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Effects of four kinds of 
electromagnetic fields (EMF) with 
different frequency spectrum bands 
on ovariectomized osteoporosis in 
mice
Tao Lei1, Feijiang Li1, Zhuowen Liang2, Chi Tang1, Kangning Xie1, Pan Wang1, Xu Dong1, Shuai 
Shan1, Juan Liu1, Qiaoling Xu3, Erping Luo1 & Guanghao Shen1

Electromagnetic fields (EMF) was considered as a non-invasive modality for treatment of osteoporosis 
while the effects were diverse with EMF parameters in time domain. In present study, we extended 
analysis of EMF characteristics from time domain to frequency domain, aiming to investigate effects 
of four kinds of EMF (LP (1–100 Hz), BP (100–3,000 Hz), HP (3,000–50,000 Hz) and AP (1–50,000 Hz)) 
on ovariectomized (OVX) osteoporosis (OP) in mice. Forty-eight 3-month-old female BALB/c mice 
were equally assigned to Sham, OVX, OVX + LP, OVX + BP, OVX + HP and OVX + AP groups (n = 8). 
After 8-week exposure (3 h/day), LP and BP significantly increased serum bone formation markers and 
osteogenesis-related gene expressions compared with OVX. Bedsides, LP and BP also slightly increased 
bone resorption activity compared with OVX, evidenced by increased RANKL/OPG ratio. HP sharply 
decreased serum bone formation and resporption markers and osteogenesis and osteoclastogenesis 
related gene expressions compared with OVX. AP had accumulative effects of LP, BP and HP, which 
significantly increased bone formation and decreased bone resporption activity compared with OVX. 
As a result, LP, BP and HP exposure did not later deterioration of bone mass, microarchitecture and 
mechanical strength in OVX mice with OP. However, AP stimulation attenuated OVX-induced bone loss.

Osteoporosis (OP) is a serious health problem that is especially related to aging in postmenopausal women, which 
is characterized by skeletal fragility and microarchitectural deterioration1, 2. By 2050, the worldwide incidence of 
hip fracture in women is expected to increase by 310%, mainly due to the ageing of the worldwide population3. 
Bone remodeling is a continuous process between bone resorption (activity of osteoclasts (OCs)) and formation 
(activity of osteoblasts (OBs)). The absence of estrogen induced by the menopause increases the formation and 
the activity of OCs, which play key roles in bone loss, and OCs ultimately increase the risk of menopausal OP4. 
Therefore, inhibiting the formation and function of OCs and enhance the formation and function of OBs are 
important therapeutic strategies. Various pharmacological treatments are available for postmenopausal OP, such 
as estrogen replacement therapy, bisphosphonate and calcitonin5, 6. However, side effects occur when these are 
used excessively, such as breast cancer or endometrial cancer6, 7. An alternative therapy which is worthy of con-
sideration in the treatment of OP is EMF, which has been investigated as a noninvasive alternative method8–11. 
It has been reported that EMF can increase bone mineral density (BMD) in OP patients12, prevent bone loss 
in OVX induced OP in vivo9, 13, and affect bone metabolism in vitro14. However, the efficacy of this modality 
remains uncertain currently15, 16. Moreover, the studies also showed us the conflicting results16, 17. The different 
results are usually explained by different intensity, frequency, waveform and duration of EMF. Therefore, can we 
discard these numerous and complicated parameters to find other substitutes to accurately and simply describe 
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the EMF, aiming to increase the repeatability and reproducibility of the experiments? There is a report implied 
that the dominant influence of EMF in OBs is not related to variables of EMF those expressed in the time domain, 
extension of the analysis to EMF characteristics expressed in the frequency domain should be encouraged18. 
Therefore, focusing on the frequency spectrum of EMF might facilitate to investigate the possible mechanisms of 
EMF on bone healing. There are good evidences that low frequency EMF can produce resonance interactions that 
influence ion movements through membrane channels and other biological phenomena when the frequency of 
EMF matches cyclotron resonance frequencies of critical ions19–21. Investigators have suggested that the physical 
mechanism underlying these effects is ion cyclotron resonance (ICR)22–24. According to ICR model, the resonant 
frequencies of many biologically important ions, such as Na+, K+ and Ca2+, are intermittent frequency points and 
fall within 1–100 Hz23, 25. Aparting from the fundamental frequency of resonant frequencies, when the frequency 
of EMF is equal to higher harmonics of the cyclotron frequencies, the biological resonant effectiveness might also 
be attained26, 27. Moreover, these higher harmonics of the cyclotron frequencies of the biologically relevant ions is 
blow 3,000 Hz24. In addition, high frequency EMF is also capable of inducing osteogenic differentiation of osteo-
progenitor cells28. Therefore, we designed four kinds of EMF with different frequency spectrum bands (1–100 Hz, 
100–3,000 Hz, 3,000–50,000 Hz and 1–50,000 Hz), among which 1–100 Hz and 100–3,000 Hz are designated as 
ICR frequency bands.

