. Thanks to these advancements, a significant number of LULC products 
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have been produced with spatial resolutions ranging from 10 m to 1 km in different regions of the world. Datasets 
derived from different satellite platforms, such as Sentinel23–30, Landsat31–34, MODIS35–37, and AVHRR38–40, have 
been processed to achieve this goal.

In recent years, cloud computing platforms, particularly Google Earth Engine (GEE), have become increas-
ingly helpful in generating large-scale LULC maps and updating them promptly, providing scalable and dis-
tributed computing resources that make it feasible for large volumes of EO data to be processed and analyzed 
efficiently. In particular, the GEE platform offers an extensive collection of satellite imagery and geospatial 
datasets, as well as integrated geospatial analysis tools and parallel processing capabilities, allowing for com-
prehensive mapping of LULC41. Several studies have used GEE to address this issue. For instance, Miettinen 
et al.42 demonstrated the effectiveness of combining MODIS and Sentinel-1 (S1) datasets to produce a com-
prehensive land cover (LC) map of Southeast Asia, covering 11 countries and classifying 13 different LC types. 
Xiong et al.43 generated a cropland map for Africa using MODIS time-series data. Ghorbanian et al.44 employed 
multi-temporal S1 and Sentinel-2 (S2) data to create a detailed LC map of Iran, encompassing 13 distinct classes. 
Furthermore, Shafizadeh-Moghadam et al.45 carried out an object-based classification approach comprising 
spectral, textural, and topographical factors to produce a LULC map of the Tigris-Euphrates Basin with nine 
classes. Additionally, Mirmazloumi et al.23 successfully generated a high-resolution LULC map of Europe with 
nine classes, using GEE and integrating S1, S2, and Landsat-8.

Today’s processing capabilities and adequate spatial and temporal observations meet the requirements for 
continental LULC mapping. However, the accurate and thematically detailed mapping of LULC is still chal-
lenged by the availability of labelled data for training and validation. In the EU, in-situ data collection is organ-
ized through the European Land Use and Cover Area Survey (LUCAS)46. This survey has been carried out 
every three years from 2006 to 2018 and in 2022 to collect comprehensive field data in the 28 countries of the 
EU (EU-28) for EU-wide standardized reporting of LC and LU area statistics. Although the LUCAS protocol 
was not initially designed for EO applications, several studies used LUCAS data in conjunction with satellite 
imagery for mapping purposes leading to new advancements in field data availability. For example, Mack et 
al.47 used Landsat-7 and Landsat-8 data with LUCAS 2012 data to produce a LULC map for Germany for the 
year 2014. Recognizing the potential of the LUCUS data, they acknowledged the necessity to enhance the train-
ing dataset, focusing on rare classes that typically exhibited considerable uncertainty levels. Close et al.48 used 
LUCAS 2015 survey data and S2 imagery to classify the Wallonia region in Belgium to monitor LULC changes 
and forestry, suggesting further research to effectively use multi-temporal observations and combinations of S1 
and S2 data. Pflugmacher et al.49 developed the first pan-European LC map with 13 different classes based on 
the LUCAS 2015 data and Landsat-8 imagery. They also emphasized the necessity of expanding training data 
for smaller classes and integrating validation efforts with the LUCAS sampling strategy to improve compati-
bility with Copernicus satellite data. Weigand et al.50 used the LUCAS 2015 data as reference information for 
high-resolution LC mapping using S2 data in Germany with seven classes and focused on aspects related to the 
geo-location of LUCAS samples suggesting the use of the originally intended and actually observed locations of 
the LUCAS sample instead of utilizing only the recorded positioning. The study underscored the necessity for a 
tailored LUCAS survey that aligns effectively with Copernicus satellite datasets. The feedback provided by previ-
ous research brought to the introduction of the LUCAS “Copernicus module” in 2018, tailored explicitly for EO 
applications24. Combining the LUCAS Copernicus in-situ data with S1 radar data, d’Andrimont et al.24 generated 
a 10-meter crop type map for the EU-28. Their study employed the random forest (RF) algorithm to classify 
19 different crop type classes, plus two broad classes for Woodland and Shrubland, and Grassland. The overall 
accuracy (OA) achieved was 76.1%. Ghassemi et al.25 extended the analysis by including S2 data, resulting in 
an improved OA of 77.6%. The study also showed that optimal accuracy could be achieved by utilizing just 11% 
of the total training data, selecting pixels with the greatest spectral diversity. Optimizing information is crucial 
when deploying algorithms on cloud computing infrastructure for large-scale applications to minimize resource 
usage and costs. In addition, Ghassemi et al.51 evaluated the effectiveness of combining the time series data from 
both S1 and S2 to produce a LULC map with small improvements in the accuracy but better spatial coverage.

On the contrary Venter et al.29 produced a LC map of Europe at a 10-meter resolution and eight LC classes 
finding that the fusion of S1 and S2 data can lead to an increase in classification accuracy of 3–10%. The study 
confirmed the positive impact of balancing class representativeness in training samples with supplementary data 
(e.g., standard LUCAS points), underscoring the importance for future LUCAS “Copernicus module” samples to 
accurately reflect class area proportions. Witjes et al.52 produced LULC time-series maps for Europe (2000-2019) 
based on LUCAS and other ground truth data using Landsat imagery. However, employing LUCAS data for 
training resulted in reduced classification accuracy compared to using solely Corine Land Cover points. Further 
investigation was suggested by the authors.

The dataset from the “Copernicus module” of the LUCAS 2022 survey, encompassing 134,684 polygons 
across the 27 European Union countries (EU-27), is now accessible. We utilized this data to generate a new 
10-meter spatial resolution LULC map for the entire EU-27, focusing particularly on crop type mapping for 
2022. This study introduces the new LULC map, conducts a product quality assessment, and discusses the appli-
cation of LUCAS 2022 “Copernicus module” data for crop type classification. Specific objectives include:

•	 Investigate the optimal set of input features by considering different temporal aggregations of S1, S2, and cli-
mate data to obtain a wall-to-wall map with no spatial gaps and the best possible thematic accuracy.

•	 Study a balanced number of training data to allow the training and application of the classification algorithm 
for the entire EU-27 while optimizing GEE computing resources.

•	 Produce the resulting LULC map for the year 2022 and perform an extensive validation exercise using inde-
pendent labelled sample sets, ensuring consistency with the previous map23.
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•	 Evaluate the classification model’s inference performance in Ukraine, where no labelled data was used in the 
model training stage, and validate the results using third-party independent classification data.

Methods
Figure 1 illustrates the key steps undertaken in this research. The first step in this process involves the extraction 
of temporal features from EO data for the LUCAS 2022 Copernicus in-situ field data locations. This feature 
set was divided into training and test samples. Following this, two distinct classification models were devel-
oped based on the training data: (1) the Primary map generation model was tasked with creating the princi-
pal map based on carefully selected effective features; (2) the Gap-Fill map generation model excludes the S2 
monthly data, in order to address gaps caused by cloud effects on the S2 monthly data. The LULC map for the 
EU-27 region was generated using these models and validated using various independent data and statistics. 
Furthermore, these aforementioned models were applied to infer the LULC map for Ukraine from the equiv-
alent feature sets. The absence of training data in Ukraine makes this an interesting test case for assessing the 
viability and adaptability of the classification model to other geographic regions.

Field data. European Land Use/ Cover Area frame Survey (LUCAS) 2022 data. LUCAS is a triannual sur-
vey of LULC that has been carried out since 2006 in the EU. There have been 1,351,293 observations at 651,780 
unique locations, containing 106 variables, accompanied by 5.4 million landscape photographs from five editions 
of the LUCAS surveys46.

