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Agricultural greenhouses datasets 
of 2010, 2016, and 2022 in China
Yan Sun, Yuyun Zhang, Jian Hao, Jiang Li, Hengjun Ge, Feifei Jiang, Junna Liu, Xueqing Dong, 
Jiayuan Guo, Zhanbin Luo & Fu Chen    ✉

China has built the world’s largest area of agricultural greenhouse to meet the requirements of climate 
change and dietary structure changes. Accurate and timely access to information on agricultural 
greenhouse space is crucial for effectively managing and improving the quality of agricultural 
production. However, high-quality, high-resolution data on Chinese agricultural greenhouses are still 
lacking due to difficulties in identification and an insufficient number of representative training data. 
This study aimed to propose a method for identifying agricultural greenhouse spectral and texture 
information based on key growth stages using the Google Earth Engine (GEE) cloud platform, Landsat 
7 remote sensing images, and combined field surveys and visual interpretation to collect a large 
number of samples. This method used a random forest classifier to extract spatial information from 
remote sensing data to create classification datasets of Chinese agricultural greenhouses in 2010, 2016, 
and 2022. The overall accuracy reached 97%, with a kappa coefficient of 0.82. This dataset may help 
researchers and decision-makers further develop research and management in facility agriculture.

Background & Summary
China’s population was 1.408 billion in 2024. The area of agricultural greenhouses in China has continuously 
increased in the last 20 years to meet the demand for fruits, vegetables, and other products. The Chinese agricul-
tural greenhouses have significantly contributed to enriching agricultural product supply, increasing farmers’ 
income, and promoting the adjustment of agricultural industry structure1. On June 9, 2023, the Ministry of 
Agriculture and Rural Affairs and three other ministries jointly issued the “National Modern Facility Agriculture 
Construction Plan (2023–2030)”. The plan aims to expand facility agriculture, targeting 40% of vegetable output 
and 60% of aquaculture output from facilities by 2030. However, agricultural greenhouses were misused for the 
large-scale construction of “agricultural garden-style residential areas” in some regions. Then some arable lands 
were damaged, or even the permanent basic farmlands were illegally occupied. Therefore, timely and accu-
rate acquisition of information on Chinese agricultural greenhouses can provide scientific data support for the 
government, research institutions, and so forth, and also promote agricultural modernization and sustainable 
development.

Currently, agricultural greenhouse data are mainly acquired through traditional methods such as sampling 
surveys and statistical reporting. These methods involve complex workflows, long survey cycles, and excessive 
human intervention, leading to strong subjectivity in data acquisition, low accuracy, and lack of timeliness2. As 
the remote sensing data with broad coverage and strong timeliness being more easily accessible, it can provide 
accurate and effective spatial distribution map, and quantify the number of ground agricultural greenhouses3. 
Depending on different research purposes, low-, medium-, and high-resolution images of the remote sensing 
have various application scenarios. The medium- and low-resolution images contain more bands and spec-
tral information, wider coverage, and longer time series, and are more suitable for large-scale extraction and 
sequential change monitoring of agricultural greenhouses, compared with high-resolution images. Moderate 
Resolution Imaging Spectroradiometer (MODIS) dataset, Landsat series, Sentinel series, and so forth4–6 are a 
few commonly used medium- and low-resolution sensor satellites. Aguilar et al.7 and Li et al.8 extracted facil-
ity planting areas in Almería and distribution information on plastic greenhouses in Xuzhou City based on 
Landsat 8 images. Novelli9 and Sun10 extracted distribution information on plastic greenhouses in Almería and 
Shandong Province based on Sentinel-2 images. When using medium- and low-resolution images for feature 
extraction, the phenomenon of “same spectrum different objects” and “same object different spectrum” may lead 
to errors and omissions in the extraction results, influencing classification accuracy. In contrast, high-resolution 
remote sensing images can capture more detailed target and boundary information, due to their rich details of 
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ground features. When it was used for extracting the agricultural greenhouses, it can increase the classifica-
tion accuracy, such as high-resolution image series, resource image series, and so forth. For example, based on 
remote sensing images of HuanJing-1 satellite, the greenhouse vegetable fields in Shouguang City were visually 
interpreted11. Wu et al.12 have also verified the applicability of different texture extraction algorithms for identi-
fying plastic greenhouses using GaoFen-2 images. Similarly, Zhao et al.13 and Gao et al.14 have extracted infor-
mation of plastic greenhouses in Guantao County (Hebei Province) and Wangyefu Town (Kalaxinqi, Chifeng 
City, Inner Mongolia) with GaoFen-2 images. However, high-resolution images often have the disadvantages of 
fewer bands and low spectral resolution, which may increase heterogeneity within the same object and affect 
land cover identification. Therefore, integrating spectral features, remote sensing indices, and machine learning 
algorithms to achieve automated extraction of long-term, large-scale, and high-precision agricultural green-
houses may be of great significance.