Some investigators have demonstrated that an OVX mouse could be used as an experimental animal model of 
postmenopausal OP29. This study aimed to investigate the effects of four kinds of EMF with different frequency 
bands on bone mass, microarchitecture and strength in OVX mice with OP.

Materials and Methods
EMF exposure system. The EMF exposure system used to stimulate cells was homemade, which was con-
sisted of four parts: Labview software, multifunction data acquisition device (NI USB-6211), power amplifier 
(XP9900S, Huamei, China) and Helmholtz coils (Fig. 1). The EMF signal was programed by the Labview software. 
Four kinds of EMF signals were utilized in our study (Fig. 2A, time domain), which were generated from uniform 
white noise (a random signal with constant power spectral density across all the frequencies (−∞ to +∞)). By 
filtering with four kinds of signal filters, the open circuit voltage of EMF were low pass signal filtered at 1–100 Hz 
(LP), band pass signal filtered at 100–3,000 Hz (BP), high pass signal filtered at 3,000–50,000 Hz (HP) and all 
pass signal filtered at 1–50,000 Hz (AP) (Fig. 2B, frequency domain). Each frequency component of these EMF 
had the same amplitude (−40 dB). USB-6211 has two analog outputs (16 bit, 250 kS/s), which realizes converting 
digital filtered EMF signals to analog signals. XP9900s with two output channels amplifies the EMF signals to 
drive the Helmholtz coils, and its output power is 1,400 W, the impedance is 4–8 Ω, and the frequency response 
range is 1 Hz–55 KHz. The Helmholtz coils were consisted of two similar coils with radius R and N wire windings 
(enamel copper wire, 0.6 mm in diameter) placed in the same distance R, where R = 10 cm, N = 80. The coils were 
connected serially, thus, the current through the coils flows in the same direction, and it produces a region with 
a nearly uniform magnetic field (Supporting Fig. S1), which was demonstrated by the finite element engineering 
software called COMSOL Multiphysics (v4.3 COMSOL AB, Burlington, MA, USA). The homemade porous cubic 
plastic cages containing mice without anesthesia were put in the center of the Helmholtz coils and cages were sup-
ported by stands to let the activities of mice restrict on the center plane of the Helmholtz coils which had higher 
intensity and better uniformity of magnetic flux density (Fig. 1B,D). Moreover, whole body exposure to EMF for 
mice without anesthesia was applied three hours every day. The magnetic flux density and electric field strength 
were measured by using a Gaussmeter (Model 455 DMP Gaussmeter, Lake Shore Cryotronics, USA) and an elec-
tric field tester (Modle GM3120, Benetech, China), and the measurement results were listed in Fig. 2C. In case of 
interference of temperature brought by coils, the CO2 incubator was monitored by the incubator’s temperature 
sensor, and the temperature was in the range of 37 ± 0.2 °C throughout the experiments.

OVX model and exposure protocol. Forty-eight 3-month-old female BALB/c mice weighting 31.7 ± 1.2 g 
were provided by Animal Center of the Fourth Military Medical University and housed in a room (Animal Center 
of the Fourth Military Medical University, Xi’an, China). Mice were housed in controlled temperature (23 ± 1 °C), 
relative humidity (50~60%) and alternately light-dark cycle (12 h/12 h), with access to standard pellet and clean 
water. After one week of acclimatization, all mice were subjected either a sham surgery or bilateral ovariectomy 
as described previously30. All mice were anesthetized with an i.p. injection of pentobarbital (50 mg/kg). The sham 
surgery for eight mice involved the exposure of the ovaries with extraction of the surrounding fatty tissue of bilat-
eral ovaries, leaving the ovaries intact, whereas bilateral ovariectomy for 40 mice involved the full removal of the 
both the left and right ovaries. After the surgery, penicillin was injected i.m. to each mouse to prevent infection 
once daily for two days. Mice were allowed to recover from surgery for one week prior to experiments, and then 
all mice were randomly divided into the following six groups (eight mice in each group): sham-operated control 
group (Sham), ovariectomy group (OVX), OVX + LP exposure group, OVX + BP exposure group, OVX + HP 
exposure group and OVX + AP exposure group. OVX + LP, OVX + BP, OVX + HP and OVX + AP groups were 
exposed to four kinds of EMF respectively for 3 h/day, 7 days/week, for 8 weeks. The current study was performed 
in adherence to the National Institutes of Health guidelines for the use of experimental animals, and all animal 
protocols were approved by the Committee for Ethical Use of Experimental Animals of Fourth Military Medical 
University31, 32.