In 2018, the LUCAS collection strategy was enhanced by adding the “Copernicus module”, which introduced 
58,462 polygon geometries representing homogeneous LC patches of approximately 0.5 hectares46. Specifically, 
these polygons were designed to improve accessibility and facilitate data extraction, particularly for satellite 
imagery such as S1 and S2 with a 10-meter spatial resolution. This module provides detailed information on LC (66 
classes, including crop type) and land use (LU) (38 classes) for the mentioned polygons. The dataset offers unique 
opportunities for applications requiring a higher level of thematic resolution, such as the mapping of crop types.

In 2022, 134,684 polygons were generated, representing 90.1% of the original 149,429 Copernicus mod-
ule points. These polygons contain 75 LC and 40 LU classes. LUCAS Copernicus 2022 polygons are generated 
according to a new protocol, and on average, they are 0.2 hectares in size53,54.

This study uses the LUCAS “Copernicus module” 2022 polygons as in-situ field observations to obtain a 
wall-to-wall LULC map of the EU-27 land. The distribution of these polygons, with the main eight-class scheme, 
is shown in Figure 2.

Classification scheme based on LUCAS 2022 data. According to LUCAS 2022 data, there are eight main Level-1 
LC classes: A-Artificial Land, B-Cropland, C-Woodland, D-Shrubland, E-Grassland, F-Bare Land, G-Water, and 

Fig. 1 General overview and main steps of the study.
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H-Wetlands. To align with the objectives of the study, the legend for the LUCAS survey was recoded based on 
the scheme proposed by d’Andrimont et al. in24. The research aims to classify the main crop types in the EU-27 
using LUCAS in-situ data, resulting in slight changes in the class definitions from the original LUCAS classifica-
tion scheme. The four vegetation classes of LUCAS (B-cropland, C-woodland, D-shrubland, and E-grassland) 
are consolidated into three main categories: Arable land, Woodlands and Shrubland, and Grassland. Arable land 
has 19 classes representing different crop types or crop groups. The final classes used in this study are shown in 
Table 1, which includes seven broad categories for Level-1 and 25 detailed categories for Level-2.

Some differences exist between the modified classes used in this work and the original LUCAS. Similar to 
d’Andrimont et al.24, first, the Woodland and Shrubland classes were merged into a single one, acknowledging 
their resemblance in radiometric vegetation characteristics. Second, the LUCAS B-Cropland class was reorgan-
ized to maintain a clear distinction between Arable land and other categories. Specifically, this involves grouping 
temporary grasslands (B55) with the E-Grassland class, combining permanent crops (B70 and B80) with the 
woody vegetation class, and aggregating Bare arable land (F40) with agricultural LU (U111/112/113) within the 
Arable land class. Additionally, the Grassland now contains both natural and agricultural land uses, allowing 
for a more comprehensive representation. Furthermore, this research added Water and Wetland classes to the 
investigation procedure, in addition to the classes defined in scheme24.

Earth Observation data. Multiple EO datasets were used to generate the LULC map for the entire desired 
area. The employed EO data comprises high resolution, frequent revisit reflectance data from S2 and backscatter-
ing coefficients from S1, as well as auxiliary data, including Land Surface Temperature (LST) and Digital Elevation 
Model (DEM). Besides, ancillary data for masking, containing the Digital Surface Model (DSM) and lower resolu-
tion LC were utilized. The following sections provide a detailed description of each of these categories.

Sentinel-2 data. The S2 satellite mission was developed by the EU as part of the Copernicus program. The 
optical imagery constellation consists of two identical satellites, Sentinel-2A (S2A) and Sentinel-2B (S2B), which 
capture high-resolution images of the Earth’s surface. The satellites are equipped with a multispectral sensor that 
captures data in 13 spectral bands, ranging from visible to infrared wavelengths (WL) and 10 to 60 m pixel sizes. 
This extensive spectral coverage enables detailed analysis of land and coastal areas, providing valuable informa-
tion about vegetation, LC, water, and more. With global coverage and a revisit time of five days, S2 data is freely 
available, allowing regular monitoring of various environmental and agricultural applications55.

In this work, Harmonized Sentinel-2 MSI: MultiSpectral Instrument, Level-2A (S2-L2A) products, which 
are available in GEE, were used. The S2-L2A collection contains atmospherically corrected surface reflectance 

Fig. 2 Distribution of LUCAS 2022 polygons over EU-27 with main land cover categories.
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values. The “harmonized” aspect of the collection is related to the seamless correction for the reflectance off-
sets introduced by ESA on 21 January 2022. S2-L2A stores scene classifier information in the so-called Scene 
Classification (SCL) band, which includes flagged values for cloud, cloud shadow, and haze on a per-pixel basis.

S2 temporal series from 1st January to 31st December 2022 were used in this work. Only the images with a 
cloud fraction cover lower than 50% were selected. Pixels with a cloud probability higher than 75% and labeled 
as Saturated or Defective, Clouds High Probability, Cirrus, and Snow / Ice in the SCL information were masked. 
It should be noted that thresholds used were determined using a visual, trial-and-error approach. To homoge-
nize the spatial resolution of the S2 images with a common spatial resolution, the 20 m bands were resampled 
into 10 m using the nearest neighbour method.

In this work, the S2 spectral bands utilized include B02-B08, B8A, B11, and B12. These bands were employed 
to calculate a set of 15 spectral indices and a biophysical parameter called Leaf Area Index (LAI)56, provid-
ing additional features for the analysis. Five spectral indices focused on vegetation differences: Enhanced 
Vegetation Index 2 (EVI2)57, Green Normalized Difference Vegetation Index (GNDVI)58, Leaf Area Index green 
(LAIg)59, Leaf Chlorophyll Content Index (LCCI)60 and Normalized Difference Vegetation Index (NDVI)61. 
Four of them focused on Soil differences: Bare Soil Index (BSI)62, Modified Soil Adjusted Vegetation Index 
(MSAVI)63, Normalized Difference Tillage Index (NDTI)64, and Soil Adjusted Vegetation Index (SAVI)65. Two 
of them take advantage of providing good separability of the components from urban systems: Built-up Land 
Features Extraction Index (BLFEI)66 and Normalized Difference Built-up Index (NDBI)67. Modified Normalized 
Difference Water Index (MNDWI)68 and Normalized Difference Water Index (NDWI)69 were employed as water 
indices. Also, a spectral band difference and ratio were calculated: the difference between Red and SWIR1 bands 
(DIRESWIR)70 and the ratio between NIR and Red bands (SRNIRR)71; both were used in previous studies72. 
Table 2 summarizes this work’s spectral (i.e., bands and indices) information.

The monthly median values of each spectral band and each index were calculated for the months of April 
to October, supplying 26 features per month. Our previous studies25,51 determined that a high number of pix-
els with missing values are observed in the composite images for the months of January, February, March, 
November, and December due to cloud coverage. Therefore, the median of the first three months was calculated 
and referred to as the winter median. No monthly features were calculated in the spectral field for November 
or December. In addition, the annual 5th, 50th, and 98th percentiles per band and index were also computed. 
Consequently, a total number of 286 features (26 × (8monthly median + 3yearly percentile)) are available from S2 data for 
the year 2022.