Machine learning algorithms and remote sensing index methods are mainly used to automatically extract 
remote sensing information in agricultural greenhouses. Common machine learning algorithms include artifi-
cial neural network (ANN)15,16, support vector machine (SVM)17, classification and regression tree18, maximum 
likelihood classification19, nearest neighbor20, and random forest classifier21. Chen et al.22 used deep learning to 
extract agricultural plastic greenhouses in Shouguang, Shandong. They achieved a mean intersection over union 
(mIOU) of 97.20%. Based on the GEE platform, the random forest classification algorithm was used to pro-
duce an agricultural greenhouse dataset (covering 1989–2018) for Shandong, China23. Furthermore, the User’s 
Accuracy and Producer’s Accuracy reached 96.56% and 86.64%, respectively. Remote sensing indices typically 
include normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), normal-
ized difference bare soil index, modified normalized difference water index (MNDWI), ratio vegetation index, 
modified soil-adjusted vegetation index, enhanced water index, and ratio impervious surface index. Remote 
sensing indices play a crucial role in extracting spatial distribution information of greenhouses by identifying 
the most suitable feature indices, combined with greenhouse texture features and classification algorithms24,25. 
Yang et al.26 proposed a new greenhouse index based on spectral, sensitivity, and separability analysis of plastic 
greenhouses. They used it to extract greenhouses in Weifang District, Shandong, China. The method achieved a 
kappa coefficient of 0.83 and an overall accuracy of 91.2%. Shi et al.27 developed a three-step procedure to iden-
tify plastic greenhouses in Yucheng, Dezhou, Shandong Province. The identification accuracy reached 95.20%. 
As a supervised learning method, machine learning often requires manually designed or predefined features. 
Typically, basic spectral bands are used as features. However, if only raw bands are used, classification accuracy 
is significantly limited and tends to be low17. Therefore, combining remote sensing indices with machine learn-
ing algorithms to analyze the spatiotemporal distribution of agricultural greenhouses has certain advantages. 
In existing studies, publicly available datasets on agricultural greenhouses are scarce. Their spatial coverage is 
limited, making it difficult to support large-scale and long-term research.

To address this gap, this study aims to create a publicly available dataset of agricultural greenhouses covering 
multiple time periods and large areas. The agricultural greenhouses annually across mainland China from 2010 
to 2022 were mapped. The dataset provides the first complete description of annual agricultural greenhouse 
dynamics in China over 12 years. It has the potential to support greenhouse-related technologies and guide 
scientific agricultural planning. And this dataset could support greenhouse pattern analysis, model training, 
offering a valuable reference for research and policy in agriculture and related fields.

Methods
Research framework.  The workflow of this study included image preprocessing, sample collection, fea-
ture extraction, model training and construction, agricultural greenhouse classification, result postprocessing, 
accuracy verification, and statistical analysis. First, Landsat 7 image data of China were obtained on the GEE 
cloud platform, and preprocessing, including cloud interference removal, image stitching, color, and contrast 
adjustment, was performed to ensure the quality and usability of the images. Second, agricultural greenhouse 
sample points were collected through visual interpretation and field sampling methods, training and test sets were 
randomly divided, and a multidimensional feature space was constructed through feature extraction. Finally, a 
random forest classification model was built to extract national agricultural greenhouse classification data, and 
postprocessing and accuracy verification were conducted to ensure high-quality national agricultural greenhouse 
data output. The technical route of this study is depicted in Fig. 1.

Study area and data source.  China is situated on the west coast of the Pacific Ocean, covering a land 
area of approximately 9.6 million square kilometers, with diverse land types. The terrain of China is distributed 
in a step-like manner, with higher elevations in the west and lower elevations in the east. The climate of China 
is complex and diverse, spanning three climate zones: tropical, temperate, and frigid. China has developed a 
diversified agricultural production system due to varied terrain, landforms, and climate conditions. Agricultural 
greenhouses are key in protecting crop growth and improving field production efficiency in modern agriculture. 
They are widely distributed in various provinces in the Chinese mainland, with particularly large numbers in 
Jiangsu, Shandong, Henan, Hebei, and Liaoning provinces. The continuous innovation and promotion of green-
house technology have resulted in a steady growth in China’s greenhouses over the past 20 years, far exceeding 
other countries. However, the spectral characteristics of agricultural greenhouses in remote sensing images vary 
in different regions and seasons due to geographical location, climatic conditions, and types of crops grown; 
even the same greenhouse in the same region can have significantly different spectral characteristics in different 
seasons. These variations pose technical difficulties in accurately identifying and extracting information about 
agricultural greenhouses based on remote sensing images. Therefore, in-depth research on efficient methods to 
map agricultural greenhouses in the Chinese mainland is not only of great theoretical significance but also of high 
practical value in applications.
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The data used in this study mainly included remote sensing image collection and land use cover dataset for 
classification. The data sources and detailed information are presented in Table 1. This study was conducted on 
the GEE cloud platform. Landsat 7 imagery from 2010, 2016, and 2022 was selected, with a spatial resolution of 
30 meters. After preprocessing steps such as cloud removal and mosaicking, we used the data to calculate spec-
tral indices, texture features, and phenological characteristics.