The body weights were recorded weekly, at the end of 8-week exposure period, mice were sacrificed by cervi-
cal dislocation after anesthesia. Biochemical analysis of serum, biomechanical examination of right femur, µCT 
and histological analysis of left femur and real-time PCR of right humerus were employed in our study, and the 
integral experiment flow was showed in Fig. 3.
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Biochemical analysis of serum. After 8-week EMF exposure, all mice were killed by cervical disloca-
tion after anesthesia. Blood samples were collected from all mice, kept still for 1 h at room temperature and 
centrifuged at 2, 000 × g for 20 min at 4 °C and stored at −80 °C. Serum markers for bone formation including 
bone specific alkaline phosphatase (BALP), serum osteocalcin (OCN), osteoprotegerin (OPG) and N-terminal 
propeptide of type I procollagen (P1NP) and bone resorption markers including tartrate-resistant acid phos-
phatase 5b (TRAP-5b) and C-terminal crosslinked telopeptides of type I collagen (CTX-I) were detected using 
enzyme-linked immunosorbent assay (ELISA) kit (Westang Biological Technology Co., Ltd, Shanghai, China) 
according to the protocols provided by manufactures.

Biomechanical examination. The right femurs were selected for three-point bending tests using 
Enduratec ELF 3220 mechanical testing machine (Bose Corp., Minnetonka, MN) after the soft tissues, skin and 
muscles were removed from each femur. Each femur was placed with its anterior surface facing upward on two 
lower support bars 8 mm apart, and the loading bar was positioned at the center of the femur. A press head was 
subsequently activated to squeeze the center of shaft in bones until fracture occurred. The compressive loading 
speed was 0.02 mm/s during the testing time. Data was automatically recorded by the material testing device. The 
biomechanical properties evaluated were the maximum load [a measure of the maximum force that the sample 
femur withstood before fracture (N)], bending stiffness [the slope on the linear portion of the load-deformation 
curve related to the bone’s flexural rigidity (N/mm)], energy absorption [area under the load-deformation curve 
representing the amount of energy absorbed by the sample femur until breakage (N × mm)] and elastic modulus 

Figure 1. Representation of the system used to generate EMF. (A) The principle block diagram of EMF system. 
The device consists of four main parts: Labview software, multifunction data acquisition device, power amplifier 
and Helmholtz coils. (B) The simulated effect diagram of the system. (C) The physical photo of EMF system in 
the experiment.
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[a measure of the sample femur’s resistance to being deformed elastically when a force is applied to it] which was 
calculated according to the equation:

=E FL dI/48 , (1)3

where F is the maximum load, L is the distance between supporting points on which the bone rests, d is the dis-
placement, L is the cross-sectional area moment of inertia of the sample femur33.

µCT. The left femur of each mouse was fixed by immersion in 4% paraformaldehyde for 72 h, then the femurs 
were imaged with a Micro-CT (eXplore Locus SP, GE Healthcare, Canada). The basic scanning parameters were 
set as the following: voltage 80 kV, current 80 µA, exposure time 3000 ms, total rotation angle 360°, and rotation 
angle of increment 0.5°. The scanning resolution was 8 µm/slice. 2D and 3D images were obtained for visualiza-
tion and display. A volume of interest (VOI) that was 1.0 mm long was selected for the analysis of trabecular bone 
microarchitecture. The VOI started at a distance of 0.5 mm from the lowest end of the growth plate of the distal 
femur and extended to the proximal end with a distance of 1.0 mm, which excluded all the primary spongiosa 
and only contained the second spongiosa. The structural parameters of trabecular bone were analyzed using 
MicroView software (GE Healthcare, Bio-Sciences). The trabecular bone parameters, including trabecular bone 
mineral density (BMD, mg/cm3), trabecular number/thickness/separation (Tb.N (1/mm), Tb.Th (µm) and Tb.Sp 
(µm) respectively), trabecular bone volume/tissue volume (BV/TV, %), bone surface/bone volume (BS/BV, 1/
mm), connectivity density (Conn.D, 1/mm3) and structure model indices (SMI) of femurs were calculated. The 

Figure 2. Illustration of four kinds of EMF waveform signals in time and frequency domain and the 
measurement results of magnetic flux density and electric field strength of four kinds of EMF. (A) Four 
kinds of EMF waveform signals in time domain. (B) Four kinds of EMF waveform signals in time domain. 
(C) Measurement results of magnetic flux density and electric field strength of four kinds of EMF by using a 
Gaussmeter and an electric field tester.
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mid-diaphysis of the femur was analyzed for the evaluation of cortical indices. The VOI for the cortical analysis 
was selected as a region with 1 mm (0.5 mm on the either side along the midpoint of the femur). The cortical 
thickness (Ct.Th), cortical area (Ct.Ar), total cross-sectional area inside the periosteal envelope (Tt.Ar) and cor-
tical area fraction (Ct.Ar/Tt.Ar) were quantitatively analyzed by the MicroView software.

