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A large-scale open image dataset 
for deep learning-enabled 
intelligent sorting and analyzing of 
raw coal
Ziqi Lv1,2,5 ✉, Yuhan Fan2,3,5, Te Sha1, Yao Cui2,3, Yuxin Wu3, Haimei Lv4, Meijie Sun1,2, 
Yanan Tu1,2, Zhiqiang Xu1,2 & Weidong Wang1,2 ✉

Under the strategic objectives of carbon peaking and carbon neutrality, energy transition driven 
by new quality productive forces has emerged as a central theme in China’s energy development. 
Among these, the intelligent sorting and analysis of raw coal using deep learning constitute a pivotal 
technical process. However, the progress of intelligent coal preparation in China has been constrained 
by the absence of accurate and large-scale data. To address this gap, this study introduces DsCGF, a 
large-scale, open-source raw coal image dataset. Over the past five years, extensive raw coal image 
samples were systematically collected and meticulously annotated from three representative mining 
regions in China, resulting in a dataset comprising over 270,000 visible-light images. These images are 
annotated at multiple levels, targeting three primary categories: coal, gangue, and foreign objects, and 
are designed for three core computer vision tasks: image classification, object detection, and instance 
segmentation. Comprehensive evaluation results indicate that the DsCGF can effectively support 
further research into the intelligent sorting of raw coal.

Background & Summary
China is vigorously developing new quality productive forces, requiring all industries deepen the integration of 
new technologies to promote comprehensive social progress1. Concurrently, under the strategic goals of carbon 
peaking and carbon neutrality, the energy transition characterized by intelligence, greenness, and efficiency 
is accelerating. However, the country’s resource endowment dictates that its coal-dominated energy struc-
ture is unlikely to shift significantly in the short term. Consequently, enhancing the efficiency, cleanliness, and 
intelligence of the coal industry through technological innovations holds substantial practical importance and 
far-reaching impact. Within this context, the intelligent clean processing and utilization of coal constitute crit-
ical aspects of smart mine construction, with the intelligent sorting of gangue and foreign objects in raw coal 
representing a key technology for achieving intelligent transformation.

In recent years, the increasing mechanization of coal mining has resulted in significant amounts of roof rock, 
floor rock, and production waste being mixed into raw coal, substantially raising the gangue and foreign object 
content. In typical mineral processing designs, it is often necessary to include a manual sorting stage for gangue 
and foreign object during the pre-processing of raw coal at coal preparation plants (CPPs) to avoid equipment 
failures caused by them entering subsequent processes. In the past, workers were arranged along conveyor belts 
to manually pick out large gangue and foreign objects from the raw coal. And now, the online intelligent iden-
tification and sorting of them in raw coal has emerged as a prominent research focus in both academia and 
industry.
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Among the various input sources utilized in raw coal intelligent identification technology, visible-light 
images have garnered significant attention from researchers due to their low hardware deployment costs. In the 
initial stages of research, the primary approach was the “handcrafted feature engineering + machine learning 
classifier” model2,3. With the development of deep learning theory and the application of Convolutional Neural 
Networks (CNNs) in the field of computer vision, data-driven-based raw coal image analysis within the deep 
learning framework has gradually expanded, emerging as the mainstream approach. This progression mirrors 
the evolution of deep learning in the general field of computer vision. Numerous scholars have explored raw coal 
image datasets through classic algorithm frameworks, including image recognition, object detection, semantic 
segmentation, and instance segmentation4.

The classification of coal and gangue images using CNN is currently the most focused research area. This 
includes the direct introduction of mature CNN models5–7, improvements to the CNN framework based on 
established convolutional modules8,9, model light-weighting10,11, and edge deployment12,13. However, due to the 
absence of location information for targets within the images, image classification results cannot be directly 
used to guide automated sorting equipment for gangue removal. Nonetheless, these studies contribute to opti-
mizing recognition results when cascaded with other task types14. Object detection is the most common task 
type in raw coal sorting technology field. Efficient object detection algorithms like the YOLO series15–18 and 
RCNN series19–21 are widely applied in raw coal image research, with some scholars attempting to enhance net-
work structures for improved performance22–24. Furthermore, some researchers argue that the bounding boxes 
obtained from object detection are too coarse to meet the requirements of fine sorting. Therefore, discussions are 
increasingly focused on semantic segmentation25–28 and even instance segmentation29–32. These advancements 
represent the latest direction in utilizing vision-guided devices to separate gangue and foreign objects from raw 
coal.

Currently, most related research aims to achieve high accuracy through algorithm optimization, but it is dif-
ficult to conduct substantial quantitative comparisons between different studies. Specifically, small-scale datasets 
fail to comprehensively represent the entire sample space, while the collection and annotation of large-scale 
datasets are costly. In existing research on coal-gangue image recognition, dataset sizes range from a few hun-
dred to thousands of images (as shown in Table 1). To improve the accuracy of identifying material classes 
within raw coal, many researchers isolate individual materials from the coal stream for detailed examination. 
After categorizing each item, images are collected either at the end of the current production shift on the onsite 
conveyor belt or in laboratory settings after transporting the materials. These methods are collectively referred 
to as image acquisition under non-production conditions. Currently, most studies still rely on coal-gangue sam-
ple images collected in these settings. However, significant differences exist between materials in production 
and non-production states due to the unique environment and processes of coal preparation plants. Under 
production conditions, images of coal and gangue should be captured directly by positioning the camera over 
the raw coal conveyor belt. This approach enables the collection of material images without disrupting the con-
tinuous production flow or altering the materials’ surface state, ensuring consistency with the requirements of 
coal-gangue sorting systems. In contrast, materials examined under non-production conditions often experi-
ence surface changes, such as moisture evaporation, detachment of coal fines, and altered conveyor surfaces. 
These changes can lead to distortions in the materials’ surface state, reducing the relevance of such images for 
practical applications. Furthermore, raw coal from different mining areas exhibits different surface character-
istics due to variations in coal quality, such as moisture content, sulfur content, and degree of coalification33. 
Although many scholars are dedicated to discussing the impact of different environmental factors on recogni-
tion performance under laboratory conditions, the uncertainty of the production environment (especially the 
uncertainty of material surfaces) leads to differences between the final imaging results and those simulated in the 
laboratory. In summary, the current studies use datasets of varying sizes and involve different levels of difficulty 
in material image recognition. These variations hinder the objective evaluation of findings across research teams 
and the effective quantitative comparison of optimized model metrics.