In addition, several auxiliary datasets were used for analysis: (1) Land cover data came from the China Land 
Cover Dataset (CLCD) by Yang et al.28. This is a nationwide annual classification product at 30-meter reso-
lution. It supports sample interpretation and land cover validation (https://doi.org/10.5281/zenodo.4417810). 

Fig. 1  Overall technical roadmap.
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(2) The National Agricultural Greenhouse Product (NAGP) in 2019, published by Feng et al.29, was used for 
cross-comparison of the classification results (https://doi.org/10.11922/sciencedb.j00001.00230).

Selection of satellite images and reference samples.  The Landsat 7 satellite was launched on April 
15, 1999, and began continuous monitoring of the Earth’s surface. It has a revisit cycle of approximately every 
14 days and provides global coverage of 30-m resolution image data. It is widely used in various fields, such as 
land use type identification, forest cover change detection, urban expansion monitoring, and agricultural yield 
estimation, due to its high accuracy and continuous time series30. This study used the GEE platform, selected 
Landsat 7 optical remote sensing images that had undergone radiometric and atmospheric correction as the 
basic data source, and preprocessed them by removing clouds and clipping. Images with more than 20% cloud 
cover were excluded from this study8,19. The remaining cloud-free images from different years were synthesized 
into one image using the median value. Finally, monthly remote sensing images from January to December were 
synthesized for each year in China, and a high-quality index and feature dataset covering the entire country was 
constructed, which included monthly averages, maximum and minimum values, phenological characteristics, 

Serial number Data name Data source Data format Data composition Data purpose

NISL National-scale Image Sets of 
Landsat 7 in 2010, 2016, and 2022

Google Earth 
Engine Raster Annual image collections Large-scale mapping

CLCD China Land Cover Dataset28 Wuhan University Raster Global 30-m land cover 
products from 2000–2022

Sample point 
collection

NAGP National Agricultural Greenhouse 
Product in 201929

Chinese Science 
Data Raster Classification results of 

the RF algorithm Classification results

Table 1.  Data source and description. CLCD, China Land Cover Dataset; NAGP, National Agricultural 
Greenhouse Product in 2019; NISL, National-scale Image Sets of Landsat 7 in 2010; RF, random forest.

