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Galar - a large multi-label video 
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Video capsule endoscopy (VCE) is an important technology with many advantages (non-invasive, 
representation of small bowel), but faces many limitations as well (time-consuming analysis, short 
battery lifetime, and poor image quality). Artificial intelligence (AI) holds potential to address every 
one of these challenges, however the progression of machine learning methods is limited by the 
avaibility of extensive data. We propose Galar, the most comprehensive dataset of VCE to date. Galar 
consists of 80 videos, culminating in 3,513,539 annotated frames covering functional, anatomical, and 
pathological aspects and introducing a selection of 29 distinct labels. The multisystem and multicenter 
VCE data from two centers in Saxony (Germany), was annotated framewise and cross-validated by five 
annotators. The vast scope of annotation and size of Galar make the dataset a valuable resource for the 
use of AI models in VCE, thereby facilitating research in diagnostic methods, patient care workflow, and 
the development of predictive analytics in the field.

Background & Summary
Video Capsule Endoscopy (VCE) is a minimally invasive gastroenterological imaging procedure used to capture 
video footage of a patient’s digestive tract. This is especially relevant for the small intestine, which is not readily 
accessible through conventional endoscopic procedures like colonoscopy and esophagogastroduodenoscopy. 
However, this comes with limitations such as a time-consuming manual analysis1, technical restrictions (e.g., 
battery runtime2 or a lack of active locomotion), and heterogeneous image quality. In 16.5% of cases, the capsule 
does not pass through the ileocecal valve, resulting in incomplete small intestine examinations3.

VCE is currently primarily employed for the detection of internal bleeding4,5. However, the potential use 
cases for VCE are far more expansive. The indications for capsule endoscopy are evolving alongside techno-
logical advancements, such as the introduction of colon capsule endoscopy6, thereby expanding its use e.g. in 
pediatric populations and for inflammatory bowel disease7.

The major drawback of VCE is the large amount of video footage generated, as medical staff are required to 
watch hours of recorded video. In these recordings, the section of interest is a tiny subset of the total video, and 
fluctuating image quality renders large parts unusable for diagnostic purposes. The use of Artificial Intelligence 
(AI) in VCE is already reducing the diagnostic evaluation time needed to interpret the large amount of VCE 
footage. With the rise of AI in VCE, the procedure has the potential to become more widely used and thereby 
more cost-efficient, as observed in other modalities, such as AI-assisted X-Ray evaluation8. Lately, the integra-
tion of Edge AI emphasizes the growing need for efficient, miniaturized algorithms for low-power devices9,10, 
which opens up new possibilities for real-time analysis within VCE systems.
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The successful development of AI models requires substantial quantities of high-quality data, as well as pre-
cise and rigorous annotations11. However, the availability of large datasets is scarce; the VCE-datasets thus far 
publicly available are either relatively small12–14, or are limited to specific questions (e.g., quality, ulcers, bleeding, 
polyps, anatomy)12,15– 18. To further drive the progress of AI in VCE, the creation of large, preprocessed, and 
annotated datasets is necessary16,19. Most academic research projects process their own data, which is tailored to 
their specific tasks20,21 and do not make their datasets publicly available. The drawback of such an individualistic 
approach is that it necessitates a disproportionate amount of resources, limiting the progress of research. The 
existence of large, high-quality datasets could reduce the cost and effort involved in developing research for VCE 
and other medical technologies22.

In this publication, we introduce a dataset that marks a considerable advancement in the field of capsule 
endoscopic research. In the domain of VCE there are a few openly accessible datasets, an overview of these is 
given in Table 6. Galar positions itself to be one of the largest datasets in the field. With 29 distinct labels, incor-
porating a broad range of functional, anatomical, and pathological annotations across 3,513,539 frames, Galar is 
primed for application in the field of machine learning.

Furthermore, the Galar dataset consists of VCE data from two endoscopy centers in Germany, with two 
different capsule systems (OlympusTM Endocapsule 10 System, PillCamTM SB2, SB3, and Colon2 Capsule 
Endoscopy Systems23,24). As multidisciplinary and multicenter VCE research is needed for the clinical use of AI 
in patient diagnosis16,25, this further elevates Galar in its usefulness.