Therefore, our team developed the industry’s first large-scale, open-source image dataset for intelligent coal 
sorting, named DsCGF (Dataset for Coal, Gangue, and Foreign objects). This dataset is based on raw coal images 
collected over the past five years from typical mining regions in China, including Anhui, Inner Mongolia, and 
Shanxi. All data were collected in real production conditions and manually annotated, covering three typical 

References Task type Photo site State of material Num of Objects/images

Zhang, L. et al.3 Image classification Lab Non-production 300/1800

Cao, Z. G. et al.11 Image classification Lab Non-production 400/400

Liu, H. J. et al.9 Image classification Lab Non-production Unspecified/3150

Pan, H. G. et al.15 Object detection CPP Non-production Unspecified/7000

Xu, S. Y. et al.16 Object detection CPP Non-production Unspecified/3852

Zhang, Y. C. et al.20 Object detection CPP Non-production Unspecified/793

Wang, X. et al.28 Semantic segmentation Lab Non-production 4055/594

Cao, Z. G. et al.29 Semantic segmentation Lab Non-production 7000/1500

Gao, R. et al.26 Semantic segmentation CPP Production Unspecified/60

Wang, X. et al.32 Instance segmentation Lab Non-production Unspecified/600

Li, D. J. et al.43 Instance segmentation Lab Non-production 200/200

Table 1.  A comparison of the datasets used in current studies.
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task types: image classification, object detection, and instance segmentation, totaling nearly 270,000 visible light 
images (including 72,467 pieces of coal, 147,549 pieces of gangue, and 19,068 pieces of foreign objects). We hope 
this will accelerate the construction of intelligent mines in China.

Methods
The overview of workflow.  Firstly, CPPs were selected from three typical mining areas in China: Guobei 
CPP in Anhui Province, Erlintu CPP in Inner Mongolia Autonomous Region, and Wangjialing CPP in Shanxi 
Province. Image acquisition devices were installed at the manually sorting conveyor belt at these plants (Fig. 1a). 
Secondly, images of raw coal were continuously collected during daily production, and all images were manually 
annotated at the object detection level (Fig. 1b). When labeling the target object with a rectangular box, the edges 
of the rectangle tightly align with the target object to ensure that the rectangle is the minimum enclosing rectan-
gle. Input the label name by connecting the two words with an underscore (i.e., foreign_object) instead of a space. 
Subsequently, on the premise of avoiding redundant sampling, and based on the object detection annotations, 
images were cropped. The cropped objects naturally formed a dataset for image classification tasks (Fig. 1c). 
Finally, considering the specific requirements for raw coal preprocessing at different CPPs, more refined instance 
segmentation annotations were conducted for various target objects (Fig. 1d).

Sampling area and data sources.  The Huaibei mining area, located in the northwest of Anhui Province, 
China, is one of the country’s main producers of coking coal and fat coal. The coal from this region is of excellent 
quality, characterized by low sulfur content (S < 1%), low phosphorus content (P < 0.05%), and high calorific 
value. The rated production capacity is 32.5 Mt/a. The Guobei CPP is one of the most representative coking coal 
preparation plants in this mining area, as it is a central coal preparation plant that needs to process raw coal from 
multiple mines within the area. We developed and installed an intelligent impurity-picking robot on the manual 
sorting belt at the Guobei CPP. Using its accompanying image acquisition device, we collected raw coal material 
with a particle size range of 25 mm to 100 mm. The image acquisition device utilizes a lighting system composed 
of 24 8 W strip LED lights, maintaining the illumination within the field of view at 1200 (±100) Lux. The camera 
used is the acA4096-40gc industrial camera from Basler, Germany, with a resolution of 4096 × 2168 and a frame 
rate of 42 fps.

The Xinjie mining area, located in the western part of Inner Mongolia Autonomous Region, China, is a key 
mining area planned to enhance coal supply capacity, with a planned production capacity of 57.0 Mt/a. The 
main coal types produced here are long-flame coal and non-caking coal. Erlintu Coal Mine is a key mine in this 
area, and we chose its accompanying mine-type thermal-coal CPP as the data collection site for this mining 
area. After crushing and screening, raw coal larger than 300 mm enters the manual sorting belt, where an image 
acquisition device is installed for capturing images. Similar to the equipment used at the Guobei CPP, strip LED 
lights are used to maintain the illumination within the field of view at 1200 (±100) Lux. However, the camera 
used here is the acA4112-8gc industrial camera from Basler, Germany, with a resolution of 4096 × 3000 and a 
frame rate of 8 fps.

Fig. 1  Overview of the construction process for the DsCGF.
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The Hebaopian mining area, located in the northwest of Shanxi Province, China, was re-planned and 
adjusted in 2022, increasing its total production capacity to 104.9 Mt/a. The main coal types produced here are 
long-flame coal and gas coal. Similar to the Erlintu CPP, the Wangjialing CPP is a mine-type thermal-coal CPP 
supporting its coal mine. After crushing and screening, raw coal larger than 200 mm enters the manual sorting 
belt. We collected material images during production using an intelligent gangue-picking robot developed and 
installed by our team on this sorting belt. The robot’s vision system is similar to the image acquisition devices 
used in the previous scenarios, maintaining the illumination within the area at 1000 (±100) Lux using LED 
spotlights. Images are captured by the acA1440-220uc industrial camera from Basler, Germany, with a resolution 
of 1440 × 1080 and a frame rate of 227 fps.

Labelling.  High-quality manual annotation is crucial for constructing a reliable dataset. To achieve this, we 
assembled a team of approximately 30 annotators, consisting of graduate students trained internally. Over the past 
five years, these annotators have undergone hands-on training at coal preparation plants. The training involves 
observing the surface characteristics of coal and gangue in real production settings alongside manual sorting 
belts, while simultaneously reviewing real-time images captured by industrial cameras to establish consistent 
annotation standards. After the training, annotators will undergo an identification assessment. Each annotator 
will be given 150 coal gangue images (75 of coal and 75 of gangue) for identification. The assessment will be 
considered passed if the number of errors in each category does not exceed 2 (with a total of no more than 4 
errors). Annotators who successfully pass the coal-gangue identification assessment are then authorized to begin 
official annotation work. Notably, training alongside the conveyor belt allows annotators to inspect uncertain 
materials more closely, whereas the assessment is based solely on image identification. Although visual criteria 
for distinguishing coal from gangue are difficult to quantify, this comprehensive training process ensures that the 
annotation quality of the dataset is maintained to the highest possible standard.