Histology and histomorphometry of trabecular bone. The left femurs were processed without decal-
cification after scanning with μCT. They were cast directly in methyl methacrylate and representative sections 
were prepared using a diamond saw and ground to a thickness of 3 mm. Histologic slides were prepared and 
stained with Van Gieson stains. A commercial image analysis software Image Pro Plus 6.0 (Media Cybernetics 
Inc., Bethesda, MD, USA) was used to carry histomorphometrical analysis. 0.5 mm proximal to the growth plate, 
an area of interest (AOI) that was 2 mm long was selected for the analysis of trabecular bone microarchitecture. 
Three semi-automatically measured values, namely, trabecular area (Tb.Ar), tissue area (T.Ar) and trabecular 
perimeter (Tb.Pm) were obtained34. Then, the BV/TV, Tb.N, Tb.Th and Tb.Sp were calculated with the equations 
(2–5)35:

= × . .BV TV Tb Ar T Ar/ 100 / (%) (2)

Figure 3. The integral flow chart of in vivo experiment. (A) Body weight measurement. (B) Biochemical 
analysis of serum. (C) Biomechanical examination of right femur. (D) µCT analysis of left femur. (E) Histology 
and histomorphometry of analysis of left femur. (F) Real-time PCR of right humerus.
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. = . × . .Tb N Tb Pm T Ar n mm(1 199/2) ( / )( / ) (3)

µ. = . × . .Tb Th Tb Ar Tb Pm m(2000/1 199) ( / )( ) (4)

µ. = . × . − . .Tb Sp T Ar Tb Ar Tb Pm m(2000/1 199) ( )/ ( ) (5)

Real-time PCR. After animal scarification, fresh right humerus of each mouse was harvested and cleaned 
with cold PBS. After removal of bone marrow, bone samples were immediately crushed into powder in a mortar 
containing liquid nitrogen using a pestle. Total RNA was extracted using TRIzol reagent (Invitrogen, Carlsbad, 
CA, USA). cDNA was synthesized from the mRNA using the PrimeScriptTM RT Master Mix (TaKaRa, Dalian, 
China). The expression levels of osteogenesis and osteoclastogenesis related genes, including alkaline phos-
phatase (ALP), bone morphogenetic protein-2 (BMP-2), type 1 collagen (COL-1), osteocalcin (OCN), osterix 
transcription factors (OSX), runt-related transcription factor 2 (Runx2), Wnt1, β-catenin, low-density lipoprotein 
receptor-related protein 5 (LRP5), osteoprotegerin (OPG), the receptor activator of nuclear factor-kappa B ligand 
(RANKL) and the receptor activator of nuclear factor-kappa B (RANK) were quantified using real-time PCR, and 
their primers used were listed in Table 1. Then, the real-time PCR using a SYBR Premix Ex TaqTM II reagent kit 
(TaKaRa, Dalian, China) was performed using the CFX96 TouchTM Real-time PCR detection system (Bio-Rad, 
Hercules, CA, USA). GAPDH was used as a housekeeping gene for normalization. All experiments were repeated 
at least three times. The relative change in gene expression was analyzed by 2−∆∆CT method36.

Statistical analysis. Results were reported as mean ± SD and P < 0.05 was defined as the threshold of sig-
nificance. Data were analyzed with the SPSS v 20.0.0 statistical software package (IBM, Chicago, IL, USA). For 
animal studies, body weights of time course study were analyzed by two-way repeated measures analysis of var-
iance (ANOVA). The results were interpreted using the Greenhouse–Geisser correction to reduce the probabil-
ity of obtaining a significant result by chance alone. Between subject factors consisted of intervention (Sham, 
OVX, OVX + LP, OVX + BP, OVX + HP and OVX + AP) and within subject factors consisted of time (weeks 0–8 
after EMF stimulation) resulted in a 6 × 9 ANOVA. Data was analyzed for intervention and time main effects. 
Bonferroni-adjusted pairwise comparisons were performed for multiple comparisons of the means between 
the groups. EMF effect would be indicated by a significant main effect for intervention. One-way ANOVA (for 
normally distributed data) were used to analyze other dependent variables, and the Tukey post hoc test was 

Gene Primer Primer(5′-3′)
Product Length 
(bp)

ALP
F GCAGTATGAATTGAATCGGAACAAC

192
R ATGGCCTGGTCCATCTCCAC

BMP-2
F TGACTGGATCGTGGCACCTC

112
R CAGAGTCTGCACTATGGCATGGTTA

COL-1
F GACATGTTCAGCTTTGTGGACCTC

119
R GGGACCCTTAGGCCATTGTGTA

OCN
F GCTACCTTGGAGCCTCAGTC

113
R GGCGGTCTTCAAGCCATACT

OSX
F AGGCCTTTGCCAGTGCCTA

85
R GCCAGATGGAAGCTGTGAAGA

Runx2
F TGCAAGCAGTATTTACAACAGAGG

188
R GGCTCACGTCGCTCATCTT

Wnt1
F TGGGTTTCTACTACGTTGCTACTGG

117
R CGTCAACAGGTTCGTGGAG

β-catenin
F CCTAGCTGGTGGACTGCAGAA

137
R CACCACTGGCCAGAATGATGA

LRP5
F CACCATTGATTATGCCGACCAG

132
R TGAGTCAGGCCAAACGGGTAG

OPG
F CACACGAACTGCAGCACATT

188
R TCCACCAAAACACTCAGCCA

RANKL
F GCAGCATCGCTCTGTTCCTGTA

161
R CCTGCAGGAGTCAGGTAGTGTGTC

RANK
F ATCTCGGACGGTGTTGCAG

124
R TCTTCATTCCAGGTGTCCAAGTA

GAPDH
F AAATGGTGAAGGTCGGTGTGAAC

90
R CAACAATCTCCACTTTGCCACTG

Table 1. The sequence of primers used in the present study for real-time PCR.
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performed for multiple comparisons among groups. For in vitro studies, each experiment contained a minimum 
of three replicates. Data presented are representative of at least three experiments. Data were analyzed using a 
one-way ANOVA followed by Tukey post hoc test for multiple comparisons in all experiments. For both in vivo 
and in vitro studies, the Kruskal-Wallis and Mann-Whitney U tests were performed when data were not normally 
distributed and the Bonferroni correction was utilized to correct for potential type I error that can occur when 
performing multiple comparisons.