Level-1 Level-2

EU- map code EU-map code Classes or categories LUCAS code

100 Artificial land A11 | A12 | A13 | A21 | A22

200 Arable land See below

211 Common wheat B11

212 Durum wheat B12

213 Barley B13

214 Rye B14

215 Oats B15

216 Maize B16

217 Rice B17

218 Triticale B18

219 Other cereals B19

221 Potatoes B21

222 Sugar beet B22

223 Other root crops B23

230 Other non-permanent industrial crops B34 |B35 |B36 |B37

231 Sunflower B31

232 Rape and turnip rape B32

233 Soya B33

240 Dry pulses, vegetables, and flowers B41 | B43 | B44 | B45

250 Fodder crops B51 | B52 | B53 | B54

290 Bare arable land F40 (LU: U111/112/113)

300 Woodland and Shrubland B71- B77 | B81-B84 | C10 | C21 |C22 |C23 | C31 | C32 | 
C33 | D10 | D20

500 Grassland B55 | E10 | E20 | E30

600 Bare land and lichens/moss F10 | F20 | F30 | F40 (LU: other than U111/112/113)

700 Water G11 |G12 |G21 | G22 | G30 | G40

800 Wetlands H11 |H12 |H21 | H22 | H23

Table 1. The EU crop map categories. The classification scheme contains two levels: Level-1, with seven broad 
land cover classes, and Level-2, with 25 detailed classes, including 19 crop types.
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Sentinel-1 Data. The S1 satellite mission is another dual-sensor constellation deployed under the EU’s 
Copernicus program, with Sentinel-1A (S1A) and Sentinel-1B (S1B). The S1 constellation provides global cov-
erage and a revisit time of 6 days. However, S1B failed in December 2021, reducing the revisit to 12 days.

S1 is a synthetic aperture radar (SAR) operating at the C-band frequency (5.4 GHz). SAR is an active remote 
sensing method that transmits microwave signals in vertical polarization (V) towards the surface of the Earth 
and receives the backscattered signals in both vertical and horizontal polarization (H). Radar backscatter is 
influenced by the geometry and dielectric characteristics of the irradiated surface elements. For agricultural 
land, crop canopy (leaf structure and density, canopy water content) and soil surface characteristics (soil mois-
ture, soil roughness) determine backscatter intensity. Due to the active nature of the sensor and the relative 
insensitivity of the C-band to atmospheric conditions, S1 can acquire both day and night under all weather 
conditions73. Combining ascending (local evening passes) with descending (local morning passes) acquisitions 
results in a revisit of more than 6 (12) days, though with different incidence configurations. Over Europe, all 
ascending and descending orbits are acquired. Although S1 can acquire in different beam modes, the interfero-
metric wide (IW) mode, with 10 m sampling spacing, is the default mode over global land.

Copernicus S1 data are full, free, and openly accessible. However, they are provided in Level-1 formats (GRD 
and SLC), which are not application-ready data formats. S1 Level-1 data needs to be processed to geocode 
and calibrate backscattering coefficients. In GEE, each GRD scene is preprocessed following a standard rec-
ipe scripted in the S1 SNAP Toolbox (http://step.esa.int) and using the SRTM 90 m DEM for geocoding. The 
resulting sigma naught backscatter coefficients (σ0) are made available in the COPERNICUS/S1_GRD_FLOAT 
collection. For IW mode, both VV and VH bands are used.

The focal median method, a speckle filter with a circular kernel with a radius of 30 m, was applied to reduce 
noise in the images74.

The monthly median and the yearly 5th, 50th, and 98th percentiles were also calculated from the following 
bands and indices: VV, VH, VV/VH, VV-VH, Ratio Vegetation Index (RVI)75, Normalized Difference Polarization 
Index (NDPI)76, and modified Dual Polarimetric SAR Vegetation Index (DPSVIm)77, which are described in 
Table 3. As microwave data is not affected by cloud coverage issues, monthly medians were calculated for all the 
months. Subsequently, a total number of 105 features (7 × (12monthly median + 3yearly percentile)) are available from S1 data.

Auxiliary temperature and masking data. Along with the monthly and yearly S1 and S2 features, the study also 
incorporated data on LST and elevation to account for the study area’s climatic, topographic, and ecological 

Feature Name Description

Spectral Bands

B2: Blue (WL: 496.6 nm (S2A) / 492.1 nm (S2B))

B3: Green (WL: 560 nm (S2A) / 559 nm (S2B))

B4: Red (WL: 664.5 nm (S2A) / 665 nm (S2B))

B5: Red Edge 1 (WL: 703.9 nm (S2A) / 703.8 nm (S2B))

B6: Red Edge 2 (WL: 740.2 nm (S2A) / 739.1 nm (S2B))

B7: Red Edge 3 (WL: 782.5 nm (S2A) / 779.7 nm (S2B))

B8: NIR (WL: 835.1 nm (S2A) / 833 nm (S2B))

B8A: NIR narrow (WL: 864.8 nm (S2A) / 864 nm (S2B))

B11: SWIR 1 (WL: 1613.7 nm (S2A) / 1610.4 nm (S2B))

B12: SWIR 2 (WL: 2202.4 nm (S2A) / 2185.7 nm (S2B))

Spectral Indices and biophysical parameter

BLFEI: (( B B B B B B B B( 3 4 12)/3) 11)/((( 3 4 12)/3) 11)+ + − + + +

BSI: B B B B B B B B(( 11 4) ( 8 2))/(( 11 4) ( 8 2))+ − + + + +

DIRESWIR: −B B4 11

EVI2: B B B B(( 8 4))/(( 8 4 1)) 2 4− + + ∗ .

GNDVI: − +B B B B(( 8 3))/(( 8 3))

LAI: B B B B B3 618 (2 5 (( 8 4)/( 8 6 4 7 5 2 1))) 0 118. ∗ . ∗ − + ∗ − . ∗ + − .

LAIg: B A B B A B5 405 (( 8 5)/( 8 5)) 0 114. ∗ − + − .

LCCI: B B7/ 5

MNDWI: B B B B(( 3 11))/(( 3 11))− +

MSAVI: B sqrt B B B0 5 (2 8 1 ((2 8 1) 8 ( 8 4)))
2. ∗ ∗ + − ∗ + − ∗ −

NDBI: − +B B B B(( 11 8))/(( 11 8))

NDTI: B B B B(( 11 12))/(( 11 12))− +

NDVI: − +B B B B(( 8 4))/(( 8 4))

NDWI: − +B B B B(( 8 11))/(( 8 11))

SAVI: − + + . ∗ .B B B B(( 8 4))/(( 8 4 0 5)) 1 5

SRNIRR: B B8/ 4

Table 2. Spectral bands and indices, as well as a biophysical parameter derived from S2 [Notation: NIR = Near 
Infrared; SWIR = Shortwave Infrared].
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factors. When combined with spectral and microwave features, temperature data can help to enhance the dis-
criminative power of the classification algorithm, particularly in regions where similarities exist among features, 
but are shifted due to climatic differences. MOD21C3 is a monthly composite LST product derived from MODIS 
data from the MODIS sensor mounted on Terra and Aqua satellites78. Using multiple daily measurements, this 
dataset produced representative LST values for every month, enabling the assessment of changes in temperature 
over time at a spatial resolution of 1 km. The LST_Day feature containing the monthly average daytime LST for 
2022 was used in this study.

Furthermore, the investigation utilized the Global Digital Elevation Model (GDEM) v3, which was extracted 
from the ASTER instrument aboard the Terra satellite79. Providing a 30 m grid-spaced terrain model of the sur-
face of the Earth, this elevation dataset captures variations in the height and shape of the terrain.

Considering 12 monthly features for LST data and one for DEM data, a total of 13 auxiliary features were 
used in this study.

In order to apply thematic masks on the final produced map, Global ALOS DSM (Digital Surface Model) 
data representing the Earth’s surface, encompassing both natural and artificial surfaces, stored in GEE as the 
JAXA/ALOS/AW3D30/V3_2 collection80 at a spatial resolution of 30 m was utilized. In addition, data from the 
CORINE Land Cover (CLC) 2018 inventory81, a pan-European inventory that categorizes land cover into 44 the-
matic classes for the reference year 2018, was used to mask the final map. The CLC dataset provides information 
on LU and LC across Europe at a spatial resolution of 100 m.

Prior to application, using the nearest neighbour algorithm, all auxiliary data was resampled to a spatial 
resolution of 10 m.