Year 2010 2016 2022

Region
Number of greenhouse 
samples

Number of other 
feature samples

Number of greenhouse 
samples

Number of other 
feature samples

Number of greenhouse 
samples

Number of other feature 
samples

Anhui 510 12,774 2,199 22,117 1,339 15,778

Beijing 449 26,275 1,044 10,448 1,004 15,771

Fujian 632 18,541 1,150 18,401 2,689 24,315

Gansu 685 18,479 1,682 19,499 2,302 18,719

Guangdong 204 6,678 547 6,292 1,758 23,769

Guangxi 68 336 329 4,904 522 22,428

Guizhou 139 1,503 264 3,954 740 26,320

Hainan 148 1,434 798 7,188 2,436 18,842

Hebei 2,327 18,501 1,877 19,053 2,053 14,846

Henan 461 10,280 539 7,276 450 14,026

Heilongjiang 841 20,086 2,143 23,541 2,588 22,625

Hubei 180 4,232 1,046 10,043 1,088 16,832

Hunan 64 904 432 6,285 593 17,988

Jilin 669 8,443 2,048 14,023 1,793 19,125

Jiangsu 1,988 20,843 1,356 17,768 1,715 17,312

Jiangxi 152 7,727 443 6,034 1,787 19,573

Liaoning 3,480 24,889 4,274 23,162 5,495 22,882

Inner Mongolia 1,253 19,441 1,207 15,790 1,926 40,678

Ningxia 954 15,168 1,320 13,140 1,934 16,692

Qinghai 108 14,357 885 11,175 1,309 8,912

Shandong 2,028 20,809 3,452 15,590 3,271 12,891

Shanxi 1,407 26,322 1,225 13,879 1,996 23,100

Shaanxi 1,798 24,962 1,672 18,663 3,361 23,997

Shanghai 544 21,764 984 14,640 2,945 18,019

Sichuan 1,045 21,186 2,200 19,100 6,805 42,086

Tianjin 466 24,622 862 8,174 1,199 14,144

Xinjiang 956 22,185 3,606 28,171 5,674 105,535

Yunnan 511 11,562 1,586 16,024 1,913 22,342

Zhejiang 2,261 23,996 2,501 23,243 2,458 24,866

Total 26,328 448,299 43,671 417,577 65,143 684,413

Table 2.  Sample statistics of provincial-level regions in the Chinese mainland.
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texture features, and time series features. The dataset was constructed to provide solid data support for the auto-
matic extraction of agricultural greenhouses, so as to achieve rapid and accurate identification and monitor-
ing of agricultural greenhouse distribution. From 2010 to 2022, facility agriculture in China shifted from rapid 
expansion to stock optimization. In 2010, the policy Notice on Improving the Management of Facility Agricultural 
Land officially classified greenhouses as agricultural production facilities. This removed the earlier requirement 
for construction land approval, lowered land use barriers, and directly promoted the expansion of greenhouses 
nationwide. In 2016, No. 1 Document of the Central Committee of the Communist Party of China emphasized 
including facility agriculture in poverty alleviation projects. It encouraged greenhouse development in poor areas. 
The 13th Five-Year Plan for Relocated Poverty Alleviation (Development and Reform Document [2016] No. 2022) 
also supported income generation for relocated households through facility agriculture. These policies led to a 
rapid increase in greenhouse area in relatively poor regions of mainland China. In 2022, No. 1 Document of the 
Central Committee of the Communist Party of China made the regulation of “non-grain land use” a national 
priority. Large-scale demolition of illegal greenhouses began across the country, and the growth of greenhouse 
area slowed sharply. To illustrate the development process of greenhouses and considering the sampling years, 
this study planned to produce annual national greenhouse grid data from 2010 to 2022.

Collecting agricultural greenhouse samples involved a method that combined on-site sampling with visual 
interpretation. First, several samples were obtained through on-site sampling. Second, high-resolution image 
data provided by Google Earth and 30-m resolution land use data were used for visual interpretation to further 
collect agricultural greenhouse samples from various provinces, aiming to increase the density of sample points. 
During the sampling process, this study followed the principle of “better to lack than to be excessive,” trying to 
maintain an even distribution of sample numbers in each province, while ensuring the geographical balance of 
samples to increase the reliability of the samples. Regarding sample distribution, except for provinces with fewer 

Fig. 2  Distribution of national agricultural greenhouse samples from 2010 to 2022.
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greenhouses, the number of samples in the remaining provinces was not less than 500, with more than half of 
the provinces having more than 1000 greenhouse samples.

The sampling time for this study was 2022, with a total of 1,685,431 samples randomly selected. Among 
these, 135,142 were greenhouse samples and 1,590,335 were non-greenhouse samples (Table 2). Approximately, 
6000 samples were obtained through field sampling, and the rest were obtained through visual interpretation. 
The distribution of samples is depicted in Fig. 2. The selected samples were divided into training and testing sets 
in a ratio of 4:1, with 1,348,345 samples in the training set and 337,086 samples in the testing set.

Greenhouse extraction.  Feature extraction.  The automatic identification process of agricultural green-
houses mainly relies on the differences in spectral, temporal, and texture characteristics and other land type 
features, and accurately extracts them through a series of established rules. However, traditional classification 
methods only rely on limited spectral features, which makes distinguishing agricultural greenhouses from differ-
ent land types with high spectral similarity difficult.

Therefore, this study constructed a multidimensional feature space to enhance the discrimination between 
greenhouses and other land object categories through in-depth analysis and research on different land object 
indices and characteristics. The key feature extraction indicators selected through comparative analysis included 
crown transformation features, spectral indices, texture features, and time series features. The features were 
calculated using the GEE platform.

	(1)	 Tasseled-cap transformation
The Tasseled-cap transformation (TCT) is a technique for converting the original bands of an image into a 
new set of bands more sensitive to vegetation, typically including brightness, greenness, and wetness (soil 
or surface moisture) as the three main features. This effectively improves the separability between agricul-
tural greenhouses, watered fields, and open vegetation. The formula for TCT is as follows:

∗ +T V c (1)b

where Va represents the pixel vector of the multispectral space after transformation; Vb represents the pixel 
vector of the multi-multispectral space before transformation; c represents a constant; and T represents the 
transformation matrix.

	(2)	 Spectral index
The spectral index characterizes features such as land cover types, growth status, vegetation content, 
and soil properties. Therefore, this study used a literature review and experimental comparison to select 
eight different spectral indices to further improve the separability of agricultural greenhouses based on 
the application of TCT technology. These indices included normalized difference water index (NDWI), 
MNDWI, NDBI, NDVI, soil-adjusted vegetation index (SAVI), bare soil index (BSI), enhanced nonpho-
tosynthetic vegetation index (ENDISI), and enhanced vegetation index (EVI). Indices were selected based 
on their ability to identify and analyze specific features under different environments and conditions. The 
calculation formulas for spectral indices are as follows:

=
−
+

B B
B B

NDWI
(2)

G NIR

G NIR

Fig. 3  Spatial characteristics of various regional price indices.
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Fig. 4  Trend of different indices in greenhouse samples.
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Fig. 5  Trend of different indices in other land cover samples.
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where, BG, BR, BNIR, BSWIR1 and BSWIR2 represent the reflectance values of the blue band, green band, red 
band, near-infrared band, shortwave infrared band 1, and shortwave infrared band 2, respectively. These 
band reflectance values correspond to bands 1, 2, 3, 4, 5 and 7 in Landsat 7 satellite images. L represents a 
correction factor used to adjust and optimize the calculation process. After multiple experiments and tests, 
the correction factor L was determined to be 0.2.