In summary, we provide a multicentric, multisystem dataset with high frame count and the most diverse 
and detailed annotations to date. These characteristics establish Galar as a robust resource for training machine 
learning models in video capsule endoscopy.

Methods
Videos were collected from the University Hospital Carl Gustav Carus (Dresden, Germany) and from an out-
patient practice for gastroenterology (Dippoldiswalde, Germany). VCE recordings were obtained from August 
2011 to March 2023 using the OlympusTM Endocapsule 10 System (Hamburg, Germany) as well as the PillCamTM 
SB2, SB3, and Colon Capsule Endoscopy Systems (Meerbusch, Germany)23,24. The videos were initially gener-
ated in proprietary data formats and were converted to the Moving Picture Experts Group (MPEG) format. The 
video resolution ranged from 336 × 336 pixels (OlympusTM) to 576 × 576 pixels (PillCamTM). Out of the 449 
recordings, 80 videos were pre-selected for annotation based on the related findings by selecting only pathologi-
cal videos for annotation. To de-identify VCE recordings, randomly generated study IDs were assigned, and the 
videos were cut. Afterwards, videos were transferred to university servers. There each video in the dataset was 
labeled framewise, resulting in 3,513,539 labeled frames.

This study was approved by the Ethics Committee of the University Hospital Carl Gustav Carus at the Technical 
University of Dresden on December 16, 2022 (Ethics ID: BO-EK-534122022), confirming adherence to the ethical 
principles of the Declaration of Helsinki. Due to the retrospective anonymization of the data and their collection 
during clinically indicated routine interventions, explicit consent was not required. This is additionally supported by 
the Ethics Committee’s approval, a consultation with the data privacy officer, and local law. Section 34, Paragraph 1 
of the Saxon Hospital Act (SächsKHG) explicitly allows the collection and analysis of this type of data.

Data preparation.  CVAT26 is a web-based, open-source image- and video annotation tool. Using CVAT, five 
annotators (a team of experienced gastroenterologists and trained medical students) labelled the data. The labels 
were categorized into three main groups: The technical group consists of labels concerning the image quality, where 
good view indicates a reduction of the view by less than 50%, reduced view indicates a reduction of the view by over 
50%, and no view indicates a reduction of the view by over 95%. Furthermore, a distinction is made between bubbles 
and dirt as factors contributing to the degradation of image quality. The anatomical group consists of typical land-
marks: z-line, pylorus, papilla of Vater, ileocecal valve and the different sections of the gastrointestinal tract: mouth, 
esophagus, stomach, small intestine, colon. The final group is the pathological group, which consists of the most 
frequent pathologies found in VCE and some less frequent findings: ulcer, polyp, active bleeding, blood, erythema, 
erosion, angiectasia, inflammatory bowel disease, foreign body, esophagitis, varices, hematin, celiac, cancer, lymphangi-
ectasis. The pathologies esophagitis, varices and celiac did not occur in any of the videos. Figure 1 gives an overview of 
example images of the 26 labels in the dataset, Fig. 2 displays the number of annotated frames per label.

Annotation Process.  An early decision was made to label each frame in the dataset individually, with the 
annotation process occurring in multiple stages. From each of the videos, every unique frame was extracted 
using Python (v3.9.8)27 and FFMPEG (v4.0.6)28. Frames originating from the PillCamTM capsule system were 
cropped to remove black borders. A timestamp, visible in the top right corner, was also removed. No further 
pre-processing was done for the videos from the OlympusTM capsule system. Subsequently, the frames were 
uploaded to CVAT, where frames were annotated by our team. Frames containing unrecognizable features were 
given the label unknown. Then, all frames labeled with a pathology were cross-validated with the confirmation of 
a secondary annotator. Any frames still possessing the unknown label were reviewed by a gastroenterologist with 
10 years of experience in endoscopy and were relabeled accordingly.