Classification process. Classification. The Random Forest (RF) classifier was employed for this work based 
on its strength, speed, and robustness to the noise of the target data72. First introduced by Breiman82, the RF clas-
sifier is a robust ML algorithm capable of yielding high classification accuracy and quantifying the importance of 
features. As an ensemble technique, RF uses bagging (bootstrap + aggregation) and builds an ensemble of random 
decision trees. Rather than training all data, bootstrap trains a subset of samples and features. Bags are created 
from selected samples, while remnant samples are called out-of-bag samples (OOB). The output of all trained 
trees is combined, typically using the majority vote, which reduces variance and increases classification accuracy83.

This research conducted a comprehensive classification process based on a hierarchical classification particu-
larly focused on crops. A first classification of the seven major landcover classes (Level-1 in Table 1) was followed 
by a detailed classification of the Arable land class into 19 specific crop types or crop groups (Level-2 in Table 1), 
providing the primary map.

However, due to cloud contamination in certain areas, gaps appeared in the primary map, impacting its 
completeness. Therefore, a second process was performed to produce the gap-fill map used to fill the gaps in the 
primary map and obtain the final classification map. In this case, the S2 monthly features, which are sensitive to 
cloud cover, were intentionally excluded, and additional training samples from the affected areas were added.

A feature selection process and parameter tuning of RF were performed to optimize the model efficiency 
of GEE. The feature selection was done locally using the Scikit-learn package84 in Python. The features were 
selected based on their importance provided by the RF model; only those features presenting importance more 
than their standard deviation were retained for the classification. The number of features was reduced from 404 
(286 from S2, 105 from S1, and 13 from auxiliary data) to 184 for the primary classification and from 196 (78 
from S2, 105 from S1, and 13 from auxiliary data) to 109 for the gap-fill classification. The utilized features for 
both primary and gap-fill classification are shown in Supplementary Table 1.

The RF optimization was based on51, where the RF had a proper performance for EU-wide LULC classifica-
tion with 200 trees, and setting the minimum number of samples required to be at a leaf node and the feature 
numbers per split by default (i.e., one and the square root of total number of features, respectively). Considering 
these parameters, a trade-off between the number of trees and the minimum number of samples in a leaf node 
was found to achieve the appropriate outcome in both classification phases, which is shown in Table 4. It is worth 
mentioning that the other parameters were set to their default values.

Train and test data. In preparation for the training and testing of the classification model, the feature data val-
ues were extracted at the locations of the LUCAS 2022 field data, specifically for the centroid point of the 134,670 

Feature Name Description

Microwave features

VV: Single co-polarization, vertical transmit/vertical receive

VH: Dual-band cross-polarization, vertical transmit/horizontal receive

VV/VH: The ratio between the VV polarization and the VH polarization

VV-VH: The difference between the VV and the VH polarizations

RVI: σ

σ σ+

4 VH

VV VH

0

0 0

NDPI: σ σ

σ σ

−

+
VV VH

VV VH

0 0

0 0

DPSVIm: VV VV VV VH
2

0 0 0 0σ σ σ σ∗ + ∗

Table 3. Microwave bands and indices derived from S1 and used for LULC classification.
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available LUCAS 2022 Copernicus polygons. Subsequently, Level-1 and Level-2 class labels were assigned fol-
lowing Table 1. By removing points whose LC labels were unavailable in Table 1, the total number of samples 
resulted in 134,260, with a further reduction to 133,829 after deleting samples containing null values in their 
LST indicators.

The study area encompasses eight distinct climate regions: Alpine, Atlantic, Black Sea, Boreal, Continental, 
Mediterranean, Pannonian, and Steppic. These climatic regions were merged into Mediterranean and 
Non-Mediterranean according to the Biogeographical regions map in Europe and used as stratification before 
splitting the samples into train and test data85. In total, 29,826 samples were in the Mediterranean region, 
whereas 104,003 samples belonged to the non-Mediterranean region. This stratification was done to ensure an 
equal portion share of train and test data in both zones.

Based on the LUCAS code in Table 1 (excluding Water, Wetlands, and Bare land classes, which followed the 
Level-2 scheme), the samples in both regions were randomly divided into train and test datasets using a 75% and 
25% split ratio, respectively. Subsequently, the regional train and test datasets were merged pairwise, resulting in 
final train and test datasets with 100,360 and 33,456 samples. Thirteen samples were excluded from the process 
due to an inadequate number of available subclass samples, which was insufficient for a proper division.

The 18,933 samples that fall in the gaps of the primary classification were only used in the gap-filled classifi-
cation procedure. Therefore, the available training samples for the primary classification were 81,427. Figure 3 
depicts the EU-27 area divided into two climatic zones. It illustrates the distribution of train and test samples 
across the entire area while highlighting the distinction between primary and additional gap-filled samples. The 
additional gap-filled train samples are distinguished by their distinct yellow colours, while the primary train 
samples are depicted in green. Additionally, the test points are displayed in black.

Train data balancing. In addition to the central point for each of the LUCAS Copernicus module polygons, 
labelled data could potentially be extracted for other points within the polygons. While incorporating additional 
data samples for training and testing purposes can expand the dataset, it is essential to consider the potential 
drawbacks. Increasing the number of samples can lead to longer computational times for training the models 
without guaranteeing a substantial improvement in classification accuracy. Extracting points from homoge-
neous polygons may result in redundant data with similar characteristics, which can lead to overfitting of the 
trained model25. However, to address the imbalanced distribution of samples amongst the different classes in 
the primary training dataset, efforts were made to achieve a more balanced distribution by reducing samples in 
specific classes and oversampling others. The abundance of certain classes was reduced by eliminating similar 
samples; meanwhile, increasing samples for sparse classes was increased by including additional samples from 
within polygons, not limited to centroids.

In balancing the training data, various choices were made. To assess the similarity between samples within 
each polygon (excluding the centroid), the Euclidean Distance (ED) metric in feature space was calculated. 
The samples were then sorted according to the ED values (most dissimilar first), and only certain proportions 
were retained or excluded. The process was run incrementally/decrementally, and at each step, an RF classifier 
was trained using the existing samples, and the results were evaluated using the test samples. A good balance 
between the distribution of samples and classification accuracy was sought. The classes with a substantial num-
ber of samples (i.e., Woodland and Shrubland and Grassland) were reduced, considering only 35% of the dissim-
ilar samples, specifically for samples belonging to the C10 (Broadleaved Woodland) and E20 (Grassland without 
tree/shrub cover) LUCAS classes. The balanced classes selected up to a minimum of 1500 samples (if available) 
for the Arable land in Level-2, and 4000 for Water, Wetland, and Bare land classes in Level-1 (see Table 1).

post-classification process. Spatial filtering. The produced map underwent a spatial post-processing 
(applied in GEE) to reduce spatial noise and small patches in the classified map, resulting in a smoother and 
more consistent map. The process begins by evaluating the number of interconnected identical pixels between 
each pixel on the map. It is restricted to a maximum of 30 pixels, as well as horizontal and vertical orientations 
(4-connected), and findings are given the name “patch size”. A refinement was then applied to pixels with patch 
sizes smaller than 20. It consists of applying a filtering approach centred around a 10-pixel radius and a square 
kernel. It is important to note that all post-processing values were assigned practically.

Thematic masking. Given the focus of the LUCAS dataset on vegetation cover and a lack of training samples 
in mountainous (or rocky) or snow-covered areas, these areas are mostly classified incorrectly as Artificial land 
and Water, respectively. To alleviate this issue, two external layers were utilized for masking. First, using Global 
ALOS DSM data, pixels identified as Artificial land with elevations exceeding 1000 meters and slopes greater 
than 10 degrees were masked. In addition, using CLC 2018 data, pixels where their CLC value were 322 (Moors 
and heathland), 331 (Beaches, dunes, sands), 332 (Bare rocks), 333 (Sparsely vegetated areas), 335 (Glaciers and 
perpetual snow) were masked.