	(3)	 Texture feature extraction
Visual interpretation analysis of high-resolution image data shows that agricultural greenhouses exhib-
it significant characteristics in terms of geometric shape and surface texture compared with other land 
features. Agricultural greenhouses are usually distributed in groups, and different groups exhibit different 
characteristics. Specifically, sunlight greenhouses comprise gables, back walls, support frames, and cover-
ing materials, mostly appearing black or gray-green, and usually maintain a distance of about 2 m between 
greenhouses. The spacing between connected greenhouses is relatively small, with a longer overall length, 
predominantly exhibiting a silver-white appearance. Plastic greenhouses mainly use plastic film as cover-
ing materials, with relatively shorter individual lengths and more obvious spacing between them, mostly 
appearing white or gray-white.
This study selected six most representative texture features, including angular second moment, contrast 
(CON), correlation (COR), entropy (ENT), variance (VAR), and dissimilarity (DIS), to more accurately 
distinguish differences between greenhouses and other land covers. Four commonly used moving window 
sizes were adopted, namely, 3 × 3, 5 × 5, 7 × 7, and 11 × 11, to compare the effects of different window sizes 
on texture features. After a series of comparisons and analyses, each texture feature produced the highest 
classification accuracy in the 3 × 3 moving window. Therefore, the moving window size for texture feature 
analysis was determined to be 3 × 3. The calculation formulas for texture features are as follows:
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Fig. 6  Classification accuracy and performance of different classifiers of representative provinces. Note: 
Operation duration unit is minute (min).
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where n represents the gray level, and Pi,j is the normalized gray value of the co-occurrence matrix element.

Fig. 7  Feature importance of random forest models in typical regions: (a) Xinjiang, and (b) Sichuan.
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	(4)	 Temporal characteristics
�The representation and attributes of different land objects show diverse changes in different seasons31. 
These changes directly impact the spectral characteristics of land objects, which, in turn, affect the analysis 
and interpretation of remote sensing images. Generally, various spectral index values exhibit significant 
heterogeneity due to seasonal precipitation patterns, temperature changes, vegetation changes, and human 
activities. For example, the NDVI, NDWI, and MNDWI values are often higher in spring and summer 
when vegetation growth is vigorous and precipitation is relatively high. In contrast, these values are lower 
in autumn and winter when vegetation withers or goes dormant and precipitation is relatively low. In addi-
tion, NDBI values are usually higher in densely built areas, and when vegetation cover is low, BSI is more 
suitable for distinguishing between bare soil and built-up land. This study compared the spatial differences 
in the mean values of typical land object spectral indices to more clearly reveal the temporal differences in 
various spectral indices and presented their time series change statistics (Figs. 3–5). For most of the year, 
the NDWI and MNDWI values of water bodies were greater than 0, the NDBI and BSI indices of buildings 
were greater than 0, whereas the corresponding values of greenhouses were less than 0. In terms of veg-
etation indices, although the corresponding values of greenhouses were similar to those of farmland and 
showed a bimodal trend, the first peak was significantly lower than the second peak, the duration of the 
valley was shorter than that of the farmland, and the highest peak value was also significantly lower than 
that of farmland vegetation indices.
�Therefore, this study further compared the temporal changes in spectral index features of greenhouse sam-
ples with those of other land cover samples based on spectral index feature extraction to improve the accu-
racy of identifying greenhouses. Temporal spectral index features refer to the monthly values of spectral 
index features, and the calculation formula for monthly spectral index values was the same as formulas (2–9).

Classifier selection and operation.  Random forest (RF), SVM, and ANN, and other machine learning algo-
rithms have been widely used in remote sensing land cover classification research. RF is an ensemble learning 
classifier composed of multiple decision tree models, which can effectively reduce model overfitting and improve 
robustness. RF mainly calculates the importance of features using the Gini index for feature selection, allowing 

Fig. 8  Classifier construction and workflow.
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us to select only high-scoring classification feature variables and avoid interference from redundant and irrele-
vant features. SVM is a machine learning algorithm based on statistical learning. The SVM maps feature vectors 
to high-dimensional feature space and determines the hyperplane that best separates different categories for 
classification. This algorithm has high generalization ability and is particularly suitable for situations with few 
samples. ANN is built on the basic principles of biological neural networks. After understanding and abstract-
ing the brain structure and external stimulus response mechanism, ANN simulates the processing mechanism 
of the neural system in the brain for complex information based on network topology knowledge. This model 
is known for its parallel distributed processing capabilities, high fault tolerance, intelligence, and self-learning 
characteristics.

However, ANNs are more suitable for fine classification of small-scale, high-resolution images and unsuita-
ble for large-scale greenhouse extraction nationwide32. Therefore, this study first selected several representative 
provinces to conduct classification tests using SVMs and RFs, and then recorded the final accuracy and com-
putation time of the test areas. A comparative analysis was conducted, which showed that the RF model did not 
require data normalization when processing multiple types and dimensions of features, and its accuracy was 
higher and computation time was significantly lower than those of SVM classification (Fig. 6). Therefore, in the 
end, this study chose to train and classify based on the RF model aiming to reduce computational complexity 
and ensure higher classification accuracy.