Results
Effects of EMF on body weight. Two-way repeated measures ANOVA with a Greenhouse-Geisser correc-
tion determined that a significant main effect for time (F (2.209, 78.936) = 9.802, P < 0.001) was found for means 
of body weight throughout the time course (Fig. 4). The body weight differed significantly between time points. 
Post hoc tests using the Bonferroni correction revealed that OVX significantly increased the body weight of mice 
compared with Sham group (P < 0.01). No differences in body mass were present among LP, BP, HP and OVX 
(P > 0.05). AP reduced the body weight compared with OVX group (P < 0.05), with no difference over Sham 
groups.

Biochemical analysis of serum. As shown in Fig. 5, OVX led to increases in serum BALP, OCN, OPG 
and P1NP levels (bone formation markers) compared with Sham group (P < 0.05, + 20.1%, + 34.7%, + 26.6% 
and + 25.0%). After 8-week EMF interventions, LP and BP exposure similarly sharply elevated serum BALP, 
OCN, OPG and P1NP levels compared with OVX (P < 0.01, +70.0%, +64.8%, +67.5% and +67.5% for LP; 
P < 0.01, +63.0%, +59.0%, +64.7% and +65.0% for BP). AP also increased these bone formation markers 
(P < 0.01, +87.6%, +78.9%, +85.8% and +87.5%) compared with OVX, and the gain in AP was greater than LP 
and BP (P < 0.05). HP decreased serum BALP, OCN, OPG and P1NP compared with OVX (P < 0.01, −45.3%, 
−44.9%, −46.3% and −45.0%). What’s more, these bone formation markers in HP was lower than those in Sham 
(P < 0.05). In addition, OVX resulted in sharply increases in serum TRAP-5b and CTX-I (bone resorption mark-
ers) compared with Sham group (P < 0.01, +108.0% and +113.5%). After 8-week EMF interventions, serum 
TRAP-5b and CTX-I in LP and BP groups were higher compared with OVX (P < 0.05, +15.2% and +11.7% for 
LP; P < 0.05, +13.5% and +10.0% for BP). Serum TRAP-5b and CTX-I in HP were 52.7% and 55.0% respectively 
lower compared with OVX (P < 0.01), with no difference over Sham. In addition, serum TRAP-5b and CTX-I 
markers in AP were 31.5% and 33.3% respectively lower compared with OVX (P < 0.01), and slightly higher than 
those in Sham (P < 0.05).

Bone mechanical characteristics. The three-point bending results of left femurs were shown in Fig. 6. 
OVX decreased maximum load, energy absorption and elastic modulus compared with Sham (P < 0.05, −21.1%, 
−26.4% and −24.2% respectively). After 8-week EMF interventions, no significant differences in these param-
eters were present among LP, BP, HP and OVX groups (P > 0.05). Bedsides, maximum load, energy absorption 
and elastic modulus in AP were 12.5%, and 20.8% and 17.3% (P < 0.05) respectively higher compared with OVX 
mice, and slightly lower than those in Sham (P < 0.05). In addition, no differences in bending stiffness were pres-
ent among six groups (P > 0.05).

µCT analysis of bone structure. Representative µCT mages for trabecular bone microarchitecture of left 
distal femur in six groups are shown in Fig. 7A. OVX resulted in notable reduction in trabecular bone microar-
chitecture. After 8-week EMF exposure, LP, BP and HP administration did not alter OVX-induced deterioration 
of trabecular bone microarchitecture. However, AP exposure significantly prevented trabecular bone loss. µCT 
analysis of the trabecular bone microarchitecture for left distal femur was presented in Fig. 7B, which indicated 
that OVX led to significant decreases in trabecular BMD, Tb.N, Tb.Th, BV/TV and Conn.D (P < 0.01, −38.7%, 