Parameter Optimized value for classification Level-1 Optimized value for classification Level-2

Number of trees 130 for primary map
115 for gap-filled process

150 for primary map
130 for gap-filled process

Min_Leaf Population 2 2

Table 4. RF tuned parameters settings in GEE for the first (7 major classes) and second (19 arable land classes) 
classification phases, valid for both primary and supplementary classification stages.
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Accuracy assessment and spatial analysis. To ensure the reliability and precision of the EU LULC map, 
a comprehensive evaluation was conducted using both accuracy assessment and spatial analysis methods. In 
the accuracy assessment, the classification results were validated against independent reference datasets, ensur-
ing that the map accurately represented land cover types. Additionally, the spatial analysis examined the spatial 
distribution and consistency of classified land cover across different regions. By combining these approaches, 
a holistic view of the map’s performance is provided that not only verifies overall accuracy but also highlights 
regional variations.

Four accuracy assessment and spatial analysis approaches were employed to evaluate the final EU LULC 
map. The final map was evaluated with LUCAS test data as well as additional field samples from the European 
Monitoring of Biodiversity in Agricultural Landscapes (EMBAL) dataset. A second validation approach was 
based on a regional subset of Geospatial Aid Application (GSA) data, which is based on the 2022 farmer decla-
ration data. Finally, aggregated area sums for several main crops obtained from the EU LULC map are compared 
to the corresponding official Eurostat national statistics.

LUCAS test data evaluation. The proposed classification workflow was evaluated by the confusion matrix 
(CM) assessing the 33,456 test samples. Five assessment metrics were determined from the CM: User’s Accuracy 
(UA), Producer’s Accuracy (PA), F1-score (a weighted average of UA and PA), Overall Accuracy (OA, represent-
ing the ratio of correctly predicted samples to the total samples), and Kappa coefficient (κ, quantitative measure 
of reliability the classification).

EMBAL data analysis. EMBAL is a program aimed at assessing and monitoring biodiversity in agricultural 
landscapes throughout the EU, contributing to a variety of environmental policies. Within the frame of EMBAL, 
field surveys and sampling are conducted to collect valuable data on various aspects of biodiversity in agricul-
tural areas, including plant and animal species and their habitats. The EMBAL 2022 dataset contains 3000 square 
plots with 500 × 500 m dimensions, each having various parcels with the relevant LC classes86.

To extract the validation set from EMBAL data, firstly, sensitive and irrelevant attributes to the study, like 
user ID and geometries of EMBAL parcels, were removed. Secondly, label recoding was performed for certain 
classes to allow legend matching with LUCAS (Supplementary Table 2). From this set, all records from LC 
classes Arable land (eA), Fallow (eB), Grassland (eC), Shrubland (eD), and Non-agricultural elements (eN), 
which have a valid lc1 attribute and with an area of more than or equal to 50 square meters were selected, 
amounting to 34,370 instances.

Fig. 3 Distribution of train and test samples in EU-27 with distinguishing primary and additional gap-fill data.
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This research used the centroids from these parcels, representing 18 different LCs, to evaluate the final pro-
duced map. Notably, the extracted dataset focuses solely on vegetation and does not include classes such as 
Artificial land, Bare land and lichens/moss, Water, and Wetlands. Additionally, within the Arable land category, 
Common wheat, Durum wheat, and Triticale were merged into a single Wheat class (210 in Level-2 code), while 
the Other cereals class had no samples available. Supplementary Table 3 displays the LC classes of the EMBAL 
2022 dataset alongside their equivalent EU map codes and the number of validation points for each class.

Comparing with GSA. In the second approach for the 2022 crop map assessment, we expanded our evaluation 
and compared our classes with vector parcels derived from the Geospatial Aid Application (GSA) across several 
EU regions. The GSA refers to the annual crop declarations made by EU farmers for Common Agricultural 
Policy (CAP) area-aid support measures. Each GSA record represents a polygon of an agricultural parcel with 
one crop (or a single crop group with the same payment eligibility), providing a valuable dataset for comparison.

For the 2022 assessment, we incorporated GSA data from bewa2022 (Wallonia in Belgium, BE), dk2022 
(Denmark, DK), ee2022 (Estonia, EE), nl2022 (Netherlands, NL), and sk2022 (Slovakia, SK). While the GSA 
system is implemented across the EU, the design and operation of each region’s data set vary. Each GSA has its 
own nomenclature for crop types and crop practices eligible for regional support schemes.

Maintaining a focus on crop classes covering at least 0.5% of the cumulative GSA area in each selected region, 
we ensured that our assessments targeted agriculturally significant areas and crop types. Following this princi-
ple, we achieved a total area coverage ranging from 89.8% (lowest coverage country) to 97.1% (highest coverage 
country) of the total parcels for each respective GSA. We extracted a total of 2,116,051 parcels spanning over 
8.102 million hectares.

We then compared the declared crops, mapped to the LUCAS legend, to the predicted classes within each 
GSA parcel from our pixel-based classification. This comparison provided a comprehensive assessment of how 
practically applicable our classification algorithms are. Table 5 summarizes the result of the GSA data used in 
the study.

Comparing with national statistics. The official national statistical data available through Eurostat for the main 
crops in the EU-27 is the final database used to evaluate the EU-LULC map. The dataset (cultivation/harvested/
production) (1000 ha) is available for download on (https://ec.europa.eu/eurostat/databrowser/view/tag00103/
default/table?lang=en&category=agr.apro.apro_crop.apro_cp.apro_cpsh). In this case, the two available 
EU-LULC years were analyzed (i.e., 2018 and 2022). In order to facilitate this comparison, national area data 
was taken from the dataset “Area (cultivation/harvest/production) (1000 ha) by NUTS-1 regions”. A semantic 
comparison was conducted between the Eurostat crop classes and the EU crop map legends (see Table S17 in24) 
to ensure they are compatible.

By comparing the frequency distribution of values in one dataset within classes of another dataset, the esti-
mated areas of EU crop maps were compared to the corresponding Eurostat data. For each of the nine main 
crops in the EU, the Pearson correlation coefficient was calculated in order to assess the strength of the correla-
tion. The distribution of these variances is subsequently aggregated to deduce conclusions at an individual crop 
level, incorporating insights from both 2018 and 2022 data in the analysis.

Expansion of the classification model to an external territory. This study aims to develop the LULC 
map for the EU-27 area by utilizing training and test data from inside the region. However, the research scope 
extends beyond this region to include Ukraine, which is adjacent to the EU-27. Contrary to the EU-27 area, no 
label features were available for the Ukraine territory for use in model training.

Ukraine’s climate is characterized by a Continental climate in the western part and a Steppic cli-
mate in the eastern part. This places it in the non-Mediterranean climatical region as defined in the 
Classification Process section. Agriculture is Ukraine’s largest export industry, with over 41 million hec-
tares of agricultural land covering 70 percent of the country (https://www.usaid.gov/ukraine/news/
private-sector-frontlines-land-reform-unlock-ukraines-investment-potential). The most cultivated crops 
in Ukraine include wheat, sunflower, maize, barley, potatoes, soybeans, and rapeseed, all of which are 
included in the classification schemes of the trained model (https://www.statista.com/statistics/1381043/
ukraine-planted-area-by-crop/).

As part of this investigation, the efficacy and transferability of the classification model trained in one area and 
validated in a different external region was assessed. By analyzing the results of this study, a better understanding 
of the reliability of the classification model and its potential broader applicability across external territories will 
be gained.