Parameter adjustment is the best method to improve the classification accuracy of machine learning mod-
els. The RF model has fewer parameters, with the number of decision trees (ntree) and the number of fea-
tures randomly selected during the training of each decision tree (mtry)33 being the important ones. Generally, 
increasing ntree effectively reduces the model’s generalization error, but decreases the computational efficiency; 
mtry determines the classification ability of individual decision trees and also affects the relationship between 
decision trees. This study used R language programming to test parameter settings. First, the parameter values 
with the highest accuracy were selected, and then the smallest parameters were selected under the accuracy 
conditions to optimize efficiency and accuracy34. Adding random features improves classification accuracy, but 
high-dimensional features may have similarities between them, which can interfere with classification ability 
and reduce computational efficiency. Therefore, selecting feature variables is crucial for the model’s performance. 
After repeated debugging, when ntree = 200, the model fitting converged and the classification results were opti-
mal. Considering accuracy, statistical error, and computational efficiency, no limit was set on the maximum 
number of leaf nodes to ensure that the complexity did not impact the classification results. Setting mtry to the 
square root of the number of input features maintained classification effectiveness while reducing computational 
load. A normalized importance ranking based on the Gini coefficient can quantitatively measure the contribu-
tion of each feature33,35, gradually reducing input feature dimensions while ensuring classification performance 

Fig. 9  Statistical results of the distribution area of agricultural greenhouses in the Chinese mainland.
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and efficiency to achieve dimensionality reduction. Figure 7 shows the feature importance of typical regions in 
this study, with features of low importance removed when constructing the classifier in Fig. 8.

Data Records
In this study, a dataset containing detailed information was successfully constructed, which included grid data 
of agricultural greenhouses in various regions of China in 2010, 2016, and 2022. This dataset was named “China 
GH.” The dataset can be downloaded at https://doi.org/10.6084/m9.figshare.2855974736. The constructed China 
GH dataset includes not only precise geographical coordinates of agricultural greenhouses nationwide but also 
detailed records of the distribution of sample points in each greenhouse. The China GH dataset is presented 
in Tag Image File Format (TIFF) and follows the World Geodetic System-1984 Coordinate System (WGS-84). 
Additionally, the research team is committed to updating the map of Chinese agricultural greenhouses annually 
to maintain the timeliness and accuracy of the information. These carefully crafted maps of agricultural green-
houses will be publicly released in a timely manner for research and reference use upon completion.

Technical Validation
Agricultural greenhouse classification results in the Chinese mainland.  Overall result.  The 
planting area of agricultural greenhouses in China showed a significant growth trend from 2010 to 2022 
(Fig. 9, Table 3). In 2010, the total planting area of agricultural greenhouses nationwide was 555,460 ha, which 
increased to 835,923 ha in 2016, and further to 1,295,480 hectares in 2022. Thus, the planting area of agricultural 
greenhouses nationwide continued to expand at a rate of nearly 50% every 6 years. In 2010, the agricultural 
greenhouses in China were relatively concentrated in eastern regions such as Shandong, Beijing, and Liaoning; 
however, by 2022, the area of greenhouses in western regions such as Yunnan and Xinjiang had rapidly increased 
(Figs. 10, 11).

Greenhouse space information classification statistical results in typical provinces.  This study produced the clas-
sification results of agricultural greenhouses in typical greenhouse planting areas in China in 2022 (Fig. 12). For 
example, the distribution of agricultural greenhouses in Shandong Province was mainly concentrated in cities 
such as Qingzhou, Shouguang, Luling County, and Shen County. The agricultural greenhouse planting areas 

Region Greenhouse area in 2010 (ha) Greenhouse area in 2016 (ha) Greenhouse area in 2022 (ha)