The object detection task is currently the most commonly used approach for intelligent raw coal sorting. 
It annotates each instance in the image with bounding boxes and categories, providing both the location and 
category information of the targets. Therefore, we started with this task type. The DsCGF dataset includes four 
categories: coal, gangue, unknown, and foreign_object. Due to the minimal visual differences between coal and 
gangue in industrial environments, materials that are difficult to classify in the images were uniformly labeled 
as unknown. This approach aligns with the established knowledge in the mineral processing field, where mixed 
coal with gangue naturally occurs and cannot be strictly classified as either coal or gangue. Therefore, we added 
the unknown category to facilitate flexible algorithm adjustments based on the coal preparation process. For 
example, in the pre-sorting stage, where the goal is to avoid coal being mixed with gangue, unknown can be 
treated as coal; in reverse sorting stages (such as recovering coal from gangue belts), unknown can be treated 
as gangue or coal. Additionally, foreign_object refers to all items on the belt other than coal and gangue. This 
includes production waste such as anchor bolts, support nets, and wood bricks produced during coal seam min-
ing, as well as living waste such as water bottles, discarded gloves, and protective equipment left by workers. The 
Labelimg software was used for all raw coal image annotations at the object detection level, and the generated 
annotation information was saved in XML files in VOC format.

Single-label image classification is one of the most fundamental tasks in computer vision. Datasets for this 
task typically require each image to contain only one class of the primary target. This task is not only used for 
conventional classification but also for studying the visual feature differences between two types of substances, 
making the creation of image classification datasets very important. Our approach involves directly generating 
classification datasets using object detection annotation information. Specifically, we crop the target from the 
original image based on the bounding box information and then classify these cropped objects according to 
their corresponding category labels. We sample raw coal images at a rate of “one frame every 5 frames” from 
the continuously captured images. The 5-frame interval was determined based on the actual data collection 
situation. Specifically, in this dataset, regardless of the scene, selecting every 5th frame ensures that there is no 
overlapping area between the selected frames. There are two key considerations: First, within the same data 
volume, we aim to include a greater variety of distinct samples, rather than multiple views of the same sam-
ple from different angles (although such diversity is also valuable). Second, without a “sampling” approach to 
ensure the independence of instance samples, several issues may arise when studying image classification with 
these samples. For example, if a training batch consists solely of images of the same target object from different 
angles, using that batch for supervised learning could hinder the network’s ability to learn generalized features. 
Therefore, we use only the sampled original images and their corresponding object detection annotations to 
create the image classification dataset.

Different processing workflows often require the intelligent sorting technology for raw coal to target different 
objects. Specifically, the Guobei CPP aims to remove foreign objects from raw coal on the manual sorting belt, 
the Erlintu CPP aims to remove large pieces of gangue on the manual sorting belt, and the Wangjialing CPP 
requires the simultaneous separation of both large pieces of gangue and miscellaneous objects. Accordingly, 
the DsCGF dataset provides refined instance segmentation annotations tailored to these different scenarios. 
Labelme software was used to create polygon annotations for miscellaneous objects at Guobei CPP, gangue at 
Erlintu CPP, and all objects on the belt at Wangjialing CPP. The generated annotation information is saved in 
COCO format within JSON files.

Data Records
The generated DsCGF is available at the Zenodo34–36, and comprises raw coal images from three typical mining 
areas. Due to the capacity limit for data uploads on the Zenodo website, the entire DsCGF needs to be down-
loaded through three separate links:
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Part1: https://doi.org/10.5281/zenodo.13268358, including the DsCGF-1.zip (the image classification and 
object detection data of Anhui-Guobei).

Part2: https://doi.org/10.5281/zenodo.13255355, including the DsCGF-2.zip (a part of the instance segmen-
tation data of Anhui-Guobei), the DsCGF-4.zip (the Inner Mongolian-Erlintu data) and the DsCGF-5.zip (the 
Shanxi-Wangjialing data).

Part3: https://doi.org/10.5281/zenodo.13270674, including the DsCGF-3.zip (the rest of the instance seg-
mentation data of Anhui-Guobei).

The DsCGF includes manual annotations for all images, catering to the needs of image classification, object 
detection, and instance segmentation tasks. The specific data quantities are detailed in Table 2. Figure 2 provides 
a structured description of the dataset’s file structure and annotation file format.

In Table 2, the “Task” column uses the following abbreviations: Img-cls stands for image classification, 
Obj-det stands for object detection, and Ins-seg stands for instance segmentation. In the “Category” column, 
C represents coal, G represents gangue, U represents unknown, and F represents foreign_object. In the DsCGF 
dataset, we divided the data into training, validation, and test sets in a 6:2:2 ratio The dataset division is based on 
the chronological order of image acquisition. All images were encoded and arranged in ascending order accord-
ing to their collection sequence, and then split into training, validation, and test sets at a ratio of 6:2:2. Data 
leakage, referring to external factors that compromise the independence of training and test sets, is a critical 
consideration when constructing datasets. By strictly separating training and test sets based on the acquisition 
time, this issue can be effectively mitigated. Moreover, this approach ensures that the DsCGF dataset objectively 
reflects real-world conditions in the CPP, including potential class imbalances and temporal shifts in material 
surface characteristics. It should be noted that across different areas, the ratio of categories within the training, 
validation, and test sets remains relatively consistent. This prevents scenarios where a specific class is severely 
underrepresented in one subset, or where the class distribution between the training and test subsets differs 
significantly. An exception to this is the test subset for the Guobei-production-state dataset, which was collected 
independently. Detailed explanations for this exception are provided in the Usage Notes.

Technical Validation
Employing various advanced model to evaluating for different tasks.  In this paper, we care-
fully selected state-of-the-art (SOTA) approaches in each task domain and conducted comprehensive training 
and evaluation using the DsCGF dataset. The goal is to provide the industry with objective and comparable 
benchmarks.