Region Description Area (Mha) The area ratio of the total (%) Parcels

bewa2022 Wallonia (Belgium) 0.801 94.1 341,968

dk2022 Denmark 2.658 89.0 576,544

ee2022 Estonia 0.973 92.7 175,968

nl2022 Netherlands 1.850 89.8 758,504

sk2022 Slovakia 1.820 94.1 263,067

Total/Avg — 8.102 91.9 2,116,051

Table 5. Results of the evaluation based on the GSA data.
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The analysis involved a comprehensive comparison between our generated map and the independently 
generated high-resolution crop map produced by the Kyiv Polytechnic Institute (KPI) team for the year 2022 
(https://ukraine-cropmaps.com). This step was pivotal in understanding any deviations, anomalies, or similar-
ities between the two mapping results, providing a robust assessment of our model’s performance against an 
established standard.

Data Records
The dataset is available in the JRC data catalogue87 (https://doi.org/10.2905/555e5d1d-1aae-4320-a716-
2e6d18aa1e7c) where users can find the direct FTP access to the map (https://jeodpp.jrc.ec.europa.eu/ftp/
jrc-opendata/EUCROPMAP/2022/) and the Web Map Service (WMS) (https://jeodpp.jrc.ec.europa.eu/jeodpp/
services/ows/wms/landcover/eucropmap).

The dataset is reprojected to the Lambert Azimuthal Equal-Area projection (ETRS89-LAEA, EPSG:3035) 
and it includes individual maps for the EU-27 and Ukraine (GeoTiff), as well as a collection of tiles of 327 km (in 
width) and 327 km (in height). The tile index is available in ESRI Shapefile format.

The maps are also available as ImageCollection in the GEE catalogue (https://developers.google.com/
earth-engine/datasets/catalog/JRC_D5_EUCROPMAP_V1) which contain required data for EU27 and 
Ukraine.

To facilitate access to the EU crop map dataset to a large audience, a web application has been cre-
ated that simplifies consultation and guides users to deepen the analysis. This is a dashboard created in the 
JupyterLab environment, the most used web application for data science tasks, through a Jupyter Notebook. The 
open-source Voilà software (https://voila.readthedocs.io/en/stable/) takes care of displaying notebooks without 
showing the code cells, rendering only the output produced by each of the cells. In this way, even very complex 
applications that are focused on data can be created, allowing users to interact with the data themselves through 
dedicated graphical interfaces. The EUcropmap dashboard (available here https://jeodpp.jrc.ec.europa.eu/eu/
dashboard/voila/render/REFOCUS/EUcropmap/EUcropmapExplorer.ipynb and in Supplementary Figure 1) 
was created using Python programming and a series of libraries that help build the page, present information, 
and manage user interactions. Among these libraries is VOIS88, a library developed by the JRC and available 
as open source in the code.europa.eu repository, which supports the developer by simplifying the activities of 
building captivating visualizations within the Voilà environment. The EU crop map dashboard allows users to 
quickly compare the 2018 and 2022 versions of the dataset and highlight a single crop through a customizable 
legend in which the user can turn each class on or off. During zoom and panning operations on the map, the 
consistencies of the classes in the area visible on the map are calculated in real-time and shown in the legend 
itself in the form of a horizontal bar graph. Finally, it provides an on-the-fly computation of crop diversity, allow-
ing for quick and efficient insights89.

Technical Validation
Training data balancing result. Table 6 presents the number of samples per class and the selected number 
after the balancing process. Additionally, the F1-score using an RF classifier for the two levels is reported. The 
procedure focused on Woodland and Shrubland, Grassland, Bare land, Water, and Wetland classes in the Level-1 
scheme and the Arable land class in the Level-2 scheme.

The total number of primary training samples increased from 81,427 to 86,831 after the balancing. The 
impact of the process is noticeable in the results. The F1-scores increase for classes that expand in the number of 
samples. However, no significant change was observed in the F1-scores for the Woodland and Shrubland, and 
Grassland classes, which underwent sample reduction. Notably, no modifications were made to the Artificial 
land samples.

In terms of accuracy, the OA slightly decreased from 78.9% to 78.4% in Level-1, whereas it increased from 
70.9% to 71.1% in Level-2. The κ also showed a marginal change from 0.71 to 0.70 in Level-1 and from 0.62 to 
0.63 in Level-2. Overall, there was a slight improvement in the Level-2 scheme validation results.

Crop map over EU. Insights From EU Map. For analysis purposes, the EU crop map is re-projected to 
the Lambert azimuthal equal-area (ETRS89-LAEA, EPSG:3035) projection. The final LULC map presented in 
Figure 4 comprehensively depicts 25 distinct classes, encompassing around 3.973 million square kilometres 
(Mkm2) of land area. This value was calculated after performing the masking process in post-classification.

The resulting map was visually inspected and spatially consistent with high spatial resolution base maps and 
existing products such as the EU crop map 2018, particularly in terms of the major LC categories. For each class, 
a simple area estimation based on pixel counting is presented in Supplementary Table 4.

Figure 5 illustrates parcels of varying sizes and crop types across different regions of EU-27. These classifica-
tions were achieved without prior knowledge, relying solely on non-parametric classification methods. Parcel 
boundaries are clearly distinguishable even when using pixel-based classification methods.

In Spain - Castile and León (Figure 5a), the major crops are Common wheat, Sunflower, and Rye, as well as 
some parcels of fodder crops and oats. Figure 5b (France - Centre-Val de Loire) shows the classifier’s ability to 
distinguish various crops in a region where crops such as barley, common wheat, dry pulses, maize, potatoes, 
rape and turnip rape, sugar beet, and sunflower are well differentiated. Figure 5c (Austria - Lower Austria) dis-
plays the various crop types (Common wheat, Dry pulses, Maize, Potatoes, Rape and turnip rape, Sugar beet) in 
different parcel sizes along with the Woodland and Shrubland covered National Park Donau-Auen and Danube 
River. In Romania - Sud-Muntenia, (Figure 5d) very large parcels along with very small parcels are detectable 
which are mostly covered in Common wheat, Maize, and Rape and turnip rape.
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Accuracy Assessment and Spatial Analysis Results. LUCAS test points. Based on the evaluation of 
32,628 out of 33,456 test samples (828 samples were unavailable due to the masking process), a confusion matrix 
was generated to assess the classification accuracy of seven major LC classes (Table 7). The three main vegeta-
tion classes, namely Arable Land, Woodlands and Shrubland, and Grassland, demonstrated excellent F1-scores 
ranging from 73% to 87%. These high scores indicate a robust capability to accurately classify these specific LC 
classes. On the other hand, discriminating between the Bare Land, Water, and Wetlands classes proved to be 
more challenging, conceivably due to the limited number of training samples available for these classes. Nineteen 
test samples could not be evaluated due to possible small remaining gaps in the final LULC map. The OA was 
determined to be 79.3%, indicating a reasonably high level of correctness in the classification results. The κ was 
0.71, indicating substantial agreement beyond chance. Besides, Arable land is well captured, achieving 81.9% and 
93.4% of UA and PA, respectively.

Concerning analyzing crop types, the confusion matrix was expanded to Level-2, which contains 25 classes, 
six majors, and 19 crop types. The results are summarized in Table 7, where the OA and κ are reported as 
70.6% and 0.63, respectively. It is worth noting that the weighted confusion matrix based on the estimated area 
coverage of each class (described in Supplementary Table 4) and using the instructions in90 can be found in 
Supplementary Table 5.

Focusing on the 19 crop classes, four classes: Maize, Sugar beet, Sunflower, and Rape and turnip rape, 
achieved F1-scores above 69%, indicating a high level of UA and PA. However, for Rye, Rice, Other cereals, 
Other root crops, the F1-scores were notably lower, falling below 30%. This suggests challenges in distinguishing 
these LC classes from others. The remaining 11 classes showed F1-scores ranging between 30% and 69%.