Anhui 12,176.34 29,093.87 30,577.28

Beijing 13,308.02 14,839.27 19,371.74

Fujian 3,508.54 3,830.52 42,270.44

Gansu 3,040.43 17,766.29 30,746.24

Guangdong 1,643.73 4,313.00 13,000.70

Guangxi 1,86.29 998.46 1,332.81

Guizhou 247.47 269.48 2,107.63

Hainan 300.63 2,547.47 14,326.32

Hebei 20,717.69 57,018.43 74,808.60

Henan 5,478.61 6,253.36 20,723.60

Heilongjiang 22,432.46 56,657.00 60,194.68

Hubei 6,807.99 8,799.42 9,097.43

Hunan 527.79 2,210.80 2,800.83

Jilin 11,546.10 13,913.70 1,5521.99

Jiangsu 11,628.85 12,686.78 54,696.67

Jiangxi 1,797.94 2,184.52 9,153.63

Liaoning 54,365.89 96,129.84 17,5229.97

Inner Mongolia 11,192.55 14,424.78 21,658.36

Ningxia 13,130.34 16,122.26 28,283.36

Qinghai 399.52 3,511.62 3,592.89

Shandong 257,390.29 267,550.42 28,1734.96

Shanxi 8,135.73 18,340.49 29,711.02

Shaanxi 23,804.12 30,730.12 50,938.69

Shanghai 12,641.19 15,572.57 15,653.31

Sichuan 4,498.87 13,550.15 41,018.50

Tianjin 9,490.99 11,186.33 13,079.44

Xinjiang 17,336.32 37,045.58 45,874.87

Yunnan 11,856.82 37,046.28 139,078.70

Zhejiang 15,867.46 41,329.77 48,895.25

Total 555,458.97 835,922.58 1,295,479.91

Table 3.  Statistics of agricultural greenhouse area in provincial-level regions in Chinese mainland.
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in Liaoning Province were mainly distributed in Xinmin City, Beizhen City, Haicheng City, and the southern 
coastal areas. The distribution of agricultural greenhouses in Hebei Province was relatively extensive, with sig-
nificant greenhouse planting activities in Raoyang County, Leting County, and Yongnian District.

Fig. 10  Thermal map of the spatial distribution of agricultural greenhouses in the Chinese mainland: (a) 2010; 
(b) 2016; (c) 2022.

Fig. 11  Statistical results of the area of agricultural greenhouses in China.
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Evaluation of the accuracy of agricultural greenhouse classification results.  Evaluation of overall 
classification accuracy.  After classifying the provincial administrative regions, this study evaluated the classi-
fication accuracy using a test sample set, calculating accuracy verification indicators such as overall accuracy 
(OA) and the kappa coefficient. As shown in Table 4, the OA of the classification for each province in 2010, 2016, 
and 2022 all exceeded 94%, with kappa coefficients all greater than 0.7. A Kappa coefficient between 0.61 and 
0.80 is considered “substantial agreement,” while a value between 0.81 and 1.00 is classified as “almost perfect 
agreement”37. A Kappa coefficient above 0.7 indicates a high reliability of the classification results. It is worth 
noting that with the rapid expansion of facility agriculture, the spatial distribution of greenhouses has changed 
significantly. Greenhouse types have become more diverse, and their layout more scattered, which increases clas-
sification difficulty. In tropical regions such as Hainan, cloud cover during the rainy season often interferes with 
image quality. Although a median compositing strategy was applied, spectral confusion still occurred in some 
areas, reducing classification consistency. As a result, provinces like Hainan and Liaoning showed noticeable 
fluctuations in Kappa coefficients across different years.

Local image contrast.  This study listed the greenhouse classification results of local areas by year and compared 
them with the original Google Earth remote sensing images of their locations to demonstrate the classification 
effect of the research dataset more intuitively (Fig. 13). This comparative analysis clearly indicated that the clas-
sification results were highly consistent with the actual geographical conditions. This further validated the the-
oretical effectiveness of the classification technology proposed in this study, indicating its reliability in practical 
applications.

Consistency evaluation and accuracy comparison with the existing GH dataset.  This study 
used a random forest model to identify and extract agricultural greenhouses, achieving high overall accu-
racy. Compared with other studies, our results show improved performance. Feng et al.29 reported an average 

Fig. 12  Proportion of greenhouse areas in typical provinces within a 5-km grid: (a) Shandong Province; (b) 
Shandong Province; (c) Hebei Province.
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classification accuracy of 87.45% for agricultural plastic greenhouses in China in 2019. Huang et al.11 achieved 
92.01% accuracy in Shouguang, Shandong. Wu et al.36 reported 85% accuracy for suburban greenhouses in 
Xiaoshan District, Hangzhou. In contrast, our study achieved an average classification accuracy of 98%, which is 
10.55%, 5.91%, and 13% higher than the above results, respectively.

First, the classification results of this study within the same small area were compared with the national 
greenhouse grid dataset created by Feng et al.29 (Fig. 13). As shown in Fig. 14, the classification dataset of this 
study was basically consistent with that of Feng et al.29, both showing the areas of attenuation and basic mainte-
nance. In 2022, this research dataset accurately corresponded to the areas of newly added greenhouses, reflecting 
the actual changes in greenhouse space.

Furthermore, this study selected some representative provinces to compare the greenhouse area data in 2016 
and 2022 with those in the dataset constructed by Feng et al.29 in 2019. Overall, the area of agricultural green-
houses still showed a trend of year-on-year growth, which, to a certain extent, also verified the accuracy of the 
results of this study (Table 5).