Figure 4. Trends of body weight in Sham, OVX, OVX + LP, OVX + BP, OVX + HP and OVX + AP groups 
at weeks 0–8 after EMF stimulation. Values represent mean ± SD of 8/group. Letters a-f indicate differences 
between respective groups at P < 0.05 or *P < 0.01 (a versus Sham; b versus OVX; c versus OVX + LP; d versus 
OVX + BP; e versus OVX + HP; f versus OVX + AP).
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−48.9%, −37.2%, −52.5% and −56.4% respectively), and increases in Tb.Sp, BS/BV and SMI (P < 0.01, +56.7%, 
+43.5% and +57.3% respectively) compared with Sham group. After 8 week EMF exposure, no significant differ-
ences in these trabecular bone structural parameters were present among LP, BP, HP and OVX groups (P > 0.05). 
However, AP exposure significantly increased trabecular BMD, Tb.N, Tb.Th, BV/TV and Conn.D (P < 0.01, 
+45.3%, +64.5%, +43.0%, +73.8% and +82.4% respectively) compared with OVX. Besides, Tb.N, BV/TV and 
Conn.D in AP were slightly lower than those in Sham (P < 0.05), and no differences were present for BMD 
and Tb.Th compared with Sham (P > 0.05). Moreover, AP decreased Tb.Sp, BS/BV and SMI (P < 0.05, −30.7%, 
−24.8% and −29.9% respectively) compared with OVX group, and without difference compared with Sham 
(P > 0.05). Moreover, µCT analysis of the cortical bone parameters (Ct.Ar, Ct.Th, Tt.Ar and Ct.Ar/Tt.Ar) for 
mid-femur was presented in Fig. 8. OVX caused significant decreases in Ct.Ar, Ct.Th and Ct.Ar/Tt.Ar (P < 0.05, 
−29.5%, −30.9% and −27.8% respectively) as compared with the control group, but did not exert significant 
change in Tt.Ar (P < 0.05). After 8-week EMF interventions, no significant differences in these cortical bone 
parameters were present among LP, BP, HP and OVX groups (P > 0.05). However, Ct.Ar, Ct.Th and Ct.Ar/Tt.Ar in 
AP were 15.1%, and 16.0% and 11.3% (P < 0.05) respectively higher compared with OVX mice, and slightly lower 
than those in Sham (P < 0.05). In addition, no differences in Tt.Ar were present among six groups (P > 0.05).

Figure 5. Effects of 8-week EMF exposure on serum biochemical indices (bone turnover markers) in OVX 
mice, including bone formation markers (A) and bone resorption markers (B). Values represent mean ± SD of 
8/group. Letters a-f indicate differences between respective groups at P < 0.05 or *P < 0.01 (a versus Sham; b 
versus OVX; c versus OVX + LP; d versus OVX + BP; e versus OVX + HP; f versus OVX + AP).
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Histology and histomorphometry of trabecular bone. Representative images by Van Gieson staining 
were shown in Fig. 9A. OVX in adult mice resulted in an almost complete ablation of trabecular bone in the left 
distal femur. Following 8 weeks, OVX significantly decreased BV/TV, Tb.N, Tb.Th (P < 0.01, −48.7%, −43.3% 
and −50.5%, respectively), and increased Tb.Sp (P < 0.01, +63.4%) (Fig. 9B). After 8-week EMF interventions, no 
significant differences were present among LP, BP, HP and OVX groups (P > 0.05). However, AP maintained sig-
nificantly greater bone volume than OVX. BV/TV, Tb.N, Tb.Th in AP were 62.5%, 49.4% and 77.7% respectively 
higher than those in OVX (P < 0.01), and Tb.Sp in AP was 33.3% lower than that in OVX (P < 0.01). Besides, BV/
TV and Tb.N were slightly lower than those in Sham (P < 0.05), and no differences were present for Tb.Th and 
Tb.Sp compared with Sham (P > 0.05).

Real-time PCR. The results of real time PCR for total mRNA expressions in left humerus were shown in 
Fig. 10. ALP, BMP-2, COL-1, OCN, OSX and Runx2 are well known osteoblast differentiation and mineralization 
marker genes, and their mRNA expression levels in six groups after 8-week EMF exposure were presented in 
Fig. 10A. OVX increased the mRNA expression of ALP, BMP-2, OCN, COL-1, OSX and Runx2 compared with 
Sham (P < 0.05, +25.7%, +30.4%, +27.8%; P < 0.01, +38.7%, +44.1% and +34.8% respectively). The EMF with 
different frequency bands had different effects on gene expression levels. LP and BP sharply up-regulated the 
mRNA expression levels of ALP, BMP-2, COL-1, OCN, OSX and Runx2 compared with OVX (P < 0.01, +68.2%, 
+114.5%, +77.3%, +85.9%, +78.5% and +77.6% for LP; P < 0.01, +65.3%, +104.8%, +70.4%, +76.9%, +75.0% 
and +78.4% for BP respectively). The mRNA expression levels of ALP, BMP-2, COL-1, OCN, OSX and Runx2 in 
AP were 85.8%, 173.2%, 104.4%, 101.1%, 112.3% and 98.7% higher than those in OVX (P < 0.01). No difference 
was present between LP and BP (P > 0.05), and AP had more stimulative effect on the mRNA expressions for all 
osteogenesis-related genes than those in LP and BP (P < 0.05). In addition, HP significantly down-regulated the 
mRNA expression levels of ALP, BMP-2, COL-1, OCN, OSX and Runx2 compared with OVX (P < 0.01, −47.7%, 
−46.0%, −43.2%, −46.9%, −48.6% and −44.5% respectively). What’s more, these mRNA expression levels were 
slightly lower than those in Sham (P < 0.05).