EMBAL validation dataset. The classification accuracy of available 33,308 out of 34,370 EMBAL validation 
samples containing 18 LC classes was evaluated. Notably, the number of 1062 samples were located in masked 
areas. A confusion matrix (Table 8) was calculated, revealing an OA of 64.4% and a κ of 0.54.

According to Table 8, similar to the results of the LUCAS, classes of Maize, Sunflower, Rape and turnip rape, 
Woodlands and Shrubland, and Grassland, demonstrated notable F1-scores exceeding 69%. However, the per-
formance of the Barley, Potatoes, Dry pulses, vegetables, and flowers, and Bare arable land classes was compara-
tively weaker, showing a decline of more than 20% in their F1-scores Table 9.

Level-1 (7 major classes) Level-2 (25 minor classes)

Level-1 
code

Initial 
samples

Balanced 
samples

Initial 
F1-score

Balanced 
F1-score

Level-2 
code

Initial 
samples

Balanced 
samples

Initial 
F1-score

Balanced 
F1-score

100 9063 9063 57.3% 58.6% 100 9063 9063 57.6% 58.7%

200 20827 31824 87.5% 86.3%

211 4677 4677 64.2% 65.6%

212 629 1500 25.5% 36.9%

213 2315 2315 51.0% 51.2%

214 597 1500 11.7% 30.9%

215 652 1500 22.1% 31.6%

216 3136 3136 78.8% 80.4%

217 16 73 0.0% 0.0%

218 530 1500 4.4% 21.6%

219 135 771 4.4% 18.5%

221 393 1500 65.0% 65.4%

222 383 1500 80.0% 80.6%

223 147 884 0.0% 11.1%

230 395 1500 28.4% 39.0%

231 914 1500 70.9% 71.3%

232 1497 1500 73.9% 73.8%

233 270 1500 37.9% 60.4%

240 673 1500 24.7% 29.6%

250 1635 1635 11.2% 23.0%

290 1833 1833 37.4% 34.9%

300 29116 21431 84.5% 84.5% 300 29116 21431 84.5% 84.4%

500 21419 12513 72.7% 71.1% 500 21419 12513 71.3% 71.9%

600 561 4000 6.1% 18.1% 600 561 4000 5.1% 17.6%

700 238 4000 0.0% 34.7% 700 203 4000 18.2% 32.4%

800 203 4000 18.2% 31.1% 800 238 4000 0.0% 34.0%

Table 6. The number of primary training samples per class used in the training step for both levels before and 
after balancing, as well as the performance of F1-score.
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Assessment with EU farmers’ declarations (GSA). An alternative evaluation was conducted utilizing an inde-
pendent data source: farmers’ declarations. As detailed in the methodology section, parcel information and their 
associated crop types were derived from these declarations for crop classes representing at least 0.5% of the total 
area in the GSA. The selected features were then transformed to align with the grid of the EU crop map, and the 
GSA crop classes were translated into the corresponding EU LULC codes. Confusion matrices were derived for 
each region, and accuracies were then computed.

OA varies across the regional data sets, with 91.5% in the Netherlands (nl) being the highest (Supplementary 
Table 6), followed by Belgium Wallonia (bewa) with 89.6% (Supplementary Table 7) and Denmark (dk) 
with 84.2% (Supplementary Table 8), respectively. Estonia (ee) (Supplementary Table 9) and Slovakia (sk) 
(Supplementary Table 10) have significantly lower OA of 73.6% and 56.0%, respectively.

Fig. 4 EU-27 Land Use and Land Cover map at 10 m pixel size for the year 2022. The letters refer to zoom views 
in Figure 5.
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While the overall accuracies give only limited understanding, as classes from GSA are not the same as from 
the crop map, PAs are the most interesting to investigate. The PAs for crops are derived from the confusion 
matrices (Supplementary Tables 6–10) and illustrated in Figure 6. Supplementary Figure 2 represents the pro-
portion of pixels assigned to a particular GSA crop type that were accurately classified. In the bewa22 region, 
the crops Sugar beet, Rape and turnip rape, and Maize show PAs of approximately 90.5%, 94.3%, and 88.9%, 
respectively, indicating a strong correlation with independent data. However, the category “Other cereals” is 
significantly lower at a PA of around 20.6%, suggesting discrepancies.

For the ee22 region, Rape and turnip rape is notable with a PA of 97.7%, while Barley, Maize, and the category 
“Dry pulses, vegetables and flowers” have moderate accuracies ranging from 60.1% to 66.2%. Crops Rye, Oats, 
and “Fodder crops” have PAs below 50%, pointing to potential misalignments with the actual data. In dk22, the 
accuracies for Maize, Sugar beet, Rape and turnip rape, and Potatoes are impressive, all exceeding 90%, demon-
strating reliable crop mapping. Barley also shows a commendable PA of 89.7%. However, Oats and Rye present 
lower accuracies, indicating room for improvement. The Netherlands region nl22 exhibits high accuracies for 
Potatoes, Sugar beet, and “Other root crops”, all with PAs above 90%. However, the “Dry pulses, vegetables and 
flowers” category shows a lower accuracy, signalling an area where the crop map might be refined. Finally, in 
Slovakia, sk22, Maize shows a moderate PA, and Sugar beet has a slightly higher accuracy, yet Barley is lower, 
suggesting some level of misclassification. Rye, Oats, and “Fodder crops” are even less accurate, indicating sig-
nificant discrepancies from the independent data.

The EU crop map 2022 displays strong classification accuracies for crops like Sugar beet, Rape and turnip 
rape, and Maize, with PAs frequently surpassing 90%, indicative of a reliable algorithm for these crops. In con-
trast, crops such as Other cereals, Rye, and Oats show lower accuracies, hinting at potential issues with spectral 

Fig. 5 EU-27 Land Use and Land Cover map for a subset of regions in (a) Castile and León (Spain), (b) Centre-
Val de Loire (France), (c) Lower Austria (Austria), (d) Sud-Muntenia (Romania). Legend is presented in Figure 4.
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overlap, training data quality, or image resolution. The observed regional variability in accuracy also suggests 
that localized conditions affect classification success, pointing to a need for region-specific algorithm adjust-
ments and improved data handling to enhance overall mapping precision.

National Statistics. The crop area data for the EU crop map 2018 and 2022 is extracted and compared across 
the EU-27 countries. As shown in Figure 7, the calculated Pearson’s correlations (R) range from 0.79 in 2022 
(0.78 in 2018) for maize to 1 for Rape and turnip rape. While the robustness of the estimation for Rape and tur-
nip rape, Sunflower, and Sugar beet is confirmed in 2022, we observe a larger overestimation of Rye, Potatoes, 
and Durum wheat compared to 2018. Barley is slightly underestimated in 2022 compared to 2018. Last, there is 
an overestimation for common wheat both in 2018 and 2022, which can potentially be attributed to commission 
errors originating for other cereal classes to the most common cereal class.

External territory. Figure 8 displays the Ukraine LULC map at 10 m pixel size for the year 2022. For the 
Ukraine region, the KPI crop type map is used as a validated product suitable for evaluating our generated map. 
As shown in Figure 6 and Supplementary Table 11, in the ua22 region, rape and turnip rape stands out with a 
high PA of 96.8%, while sunflower and “Bare arable land” show good accuracies. However, common wheat and 
barley are less accurate, and maize shows a notable decline in PA, suggesting substantial misclassifications for 
these crops in this area.

Confusion between wheat and barley is considerable, as in most of the EU regions. The OA is in the order 
of 66%.