Image classification, a fundamental task, often serves as the backbone for deep learning networks used in 
other tasks. In this paper, we chose SwinVIT37 for image classification tasks due to its robust feature representa-
tion capabilities demonstrated across various visual tasks in general domains. Additionally, its shifted window 
attention mechanism effectively captures both local details and global relationships, which is crucial for distin-
guishing subtle differences between fine-grained categories like “coal and gangue”.

The YOLO series, renowned for its single-stage object detection networks, is widely praised in both industry 
and academia for its strong performance and excellent scalability. YOLOv838 was selected for object detection 

Area State Task Images Category Instances

Anhui-Guobei

Production

Img-cls 108027

C 4877

G 96331

U 3669

F 3150

Obj-det 12828

C 19625

G 385688

U 14735

F 890

Ins-seg 12423 F 14771

Non-production

Img-cls 100924
C 52764

G 48160

Obj-det 1322
C 52764

G 48160

Inner Mongolia-Erlintu Production

Img-cls 14841
C 13481

G 1360

Obj-det 8921
C 67134

G 6694

Ins-seg 3063 G 6694

Shanxi-Wangjialing Production Img-cls/Obj-det/Ins-seg 1200

C 1354

G 1698

U 309

F 1147

Table 2.  Details of sample in the DsCGF.
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tasks in this study due to its powerful multi-scale feature extraction capabilities, optimized head supporting finer 
classification and regression, and Focal Loss which alleviates the issue of class imbalance. These features make 
YOLOv8 particularly suitable for the DsCGF dataset.

For instance segmentation, we did not select a particularly novel network as the benchmark method. Instead, 
we chose a more established, robust network that has been validated across various domains and is easier to 
improve upon, making it more suitable as a benchmark. In this paper, the classic Mask-RCNN39 was employed 
to handle the instance segmentation dataset in the DsCGF.

Implementation details and metrics.  All experiments were carried out on NVIDIA GeForce RTX 4090 
GPU by using the PyTorch framework. Details on hyper-parameter settings are provided in Table 3. Given the 
fine-grained nature of the coal and gangue targets, a conservative data augmentation strategy was adopted during 
model training. This strategy included horizontal flipping, vertical flipping, and random rotation—transforma-
tions that do not affect the imaging quality. Since color is a crucial intrinsic feature of raw coal materials, our 
preliminary research indicated that introducing color perturbations can improve bounding box regression in 
object detection tasks but negatively impact the classification of coal and gangue. Consequently, a conservative 
adjustment strategy was adopted in this study. Specifically, images were converted from the RGB color space to 
the HSV color space, where random perturbations within ±10% of the original values were applied to the hue, 
saturation, and value channels. The results were then converted back to the RGB color space.

For the image classification task, we use the confusion matrix and F1 score as metrics. The DsCGF dataset 
involves up to four categories, so for a four-class scenario, the confusion matrix would appear as shown in 
Table 4.

To provide a comprehensive evaluation, the Micro-Averaged F1 Score40 is calculated as follows: First, sum the 
True Positives (TP), False Positives (FP), and False Negatives (FN) across all categories. Then, compute the 

Fig. 2  The schematic diagram of the DsCGF dataset structure (using Guobei CPP as an example). In the 
dataset, we archive data using the names of the coal preparation plants rather than the mining areas. This 
approach is intended to facilitate future expansions of the dataset.
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overall precision and recall, and finally calculate the F1 score. For example, considering the “coal” class as shown 
in Table 4: = = + + = + +TP TP FP FP FP FP FN TP FP FP, ,c cc c cg cu cf c gc uc fc,

∑=
=

Micro TP TP ,
(1)i

C

i
1

Micro FP FP ,
(2)i

C

i
1

∑=
=

MicroFN FN ,
(3)i

C

i
1

∑=
=

=
+

Micro Precision Micro TP
Micro TP Micro FP

,
(4)

Micro Recall Micro TP
Micro TP Micro FN

,
(5)

=
+

= ⋅ ⋅
+

.Micro F Score Micro Precision Micro Recall
Micro Precision Micro Recall

1 2
(6)

For the object detection task, the mean Average Precision (mAP) is a commonly used metric to measure the 
average precision of a detector across different categories. In this paper, we report the mAP calculated following 
the method described in the VOC dataset41. For the instance segmentation task, we adopt a series of evaluation 
metrics introduced in the COCO dataset42, including indicators related to average precision and average recall.

Test results for the DsCGF.  Using the methods described in the past two section to validate the DsCGF, 
we obtained results on the test set. In four scenarios across the three mining regions, the SwinVIT base model 
achieved Micro F1 Scores of 0.906, 0.995, 0.982, and 0.794 for image classification tasks (Fig. 3). The YOLOv8 
medium model achieved mAP scores of 34.36%, 25.68%, 81.05%, and 57.84% for object detection tasks (Fig. 4). 
For the instance segmentation tasks specific to the three mining regions, Mask-RCNN demonstrates the abil-
ity to effectively segment numerous targets; however, its performance metrics show significant potential for 

Task Image classification Object detection Instance segmentation

Model versions SwinVIT-base YOLOv8-m Mask-RCNN

Using pretrained weights √ (ImageNet-1K) √ (COCO-Train2017) √ (COCO-Train2017)

Image size 224 416 800

Batch size 32 32 8

Epochs 50 100 100

Workers 4 4 1

Optimizer Adam SGD SGD

Learning rate decrement method None Cosine annealing Step (gamma = 0.1)

Learning rate 1E-4 5E-2 ~ 5E-4 1E-2

Weight decay 1E-4 1E-2 1E-4

Momentum None 0.937 0.9

Data augmentation strategy

Horizontal flipping Horizontal flipping Horizontal flipping

Vertical flipping Vertical flipping Vertical flipping

Random rotating Adjusting in HSV color 
space Random rotating

Table 3.  Hyper parameter setting during training.