Data Records
The Galar VCE dataset can be found in the open access repository figshare29. It consists of 3,513,539 frames, each 
labeled with 29 labels, and has a total size of  ~ 580GB. A detailed overview of the structure of the dataset is shown 
in Fig. 3. Each video in the dataset was labeled framewise. The dataset contains the folders Frames and Labels. The 
Labels folder contains CSV files, where each file has a header starting with the index column, followed by the col-
umns of the 29 possible labels described in Data preparation and ending with the frame column, which refers to the 
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Fig. 1  Example images of the 26 labels in the dataset. The figure does not contain images of the labels 
esophagitis, varices and celiac, as there were no instances of these pathologies present in the set of VCE studies.

Fig. 2  Overall frames per label count of the Galar dataset. Image occurrences per labels are displayed across the 
three main groups (technical, sections and anatomical). The y-axis is scaled logarithmically. Legend: Orange - 
Anatomical Green - Pathologies Red - Technical.
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corresponding frame the labels belong to. The Frames folder consists of 80 sub-folders, each containing the frames 
associated with a study. Table 1 shows the number of videos, resolution, and distribution of frames per capsule sys-
tem. Additionally, a metadata file is provided, containing patient age, gender, and capsule system used.

Six videos contain technical annotations: 5, 8, 9, 13, 14, 22. A total of 35,733 frames were annotated with this 
label category. The creation of technical annotations was found to be more resource intensive compared to the 
other categories, as the visibility is more volatile and prone to sudden change. As the category is highly relevant 
for machine learning (ML) applications in VCE, the labels were included for completeness.

Technical Validation
The dataset was used to train multiple ResNet-50 models30. The data was split into a set for training and val-
idation consisting of 60 videos, and a test set comprised of the remaining 20 videos. K-fold cross-validation 
was performed on the data in the training and validation set. The videos from the test set all originate from the 
Dippoldiswalde practice and there is no overlap of these videos with those from the train set.

The labels dirt and bubbles form a multi-label classification problem, while the labels good view, reduced view, 
and no view as well as the section labels mouth, esophagus, stomach, small intestine, and colon require multi-class 
classification. Some of the other more frequently occurring pathological (e.g., blood or polyp) labels are trained 
on separately.

For the classification of the multi-label and the multi-class models, 5-fold cross-validation was employed. The 
binary classification of the pathologic labels was done using 2-fold cross-validation, as some labels were not con-
tained in a sufficient number of videos. To ensure that the frames of one patient are not spread over the training 
and test set and to get the best possible distribution of the labels over the folds, sklearn’s StratifiedGroupKFold31 
method was applied.

The ResNet-50 model pre-trained on ImageNet32 was fine-tuned for 10 epochs using PyTorch (v2.0.1)33. 
Following this, fine-tuning was done for each of the target tasks. These models were trained over 100 epochs 
(with early stopping), with a 128 Batch size and a 0.001 learning rate. For each image, a Resize transform 
was applied, to scale the image down to 224 × 224. Additionally, the transforms ShiftScaleRotate, RGBShift, 
GaussNoise and RandomBrightnessContrast were each applied with a 30% likelihood to each image. The small 
subset of images which contain the technical annotation were fine-tuned similarly, excepting the epochs, which 
were capped at 50 with early stopping.

As measurements for the classification performance, the F-1 score, the Area under the Receiver Operating 
Characteristic Curve (AUROC) as well as the accuracy were calculated using the TorchMetrics (v1.0.3)34 Python 
library.

Tables 2, 3, 4, and 5 show results for the classification models. The model fine-tuned for dirt and bubbles, 
along with the two multi-class models, performed decently with accuracy value up to 93% for the labels stomach 
and 92% for small intestine.

Fig. 3  The file structure of the Galar dataset. Frames are stored chronologically in subfolders of the Frames folder. 
Labels are stored in a single CSV file, per study. The metadata file further contains data on a per study basis.
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The binary models for pathological labels encountered challenges to accurately identify positive samples. 
To improve performance, weighted sampling as well as weighted loss was explored. For weighted sampling, the 
probability for an image to be sampled was based on the occurrence of its class, as a fraction of the total dataset. 
For the more complex multi-label problem, each unique combination of labels was assigned a weight, again as a 
portion of the total dataset. This made the weights dynamic, based on the target the model is trained on.