Canonical Wnt1/β-catenin/LPR5 signaling plays a key role in mediating bone remodeling, and eventually 
regulates bone mass and bone strength. OPG and RANKL are cytokines predominantly secreted by osteoblasts 
and the relative concentration of RANKL and OPG (RANKL/OPG) play critical roles in bone mass and strength, 
and their mRNA expression levels in six groups after 8 weeks’ EMF exposure were presented in Fig. 10B. OVX 
increased the mRNA expression of Wnt1, β-catenin, OPG, LPR5, and RANKL compared with Sham (P < 0.05, 
+26.0%, +27.2%, +20.0%; P < 0.01, +39.1% and +55.7% respectively). LP and BP similarly progressively 

Figure 6. Effects of 8-week EMF exposure on femoral biomechanical structural properties in OVX mice via 
three-point bending test, including maximum load, energy absorption, elastic modulus and bending stiffness. 
Values represent mean ± SD of 8/group. Letters a-f indicate differences between respective groups at P < 0.05 or 
*P < 0.01 (a versus Sham; b versus OVX; c versus OVX + LP; d versus OVX + BP; e versus OVX + HP; f versus 
OVX + AP).
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Figure 7. Effects of 8-week EMF exposure on trabecular bone microarchitecture in the distal femora in OVX 
mice. (A) Representative 3D µCT images of trabecular bone microarchitecture determined by the a volume of 
interest (VOI) that was 1 mm long 0.5 mm proximal to the growth plate. (B) Statistical comparisons of indices 
of trabecular bone microarchitecture. Values represent mean ± SD of 8/group. Letters a-f indicate differences 
between respective groups at P < 0.05 or *P < 0.01 (a versus Sham; b versus OVX; c versus OVX + LP; d versus 
OVX + BP; e versus OVX + HP; f versus OVX + AP).
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up-regulated the mRNA expression levels of Wnt1, β-catenin, LPR5, OPG and RANKL compared with OVX 
(P < 0.01, +77.6%, +87.3%, +74.1%, +71.7% and +100.3% for LP; P < 0.01, +67.2%, +83.2%, +71.4%, +66.7% 
and +97.9% for BP respectively). The mRNA expression levels of Wnt1, β-catenin, LPR5, OPG and RANKL in AP 
were 98.7%, 124.0%, 99.6%, 96.8% and 146.8% higher than those in OVX (P < 0.01). No difference was present 
among LP and BP (P > 0.05), and these mRNA expressions stimulated by AP were higher than those in LP and 
BP (P < 0.05). In addition, HP down-regulated the mRNA expression levels of Wnt1, β-catenin, LPR5, OPG and 
RANKL compared with OVX (P < 0.01, −46.0%, −46.4%, −46.0%, −41.7% and −51.4% respectively). What’s 
more, these mRNA expression levels were slightly lower than those in Sham (P < 0.05). In addition, OVX resulted 
in 29.7% increase in RANKL/OPG ratio compared with Sham (P < 0.05). LP, BP and AP stimulation similarly 
increased RANKL/OPG ratio, with relative expression values being 16.6%, 18.7% and 25.4% higher than that in 
OVX (P < 0.05), and no differences were present among these groups. HP exposure decreased RANKL/OPG 
ratio, with relative expression value being 18.7% lower than that in OVX (P < 0.05), and no difference was present 
between HP and Sham. It is known that RANK carry out important roles during osteoclast differentiation and 
activation. In our present study (Fig. 10C), OVX sharply increased the mRNA expression of RANK, with relative 
expression value being 124.9% higher than that in Sham (P < 0.01). LP and BP similarly up-regulated the mRNA 
expression levels of RANK compared with OVX (P < 0.05, +18.7% and +12.2% respectively). HP progressively 
down-regulated the mRNA expression levels of RANK compared with OVX (P < 0.01, −60.0%), with no differ-
ence over Sham. The RANK expression in AP was 44.5% lower than that in OVX, and slightly higher than that in 
Sham (P < 0.05).

Discussion
The current study examined the effects of 8-week of four kinds of EMF with different frequency spectrum bands 
on OVX-induced OP in mice, and found that OVX resulted in the decrease of bone mass and deterioration of 
bone microarchitecture and mechanical strength in mice, and this condition were not altered by LP, BP and HP 
exposure. However, AP stimulation attenuated OVX-induced decrease of bone mass and deterioration of bone 
microarchitecture and mechanical strength in mice by promoting bone formation and inhibiting bone resorption.