Predicted coal Predicted gangue Predicted unknown Predicted foreign_object

Actual coal TPcc FPgc FPuc FPfc

Actual gangue FPcg TPgg FPug FPfg

Actual unknown FPcu FPgu TPuu FPfu

Actual foreign_object FPcf FPgf FPuf TPff

Table 4.  The calculation method of the four-class confusion matrix involved in the DsCGF.
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improvement. It is important to note in Fig. 5 that, due to the lack of strictly small targets (area < 32 × 32 pixels) in 
the instance segmentation dataset, only medium (32 × 32 pixels < area < 96 × 96 pixels) and large (area > 96 × 96 
pixels) targets were considered when calculating metrics based on target area. As the metrics proposed by COCO 
can be calculated either based on bounding boxes or segmentation masks, two separate sets of outcomes are gen-
erated. Therefore, we present two rows of subplots in Fig. 5 to illustrate both sets of results. In the three scenarios, 
instances where more than ten targets appear simultaneously in a single image are rare. Therefore, in the subplots 
of the maxDets column in Fig. 5, the data at the 10 and 100 marks on the x-axis show almost no change. Several 
demos of test results were shown in Figs. 6, 7.

Usage Notes
Additionally, we must highlight some specific considerations in the creation of the DsCGF to help future 
researchers understand and utilize the dataset effectively:

	 a)	 In the coking coal samples collected from Anhui-Guobei, the quantity of gangue significantly exceeds 
that of coal. In contrast, the thermal coal samples collected from Inner Mongolia-Erlintu have a higher 
proportion of coal relative to gangue, resulting in a notable class imbalance. We consider this imbalance to 
be a common occurrence in practical production; therefore, we did not employ specialized methods (e.g., 
undersampling) to mitigate it.

	 b)	 The coking coal samples from Anhui-Guobei are visually difficult to distinguish, and accurately annotating 
all gangue samples during continuous production presents significant challenges. To ensure the reliabil-
ity of the test set, we collected material samples toward the end of each production day and re-collected 
images of these samples on the belt after they had been classified by skilled operators. The rationale for 
collecting samples towards the end of production is that if materials are removed from the belt and left for 
too long, their visual characteristics may change due to factors such as moisture, coal slurry, and dust. A 
total of 900 images were selected using these procedures to form the test set.

	 c)	 Some coal and gangue samples from Anhui-Guobei were collected under non-production conditions. Ini-
tially, a batch of materials was obtained from the manual sorting belt during production, and each item was 
classified individually to determine its category. After the production shift ended, these materials were laid 
flat on the belt, and images were captured using a camera. While this method ensures complete accuracy 
in material classification, the extended period of on-site identification caused changes in the surface char-
acteristics of the materials, such as the transition from being coated with coal slurry to becoming covered 
in dust. As a result, discrepancies were observed compared to the materials’ appearance during actual 
production.

Fig. 3  Confusion matrix results of classification tasks under four scenarios in the DsCGF.

Fig. 4  The test results of object detection tasks under four scenarios in the DsCGF.
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	 d)	 Foreign objects are infrequently encountered in the Guobei CPP’s production. Therefore, the raw coal 
images used for instance segmentation in this scenario were not collected during the same period as those 
used for object detection. The collection of images containing foreign objects spanned a longer period.

	 e)	 When creating the instance segmentation dataset for thermal coal from Inner Mongolia-Erlintu, images 
without gangue were excluded. Consequently, the number of images in the instance segmentation dataset 
is fewer than that in the object detection dataset.

	 f)	 The Inner Mongolia-Erlintu dataset does not include examples of foreign objects or the “unknown” 
category, which is due to the specific conditions at the site. At the Erlintu CPP, foreign objects are almost 
entirely absent in the raw coal being processed, so no separate category for such materials was defined 
during dataset construction. Additionally, the coal and gangue in the raw coal processed at Erlintu CPP 

Fig. 5  The test results of instance segmentation tasks under three scenarios in the DsCGF.

Fig. 6  The samples of test results of object detection.
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are particularly distinct due to the geological conditions of the mining area. This results in straightforward 
identification, with no materials that are difficult for the human eye to distinguish, thereby eliminating the 
need for an “unknown” category.

	 g)	 In creating the image classification dataset for thermal coal from Shanxi-Wangjialing, the “one frame 
every 5 frames” sampling method described in the Labelling-section was not used due to insufficient 
quantity after sampling. This is purely because the data collection time in Shanxi was relatively short, 
resulting in a smaller dataset. However, this does not affect the quality of the data. Therefore, the dataset for 
Shanxi-Wangjialing is consistent across the three tasks, and we have combined them into a single column 
in Table 2. However, it should be noted that this leads to data duplication. We recommend that users train 
the model according to the default division method in our link (which avoids the issue of “test set leakage” 
caused by duplicated data). Additionally, when shuffling the data, please do not mix and shuffle the data 
crossing over the train/val/test folders. The impact of data duplication on model performance can be a 
scientific issue for users to explore in the future.

	 h)	 When dividing the dataset according to the 6:2:2 ratio, the data for image classification tasks were propor-
tionally allocated by category, while the data for object detection and instance segmentation tasks were 
proportionally allocated by image count. Due to the aforementioned reason (b), the object detection tasks 
for Anhui-Guobei data were not divided according to this ratio. Instead, images collected during continu-
ous production were split into training and validation sets in a 7:3 ratio, with the 900 specifically annotated 
images mentioned in (b) designated as the test set.
Despite the significant focus on intelligent sorting and analysis technologies for raw coal in China’s energy 
sector, many fundamental and technical challenges remain unresolved. The purpose of publicly releasing 
the DsCGF dataset is to encourage more researchers to address these issues. By combining previous work 
with the experiments presented in this paper, we outline a series of research directions based on DsCGF 
that have the potential for breakthrough progress:

	 i)	 In the Anhui-Guobei portion of the DsCGF dataset, there are two completely independent parts: Pro-
duction and Non-Production. It is advised that users not mix data from these two parts indiscriminately, 
but instead systematically analyze the surface differences in terms of image-level features under these two 
states. Users are encouraged to conduct broader and deeper research based on data from these two scenari-
os, which is expected to promote advances in coal gangue image recognition algorithms, particularly in the 
area of directional feature extraction.

	 j)	 Certain types of coal and gangue are inherently difficult to distinguish under actual production conditions. 
However, for the same dataset, image classification networks generally achieve more accurate coal-gangue 
recognition results compared to object detection and instance segmentation networks. Therefore, utilizing 
the Anhui-Guobei portion of the DsCGF dataset can facilitate an in-depth exploration of how to maintain 
model precision for fine-grained targets in complex tasks. Additionally, the “unknown” category of ma-
terials in the DsCGF can be leveraged to explore the potential of visual detection methods for identifying 
“inter-band coal” mixed within raw coal.