Usage Notes
potential improvements. The LULC classification produced in this study is based on monthly median 
feature values, and it presents some considerable limitations. The primary constraint of the input features used is 
its temporal resolution. Despite their ability to provide a broad overview of LC dynamics, monthly medians are 
unable to capture finer temporal nuances. Rapid changes, such as seasonal transitions or short-term disturbances, 
may not be adequately reflected or may even be overlooked altogether in crops with similar growing behaviour. 
This problem is more accentuated when mapping areas that span over a great gradient of longitudes and latitudes. 
Variations in different areas can lead to substantial seasonal variations that affect growing patterns and, therefore, 
LULC classification accuracy.

Latitude significantly impacts crop development patterns as the angle and intensity of sunlight depend on 
it. Areas at lower latitudes receive intense sunlight throughout the year compared to regions at higher latitudes. 
Due to the availability of ample energy for photosynthesis, crops exhibit a relatively stable and higher NDVI, 
which indicates productive and healthy vegetation. On the other hand, southern regions also exhibit more 
frequent and variable water stress and drought conditions that limit crop growth and influence phenological 
patterns.

Latitude is also related to temperature, and locations located at lower latitudes generally experience warmer 
temperatures, which are generally conducive to the growth of crops. A warmer climate can extend the growing 
season and enhance the NDVI value of crops since they thrive under these conditions. Conversely, higher lati-
tudes are often characterized by colder winters and shorter growing seasons, resulting in lower NDVI values dur-
ing periods of dormancy or winter. These factors, along with soil and management conditions, influence the crop 
growing patterns, and classifying the same crop under variable conditions becomes challenging. In Figure 9, the 
NDVI trends for the 2022 crop growth of three different crops: Common Wheat, Durum Wheat, and Rapeseed 
(Rape and Turnip Rape) in two geographically distinct regions, Slovakia (SK) and Spain (ES), which exhibit 
significant latitudinal and climatic differences, were analyzed. To create this figure, NDVI values were extracted 
from preprocessed S2 images for each available acquisition. In SK, there were data for 276, 28, and 106 crop 
samples for Common Wheat, Durum Wheat, and Rapeseed, respectively, while in ES, there were 474, 168, and 
49 crop samples for the same crop types. Next, the Whittaker smoother91 was applied to these NDVI time series 
data to effectively reduce noise and obtain continuous crop growth trend curves for each individual sample. 
Subsequently, the median values of these trend curves for each crop type in both countries were computed.  

Level-1 Code 100 200 300 500 600 700 800 Total UA F1-Score

100 1990 123 515 738 60 10 6 3442 57.8% 58.1%

200 333 8065 240 1157 37 8 5 9845 81.9% 87.3%

300 770 84 9901 1153 49 19 69 12045 82.2% 85.0%

500 272 350 547 5809 8 7 29 7022 82.7% 73.0%

600 33 12 13 11 27 1 1 98 27.6% 18.7%

700 12 1 4 11 10 19 5 62 30.6% 29.7%

800 2 0 20 17 0 2 73 114 64.0% 48.3%

Total 3412 8635 11240 8896 191 66 188 32628 OA = 79.3%
κ = 0.71PA 58.3% 93.4% 88.1% 65.3% 14.1% 28.8% 38.8%

Table 7. The confusion matrix obtained from the classification for Level-1 classes. [Notation: UA = User’s 
Accuracy, PA = Producer’s Accuracy, OA = Overall Accuracy, Kappa coefficient = κ].
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The median values served as representative trend curves, capturing the overall behaviour of the three crop types 
used for this example (Common Wheat, Durum Wheat, and Rapeseed).

As depicted in Figure 9, ES experiences a longer growing season, primarily owing to its warmer climate, 
which results in crops reaching their peak growth earlier than in SK. Despite this difference, the growth behav-
iour of the three mentioned crops exhibits striking similarities in both regions. Notably, Durum Wheat starts 
the season and attains its peak growth earlier, while Common Wheat and Rapeseed follow a slightly delayed 
growth trajectory.

Various other factors, including proximity to large water bodies, landforms, and large-scale climate, can 
impact the local climate and vegetation patterns. In coastal regions, for instance, temperatures may be milder, 
and precipitation patterns may differ from those in inland regions at the same latitude, resulting in differences 
in crop NDVI based on these factors.

According to Figure 10, the growth trends of Common Wheat and Barley crops were analyzed in northern 
France (FR) and southern Poland (PL), two regions with similar latitudes but varying longitudes. For Common 
Wheat, 1258 samples in FR and 330 samples in PL were evaluated, while Barley had 730 samples in FR and 255 
samples in PL, following the same procedure outlined earlier. Crops in northern FR, situated in the Atlantic 
climate region, exhibit earlier peak growth compared to southern PL, which falls within the continental climate 
region. Notably, in both regions, Barley consistently experiences an earlier start and reaches its peak growth 
before Common Wheat.

Therefore, LULC classification at the continent scale with different climates, based on a single classifier and 
based on monthly median input features, presents significant challenges. It is important to recognize that the 
growth behaviour of the same crop types can exhibit shifts influenced by regional variations as well as crops with 
similar growth patterns. It is often difficult to capture these subtle differences using only monthly medians. The 
use of more advanced time series analysis or deep learning techniques by integrating all available acquisitions as 
well as utilizing more suitable auxiliary data, is recommended to overcome these limitations.

potential applications. Similarly to the EU Crop Map 2018, the EU Crop Map 2022 provides a refined 
lens for European agricultural and environmental analyses. Various uses can be envisioned. These maps make 
the interplay between crop diversity and agricultural system resilience more tangible, empowering stakeholders 
to strategize against potential disruptions across various scales. The map can be used as an input to account for 
the environmental implications of pesticide use. Highlighting regions close to sensitive and urban areas under-
scores the need to balance agricultural output with ecological preservation. The map also provides an essential 
base-layer needed to evaluate the potential effects of agricultural intensification on biodiversity. In geopoliti-
cally charged situations, such as the ongoing war between Russia and Ukraine, this resource proves invaluable in 
assessing agricultural impacts, guiding both national and European strategic responses.

Fig. 6 Producer’s accuracies comparing GSA farmer declaration data for EU LULC crop codes and specific 
country/region.
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In summary, the EU Crop Map 2022 has the potential to enhance agricultural research and to play a pivotal 
role in shaping responsive and sustainable policies across the continent.

The future of EU crop mapping: A forward perspective. In the context of EU-wide crop mapping, it 
is useful to highlight the new Copernicus High Resolution Layer (HRL) on Crop Types, which is part of the HRL 
Vegetation Land Cover Component (VLCC) and it will be released in Q3 2024 by the European Environment 
Agency (EEA). Using Sentinel observations, the HRL Crop Types will cover the EEA 38 member nations encom-
passing annual maps starting from 2017 with 10-meter resolution. Technical specifics are elaborated in EEA/DIS/
R0/21/013 (Tender available here: https://etendering.ted.europa.eu/cft/cft-display.html?cftId=8630).

These new European high-resolution and satellite-sourced maps provide an unprecedented view into the 
continent’s agrarian landscape. Through their European-wide coverage and detail, they can underpin higher 
precision agronomic, agri-environmental, and climate assessments. As such, they have the potential to reshape 
policy-making approaches, elevate agricultural standards, and fortify the EU’s commitment to sustainable food 
production.

Fig. 7 The areas reported by Eurostat at country level are compared with the area retrieved from the EU 2018 
and EU 2022 crop maps. R is the Pearson correlation coefficient, and R2 is the coefficient of determination.
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Fig. 9 NDVI trends for the 2022 crop growth of three different crops: Common Wheat, Durum Wheat, and 
Rapeseed (Rape and Turnip Rape) in Slovakia and Spain.

Fig. 8 Ukraine’s Land Use and Land Cover map at 10 m pixel size for the year 2022.
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Code availability
Detailed information regarding the generation of a LULC classification map in GEE can be found in the following 
repository92 (https://zenodo.org/doi/10.5281/zenodo.10220964), along with guidelines contained in a README file.
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