Compared with previous studies, the national agricultural greenhouse area in 2022 was 1,295,479.91 ha, 
which is similar to the 1,262,400.0 ha reported by Wang et al.37 for 2018. The greenhouse areas in Shandong 
(290,700.0 ha) and Liaoning (180,100.0 ha) are also very close to the areas extracted in this study, 281,734.96 ha 
and 175,229.97 ha, respectively. This is slightly higher than the 1,032,980.0 ha reported by Feng et al.29 for the 
2019 national agricultural greenhouse dataset. When compared to agricultural census data, the greenhouse area 
extracted in this study for 2010 was 555,459.78 ha, which is slightly higher than the 465,086.0 ha from the second 
agricultural census (2006). The national greenhouse area in 2022 was 1,295,479.91 ha, which is greater than the 
981,000.0 ha reported in the third agricultural census (2016). Additionally, the agricultural greenhouse area in 
Beijing for 2010, extracted in this study (13,308.02 ha), is slightly smaller than the agricultural greenhouse area 
reported in the 2011 Beijing Statistical Yearbook, likely due to the exclusion of some small greenhouses in this 
study. From a time-series perspective, the differences in the datasets are reasonable, and the classification results 
have high accuracy.

Region

2010 2016 2022

OA Kappa OA Kappa OA Kappa

Anhui 0.99 0.78 0.98 0.84 0.98 0.80

Beijing 0.99 0.78 0.97 0.81 0.98 0.79

Fujian 0.99 0.74 0.98 0.74 0.96 0.76

Gansu 0.99 0.80 0.98 0.84 0.98 0.88

Guangdong 0.99 0.79 0.97 0.74 0.98 0.79

Guangxi 0.95 0.80 0.99 0.90 0.99 0.81

Guizhou 0.98 0.85 0.98 0.75 0.99 0.73

Hainan 0.99 0.97 0.97 0.83 0.98 0.87

Hebei 0.96 0.74 0.98 0.90 0.97 0.83

Henan 0.98 0.76 0.98 0.83 0.99 0.81

Heilongjiang 0.98 0.78 0.99 0.91 0.98 0.86

Hubei 0.99 0.83 0.97 0.79 0.98 0.81

Hunan 0.98 0.86 0.98 0.81 0.99 0.84

Jilin 0.98 0.84 0.98 0.91 0.98 0.84

Jiangsu 0.97 0.80 0.97 0.75 0.98 0.85

Jiangxi 0.99 0.76 0.98 0.83 0.98 0.85

Liaoning 0.96 0.79 0.98 0.91 0.94 0.81

Inner Mongolia 0.98 0.75 0.98 0.84 0.98 0.76

Ningxia 0.98 0.80 0.99 0.94 0.99 0.92

Qinghai 1.00 0.77 0.99 0.94 0.96 0.78

Shandong 0.97 0.79 0.97 0.90 0.96 0.86

Shanxi 0.98 0.81 0.98 0.85 0.98 0.82

Shaanxi 0.98 0.78 0.98 0.84 0.97 0.83

Shanghai 0.99 0.74 0.97 0.74 0.95 0.79

Sichuan 0.99 0.84 0.97 0.80 0.95 0.76

Taiwan 0.98 0.75 0.99 0.77 0.99 0.78

Tianjin 0.99 0.89 0.97 0.81 0.97 0.74

Xinjiang 0.99 0.88 0.98 0.90 0.98 0.79

Yunnan 0.99 0.86 0.99 0.96 0.99 0.93

Zhejiang 0.97 0.76 0.97 0.81 0.97 0.81

Total 0.98 0.79 0.98 0.86 0.97 0.82

Table 4.  Accuracy statistics of provincial-level regions in the Chinese mainland. OA, Overall accuracy.
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Usage Notes
Data application: Data files were imported into Geographic Information System (GIS) software using ArcGIS soft-
ware. This dataset can be applied to multiple fields: (1) Agricultural planning: The dataset can provide information 
on the distribution of agricultural greenhouses to government agencies and agricultural entrepreneurs, assisting 
in agricultural layout and land use planning. (2) Production management: The dataset can assist agricultural pro-
ducers in understanding the distribution and scale of greenhouses to optimize crop planting and management. (3) 
Scientific research: Research on the environmental impact of agricultural greenhouses and crop growth conditions 
can use the dataset in conjunction with other agricultural-related data. (4) Policy-making: This dataset can provide 
data support for the formulation of agricultural policies, including but not limited to subsidy policies and techni-
cal support. Besides these, the data also has application value in disaster assessment. For example, after a natural 
disaster, the damaged areas of agricultural greenhouses can be assessed to provide data support for postdisaster 
reconstruction and recovery. In terms of market analysis, the data can help analyze the supply and demand situa-
tion of agricultural products, guiding agricultural market pricing and sales strategies. In summary, this dataset can 
provide solid data support for the sustainable development of agriculture.

Fig. 13  Partial comparison of the classification results of three annual agricultural greenhouse categories. The 
red part is the classification result of this study.
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Code availability
Users can access and obtain GH classification codes by https://github.com/China-GH/ChinaGH, which are used 
for remote sensing image classification and analysis. At the same time, we also provide a rich dataset of samples 
for training and testing in GEE. Users can access these basic data and codes, and use professional GIS software 
such as ArcGIS 10.2, ArcGIS Pro, and so forth, for more in-depth processing and analysis work.
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