Fig. 7  The samples of test results of instance segmentation.
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	 k)	 Accurate instance segmentation of large gangue and foreign objects in raw coal is essential for sorting 
using mechanical arms or other actuators. Currently, research in this area remains insufficient. The 
Inner Mongolian-Erlintu instance segmentation dataset within the DsCGF can be used to explore ways 
to enhance pixel-level segmentation accuracy. The Anhui-Guobei instance segmentation dataset can be 
leveraged to study the precise segmentation of irregular foreign objects under challenging conditions, such 
as the presence of complex coal slime and water stains on the conveyor belt. Additionally, it could serve as 
a basis for exploring the detection and segmentation of “rare foreign objects” through incremental learning 
approaches. The Shanxi-Wangjialing instance segmentation dataset can be applied to investigate specific 
object grasping strategies under various material stacking and distribution conditions.

	 l)	 The release of the DsCGF dataset, which includes visible light images of raw coal from multiple regions, 
provides a valuable opportunity to study the properties of raw coal across diverse geographical areas from 
a visible light perspective. This has the potential to stimulate broader application research for intelligent 
sorting algorithms. Researchers can leverage the large-scale data in DsCGF to train pre-trained weights for 
custom models and conduct transfer learning using smaller datasets from new scenarios. This may involve 
exploring weakly supervised, semi-supervised, or even unsupervised deep learning techniques for intel-
ligent coal sorting tasks. Furthermore, in-depth analysis of the characteristics of raw coal from different 
regions and types, using a “large model” approach, can contribute to advancements in cross-regional intel-
ligent sorting technologies. It is important to note, however, that the imaging conditions across the three 
scenarios in the dataset differ. While this variability provides an opportunity to evaluate the cross-scenario 
generalization ability of trained models, caution is necessary when using DsCGF’s coal and gangue images 
to study inter-regional or inter-coal-type image characteristics. Specifically, spurious correlations may 
arise due to differences in lighting and color temperature, which can affect color features more than texture 
features. To minimize these influences, appropriate image preprocessing should be applied to mitigate the 
impact of imaging conditions on the analysis.

Code availability
The codes of deep learning approaches in this study are shared at the Github: SwinVIT and YOLOv8: 
https://github.com/CUMTB-IMP-Lab/the-verification-of-the-DsCGF. Mask-RCNN: https://github.com/
WZMIAOMIAO/deep-learning-for-image-processing/tree/master/pytorch_object_detection/mask_rcnn. Users 
only need to adjust the hyperparameters provided in Table 3 within the open-source code referenced in the three 
links, download the dataset and trained weights, and proceed with model training or testing to reproduce the 
results presented in this paper. No modifications to the model architecture are required.

Received: 1 October 2024; Accepted: 27 February 2025;
Published: xx xx xxxx

References
	 1.	 Liu, Y. & He, Z. C. Synergistic industrial agglomeration, new quality productive forces and high-quality development of the 

manufacturing industry. International Review of Economics & Finance 94, https://doi.org/10.1016/j.iref.2024.103373 (2024).
	 2.	 Wang, W. D., Lv, Z. Q. & Lu, H. R. Research on methods to differentiate coal and gangue using image processing and a support vector 

machine. International Journal of Coal Preparation and Utilization 41, 603–616, https://doi.org/10.1080/19392699.2018.1496912 
(2021).

	 3.	 Zhang, L., Sui, Y. P., Wang, H. S., Hao, S. K. & Zhang, N. B. Image feature extraction and recognition model construction of coal and 
gangue based on image processing technology. Scientific Reports 12, https://doi.org/10.1038/s41598-022-25496-5 (2022).

	 4.	 Yin, J. Q. et al. Intelligent photoelectric identification of coal and gangue - A review. Measurement 233, https://doi.org/10.1016/j.
measurement.2024.114723 (2024).

	 5.	 Pu, Y. Y., Apel, D. B., Szmigiel, A. & Chen, J. Image Recognition of Coal and Coal Gangue Using a Convolutional Neural Network 
and Transfer Learning. Energies 12, https://doi.org/10.3390/en12091735 (2019).

	 6.	 Su, L., Cao, X., Ma, H. & Li, Y.Research on coal gangue identification by using convolutional neural network. in 2018 2nd IEEE 
Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). 810–814 (IEEE).

	 7.	 Liu, Q., Li, J. G., Li, Y. S. & Gao, M. W. Recognition Methods for Coal and Coal Gangue Based on Deep Learning. Ieee Access 9, 
77599–77610, https://doi.org/10.1109/access.2021.3081442 (2021).

	 8.	 Liu, Y., Zhang, Z. L., Liu, X., Wang, L. & Xia, X. H. Deep Learning Based Mineral Image Classification Combined With Visual 
Attention Mechanism. Ieee Access 9, 98091–98109, https://doi.org/10.1109/access.2021.3095368 (2021).

	 9.	 Liu, H. J. & Xu, K. Recognition of gangues from color images using convolutional neural networks with attention mechanism. 
Measurement 206, https://doi.org/10.1016/j.measurement.2022.112273 (2023).

	10.	 Xu, Z. Q., Lv, Z. Q., WANG, W. D., Zhang, K. H. & Lv, H. M. Machine vision recognition method and optimization for intelligent 
separation of coal and gangue. Journal of China Coal Society 45 (2020).

	11.	 Cao, Z. G. et al. Research on image classification of coal and gangue based on a lightweight convolution neural network. Energy 
Science & Engineering 11, 3042–3054, https://doi.org/10.1002/ese3.1501 (2023).

	12.	 Wu, J. et al. A Lightweight Small Object Detection Method Based On Multi-Layer Coordination Federated Intelligence for Coal 
Mine IoVT. IEEE Internet of Things Journal (2024).

	13.	 Yan, P. C. et al. Lightweight detection method of coal gangue based on multispectral and improved YOLOv5s. International Journal 
of Coal Preparation and Utilization 44, 399–414, https://doi.org/10.1080/19392699.2023.2193739 (2024).

	14.	 Lv, Z. Q., Wang, W. D., Xu, Z. Q., Zhang, K. H. & Lv, H. M. Cascade network for detection of coal and gangue in the production 
context. Powder Technology 377, 361–371, https://doi.org/10.1016/j.powtec.2020.08.088 (2021).