Capsule System Resolution (Pixels) No. of frames No. of videos

PillCamTM University Hospital Dresden 512 × 512 528,470 38

OlympusTM University Hospital Dresden 336 × 336 2,750,514 22

PillCamTM Dippoldiswalde 512 × 512 234,555 20

Table 1.  Overview of the data records in the Galar dataset. Description of the resolution, number of frames, 
and number of videos per capsule system.

Label F1 AUROC Accuracy

bubbles 0.89 0.87 0.82

dirt 0.88 0.94 0.88

macro average 0.88 0.90 0.85

micro average 0.89 — 0.85

Table 2.  Classification results for a ResNet-50 fine-tuned on bubbles and dirt. The metrics were computed 
individually for each label, and both macro- and micro-averaged scores are calculated across all labels. The 
outcomes are averaged across the 5 cross-validation folds.

Label F1 AUROC Accuracy

good view 0.88 0.88 0.87

reduced view 0.41 0.85 0.47

no view 0.33 0.91 0.29

macro average 0.54 0.88 0.54

micro average 0.79 — 0.79

Table 3.  Classification results for a ResNet-50 fine-tuned on good view, reduced view, and no view. The metrics 
are computed individually for each label, and both macro- and micro-averaged scores are calculated across all 
labels. The outcomes are averaged across the 5 cross-validation folds.

Label F1 AUROC Accuracy

mouth 0.42 1.00 0.75

esophagus 0.65 1.00 0.73

stomach 0.78 0.93 0.93

small intestine 0.93 0.95 0.92

colon 0.75 0.96 0.72

macro average 0.71 0.96 0.81

micro average 0.89 — 0.89

Table 4.  Classification results for a ResNet-50 fine-tuned on mouth, esophagus, stomach, small intestine, and 
colon. The metrics are computed individually for each label, and both macro- and micro-averaged scores are 
calculated across all labels. The outcomes are averaged across the 5 cross-validation folds.

Label F1 AUROC Accuracy

blood 0.14 0.87 0.98

pylorus 0.01 0.74 0.99

z-line 0.02 0.87 1.00

ulcer 0.00 0.44 0.99

polyp 0.05 0.73 1.00

erythema 0.02 0.70 1.00

Table 5.  Classification results for multiple ResNet-50 models, each fine-tuned, on points of interest (e.g. blood). 
The metrics are computed individually for each label. The outcomes are averaged across the 2 cross-validation folds.
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Although these strategies helped to improve performance on some labels, other required heavy parameter 
optimization. This underscores the difficulty and necessity of improving and developing AI methods to address 
the challenges of imbalanced label distrubution and multi-source data. Consequently, it highlights the impor-
tance of a multicentric, multisystem dataset with extensive annotations of pathologies.

Usage Notes
With Galar we provide the largest public VCE dataset, both in terms of the number of features labeled per image and 
the total number of annotated images. The large number of ground truth labeled images allows for supervised training 
of machine learning models and is a significant contribution to the landscape of publicly available VCE datasets.

If the dataset is to be employed for machine learning applications, it is essential to carefully partition the data 
into training and validation sets. The comparative rarity of select labels, especially over others in the same class, 
must be respected. Additionally, the data originates from two different VCE systems and was collected at two 
different study sites. Patients of varying age and gender are also present in the dataset. This information must 
be considered when generating splits. The metadata file, found in the figshare repository, provides information 
regarding the capsule system and patient age and gender, per individual study.

The dataset is provided compressed, in the 7-Zip (.7z) format. The data must be uncompressed before it 
may be viewed and modified; common operating systems (Windows, Linux, MacOs) by default provide archive 
utility which enables this.

By licensing the dataset under a Creative Commons Attribution 4.0 International (CC BY 4.0) License which 
allows sharing, copying, and redistribution, as well as adaptation and transformation, we hope to advance research 
in the field. For more details about Creative Commons licensing, please refer to https://creativecommons.org.

Code availability
The code employed for the technical validation can be accessed via our public GitHub Repository: https://github.
com/EKFZ-AI-Endoscopy/GalarCapsuleML. The repository contains a full guide on running the code, tuning 
hyperparameters, and generating statistics.
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