	15.	 Pan, H. G., Shi, Y. H., Lei, X. Y., Wang, Z. & Xin, F. F. Fast identification model for coal and gangue based on the improved tiny YOLO 
v3. Journal of Real-Time Image Processing 19, 687–701, https://doi.org/10.1007/s11554-022-01215-1 (2022).

	16.	 Xu, S. Y., Zhou, Y. J., Huang, Y. R. & Han, T. YOLOv4-Tiny-Based Coal Gangue Image Recognition and FPGA Implementation. 
Micromachines 13, https://doi.org/10.3390/mi13111983 (2022).

	17.	 Chen, K. Y., Du, B., Wang, Y. W., Wang, G. X. & He, J. X. The real-time detection method for coal gangue based on YOLOv8s-GSC. 
Journal of Real-Time Image Processing 21, https://doi.org/10.1007/s11554-024-01425-9 (2024).

https://doi.org/10.1038/s41597-025-04719-0
https://github.com/CUMTB-IMP-Lab/the-verification-of-the-DsCGF
https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/tree/master/pytorch_object_detection/mask_rcnn
https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/tree/master/pytorch_object_detection/mask_rcnn
https://doi.org/10.1016/j.iref.2024.103373
https://doi.org/10.1080/19392699.2018.1496912
https://doi.org/10.1038/s41598-022-25496-5
https://doi.org/10.1016/j.measurement.2024.114723
https://doi.org/10.1016/j.measurement.2024.114723
https://doi.org/10.3390/en12091735
https://doi.org/10.1109/access.2021.3081442
https://doi.org/10.1109/access.2021.3095368
https://doi.org/10.1016/j.measurement.2022.112273
https://doi.org/10.1002/ese3.1501
https://doi.org/10.1080/19392699.2023.2193739
https://doi.org/10.1016/j.powtec.2020.08.088
https://doi.org/10.1007/s11554-022-01215-1
https://doi.org/10.3390/mi13111983
https://doi.org/10.1007/s11554-024-01425-9


1 2Scientific Data |          (2025) 12:403  | https://doi.org/10.1038/s41597-025-04719-0

www.nature.com/scientificdatawww.nature.com/scientificdata/

	18.	 Yang, Y. H. et al. Research on coal gangue recognition method based on XBS-YOLOv5s. Measurement Science and Technology 35, 
https://doi.org/10.1088/1361-6501/acfab1 (2024).

	19.	 Li, D. J. et al. An Image-Based Hierarchical Deep Learning Framework for Coal and Gangue Detection. Ieee Access 7, 184686–184699, 
https://doi.org/10.1109/access.2019.2961075 (2019).

	20.	 Zhang, Y. C., Wang, J. S., Yu, Z. W., Zhao, S. & Bei, G. X. Research on intelligent detection of coal gangue based on deep learning. 
Measurement 198, https://doi.org/10.1016/j.measurement.2022.111415 (2022).

	21.	 Lai, W. H., Hu, F., Kong, X. X., Yan, P. C. & Dai, X. X. The study of coal gangue segmentation for location and shape predicts based 
on multispectral and improved Mask R-CNN. Powder Technology 407, https://doi.org/10.1016/j.powtec.2022.117655 (2022).

	22.	 Li, D. Y., Wang, G. F., Zhang, Y. & Wang, S. Coal gangue detection and recognition algorithm based on deformable convolution 
YOLOv3. Iet Image Processing 16, 134–144, https://doi.org/10.1049/ipr2.12339 (2022).

	23.	 Li, M., He, X. L., Yuan, Y. X. & Yang, M. L. Multiple factors influence coal and gangue image recognition method and experimental 
research based on deep learning. International Journal of Coal Preparation and Utilization 43, 1411–1427, https://doi.org/10.1080/1
9392699.2022.2118260 (2023).

	24.	 Zeng, Q. L. et al. Detection of Coal and Gangue Based on Improved YOLOv8. Sensors 24, https://doi.org/10.3390/s24041246 (2024).
	25.	 Liu, X. et al.A Diverse Environment Coal Gangue Image Segmentation Model Combining Improved U-Net and Semi-supervised 

Automatic Annotation. in International Conference on Cognitive Systems and Signal Processing. 167–179 (Springer).
	26.	 Gao, R. et al. Automatic coal and gangue segmentation using u-net based fully convolutional networks. Energies 13, 829 (2020).
	27.	 Liu, Y., Zhang, Z. L., Liu, X., Wang, L. & Xia, X. H. Efficient image segmentation based on deep learning for mineral image 

classification. Advanced Powder Technology 32, 3885–3903, https://doi.org/10.1016/j.apt.2021.08.038 (2021).
	28.	 Wang, X. et al. Rapid detection of incomplete coal and gangue based on improved PSPNet. Measurement 201, https://doi.

org/10.1016/j.measurement.2022.111646 (2022).
	29.	 Cao, Z. G. et al. Research on coal and gangue segmentation based on MFCCM-Mask R-CNN. Energy Science & Engineering 12, 

2958–2973, https://doi.org/10.1002/ese3.1797 (2024).
	30.	 Lv, Z. Q. et al. A synchronous detection-segmentation method for oversized gangue on a coal preparation plant based on multi-task 

learning. Minerals Engineering 187, https://doi.org/10.1016/j.mineng.2022.107806 (2022).
	31.	 Lv, Z. Q. et al. A high-confidence instance boundary regression approach and its application in coal-gangue separation. Engineering 

Applications of Artificial Intelligence 132, https://doi.org/10.1016/j.engappai.2024.107894 (2024).
	32.	 Wang, X. et al. Multi-scale coal and gangue detection in dense state based on improved Mask RCNN. Measurement 221, https://doi.

org/10.1016/j.measurement.2023.113467 (2023).
	33.	 Lv, Z. Q. et al. Investigating comparisons on the coal and gangue in various scenarios using multidimensional image features. 

Minerals Engineering 204, https://doi.org/10.1016/j.mineng.2023.108450 (2023).
	34.	 Lv, Z. Q., Wang, W. D. & Xu, Z. Q. DsCGF: A large-scale open image dataset for deep learning enabled intelligent sorting and 

analyzing of raw coal (part 1). Zenodo https://doi.org/10.5281/zenodo.13268358 (2024).
	35.	 Lv, Z. Q., Wang, W. D. & Xu, Z. Q. DsCGF: A large-scale open image dataset for deep learning enabled intelligent sorting and 

analyzing of raw coal (part 2). Zenodo https://doi.org/10.5281/zenodo.13255355 (2024).
	36.	 Lv, Z. Q., Wang, W. D. & Xu, Z. Q. DsCGF: A large-scale open image dataset for deep learning enabled intelligent sorting and 

analyzing of raw coal (part 3). Zenodo https://doi.org/10.5281/zenodo.13270674 (2024).
	37.	 Liu, Z. et al. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. in 18th IEEE/CVF International Conference 

on Computer Vision (ICCV). 9992–10002 (2021).
	38.	 Varghese, R. & Sambath, M. YOLOv8: A Novel Object Detection Algorithm with Enhanced Performance and Robustness. in 2024 

International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS). 1–6 (IEEE).
	39.	 He, K., Gkioxari, G., Dollár, P. & Girshick, R. Mask r-cnn. in Proceedings of the IEEE international conference on computer vision. 

2961–2969.
	40.	 Takahashi, K., Yamamoto, K., Kuchiba, A. & Koyama, T. Confidence interval for micro-averaged F1 and macro-averaged F1 scores. 

Applied Intelligence 52, 4961–4972, https://doi.org/10.1007/s10489-021-02635-5 (2022).
	41.	 Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J. & Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. 

International Journal of Computer Vision 88, 303–338, https://doi.org/10.1007/s11263-009-0275-4 (2010).
	42.	 Lin, T.-Y. et al. Microsoft coco: Common objects in context. in Computer Vision–ECCV 2014: 13th European Conference, Zurich, 

Switzerland, September 6-12, 2014, Proceedings, Part V 13. 740–755 (Springer).
	43.	 Li, D., Meng, G., Sun, Z., Xu, L. & Cui, W.Weight Estimation Method of Coal and Gangue on Conveyor Belt Based on Instance 

Segmentation. in 2021 3rd International Conference on Artificial Intelligence and Advanced Manufacture (AIAM). 432–435.

Acknowledgements
This work was supported by “the Fundamental Research Funds for the Central Universities” (2024XJHH02). The 
author would like to thank the DADI ENGINEERING DEVELOPMENT CO.,LTD and the Tianjin Branch&Coal 
Preparation Design Institude for help in this work. We are especially grateful to all those who participated in the 
dataset construction and label annotation process.

Author contributions
Ziqi Lv mainly be responsible for the overall planning for organize dataset, writing the manuscript and 
programming the codes, Yuhan Fan responsible for revising the manuscript and maintenance dataset, Te Sha 
responsible for abnormal data filtering and partial coding work, Yao Cui, Yuxin Wu and Haimei Lv in charge of 
collect dataset pictures and the dataset label annotation, manuscripts of the dataset were reviewed by Meijie Sun, 
Yanan Tu, Zhiqiang Xu and Weidong Wang.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.
org/10.1038/s41597-025-04719-0.
Correspondence and requests for materials should be addressed to Z.L. or W.W.
Reprints and permissions information is available at www.nature.com/reprints.

https://doi.org/10.1038/s41597-025-04719-0
https://doi.org/10.1088/1361-6501/acfab1
https://doi.org/10.1109/access.2019.2961075
https://doi.org/10.1016/j.measurement.2022.111415
https://doi.org/10.1016/j.powtec.2022.117655
https://doi.org/10.1049/ipr2.12339
https://doi.org/10.1080/19392699.2022.2118260
https://doi.org/10.1080/19392699.2022.2118260
https://doi.org/10.3390/s24041246
https://doi.org/10.1016/j.apt.2021.08.038
https://doi.org/10.1016/j.measurement.2022.111646
https://doi.org/10.1016/j.measurement.2022.111646
https://doi.org/10.1002/ese3.1797
https://doi.org/10.1016/j.mineng.2022.107806
https://doi.org/10.1016/j.engappai.2024.107894
https://doi.org/10.1016/j.measurement.2023.113467
https://doi.org/10.1016/j.measurement.2023.113467
https://doi.org/10.1016/j.mineng.2023.108450
https://doi.org/10.5281/zenodo.13268358
https://doi.org/10.5281/zenodo.13255355
https://doi.org/10.5281/zenodo.13270674
https://doi.org/10.1007/s10489-021-02635-5
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1038/s41597-025-04719-0
https://doi.org/10.1038/s41597-025-04719-0
http://www.nature.com/reprints


13Scientific Data |          (2025) 12:403  | https://doi.org/10.1038/s41597-025-04719-0

www.nature.com/scientificdatawww.nature.com/scientificdata/

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial- 
NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribu-

tion and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) 
and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed mate-
rial. You do not have permission under this licence to share adapted material derived from this article or parts of 
it. The images or other third party material in this article are included in the article’s Creative Commons licence, 
unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative  
Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted  
use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit 
http://creativecommons.org/licenses/by-nc-nd/4.0/.
 
© The Author(s) 2025

https://doi.org/10.1038/s41597-025-04719-0
http://creativecommons.org/licenses/by-nc-nd/4.0/

	A large-scale open image dataset for deep learning-enabled intelligent sorting and analyzing of raw coal

	Background & Summary

	Methods

	The overview of workflow. 
	Sampling area and data sources. 
	Labelling. 

	Data Records

	Technical Validation

	Employing various advanced model to evaluating for different tasks. 
	Implementation details and metrics. 
	Test results for the DsCGF. 

	Usage Notes

	Acknowledgements

	Fig. 1 Overview of the construction process for the DsCGF.
	Fig. 2 The schematic diagram of the DsCGF dataset structure (using Guobei CPP as an example).
	Fig. 3 Confusion matrix results of classification tasks under four scenarios in the DsCGF.
	Fig. 4 The test results of object detection tasks under four scenarios in the DsCGF.
	Fig. 5 The test results of instance segmentation tasks under three scenarios in the DsCGF.
	Fig. 6 The samples of test results of object detection.
	Fig. 7 The samples of test results of instance segmentation.
	Table 1 A comparison of the datasets used in current studies.
	Table 2 Details of sample in the DsCGF.
	Table 3 Hyper parameter setting during training.
	Table 4 The calculation method of the four-class confusion matrix involved in the DsCGF.