Pulsed electromagnetic fields (PEMF) have been proven to present satisfying therapeutic effects on OP exper-
imentally and clinically9, 12, 37, 38. However, the potential mechanism responsible for the effects of PEMF on pres-
ervation of bone mass are not well understood. PEMF carry a broad band of frequencies that occupy a discrete 
portion of the lower end of the electromagnetic spectrum. Although their repetition rate falls in the extremely low 
frequency range (1–100 Hz), their frequency contents in frequency domain by discreet Fourier transform ranges 

Figure 8. Effects of 8-week EMF exposure on cortical indices in the mid-diaphysis of the femur in OVX mice. 
Statistical comparisons of indices of trabecular bone microarchitecture. Values represent mean ± SD of 8/group. 
Letters a-f indicate differences between respective groups at P < 0.05 or *P < 0.01 (a versus Sham; b versus OVX; 
c versus OVX + LP; d versus OVX + BP; e versus OVX + HP; f versus OVX + AP).
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Figure 9. Effects of 8-week EMF exposure on trabecular bone histology and histomorphometry in OVX mice. 
(A) Representative histological images for bone microarchitecture of the distal femora by Van Gieson staining. 
Scale bar = 1 mm. (B) Histomorphometrical analysis of trabecular bone microarchitecture determined by an 
area of interest (AOI) that was 2 mm long 0.5 mm proximal to the growth plate. Values represent mean ± SD of 
8/group. Letters a-f indicate differences between respective groups at P < 0.05 or *P < 0.01 (a versus Sham; b 
versus OVX; c versus OVX + LP; d versus OVX + BP; e versus OVX + HP; f versus OVX + AP).



www.nature.com/scientificreports/

13Scientific RepoRts | 7: 553  | DOI:10.1038/s41598-017-00668-w

Figure 10. Effects of 8-week EMF exposure on gene expressions in the humerus with the removal of bone 
marrow in OVX mice by real-time fluorescence quantitative PCR analysis, including (A) osteogenesis-
related gene expressions (B) Wnt1/β-catenin/LPR5 and OPG/RANKL signaling gene expression (C) 
osteoclastogenesis-related gene expression. Values represent mean ± SD of 8/group. Letters a-f indicate 
differences between respective groups at P < 0.05 or *P < 0.01 (a versus Sham; b versus OVX; c versus 
OVX + LP; d versus OVX + BP; e versus OVX + HP; f versus OVX + AP).
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from 1 Hz to greater than 1 MHz39, 40. The present study explored the individual effects of different frequency com-
ponents included in such broad band of frequencies on the bone formation and resorption in mice with OP. As a 
result, these combined effects might result in the therapeutic effects on bone mass and structure in OP.

Bone maintains its normal structural and functional integrity via continuous remodeling activity, character-
ized by a dynamic balance between OBs-mediated bone formation and OCs-mediated bone resorption. Estrogen 
deficiency induced by OVX results in bone loss due to an accelerated rate of bone resorption which predominates 
over bone formation41, 42. In our present study, the bone formation activity was slightly enhanced in OVX mice, 
which was demonstrated by slightly increased serum bone formation markers (BALP, OCN, OPG and P1NP) 
and osteogenesis-related gene expressions (ALP, BMP-2, COL-1, OCN, OSX, Runx2, Wnt1, β-catenin, LPR5 
and OPG) compared with Sham. Besides, the bone resorption activity was significantly enhanced in OVX mice, 
with predominance over bone formation, which was demonstrated by increased serum bone resorption markers 
(TRAP-5b and CTX-I) and osteoclastogenesis-related gene expression (RANK and RANKL/OPG) compared 
with Sham. As a result, accelerated bone remodeling and perturbation in bone mineral homeostasis might led to 
decrease of bone mass and deterioration of bone microarchitecture and mechanical strength in OVX mice, which 
was demonstrated by increase in body weight, decreased biomechanical, µCT and histological characteristics of 
bone in mice 8 weeks after OVX. These results were also reported by numerous investigators11, 13, 29, 30, 38.

In addition, LP and BP were similarly capable of significantly increasing bone formation activity in OVX 
mice, which was demonstrated by increased serum bone formation markers (BALP, OCN, OPG and P1NP) and 
osteogenesis-related gene expressions (ALP, BMP-2, COL-1, OCN, OSX, Runx2, Wnt1, β-catenin, LPR5 and 
OPG) compared with OVX. The increased bone formation activity comes from anabolic functional responses of 
OBs (Supporting Figs S2 and S3), which might be induced by resonant effectiveness of numerous Ca2+ according 
to ICR model22–24. The time-varying EMF in proper resonance might transfer kinetic energy to channel ions23. 
This will increase ionic drift velocities through the membrane, easily activating the voltage-dependent L-type 
Ca2+ channels and increasing intracellular calcium signals, and downstream responses of increased Ca2+ might 
be mediated through Ca2+/nitric oxide/cGMP/protein kinase G pathway43. Potentially, therapeutic responses 
may be largely as a result of nitric oxide/cGMP/protein kinase G pathway stimulation43. Bedsides, LP and BP 
also slightly increased the bone resorption activity compared with OVX, evidenced by the increased RANKL/
OPG mRNA ratio brought by increased osteoblastic activity. However, LP and BP did not directly regulate 
osteoclastogenesis-related gene expression which was demonstrated by our in vitro results (Supporting Fig. S4). 
Although resonant effectiveness of numerous Ca2+ also exists in OCs, the voltage-dependent L-type Ca2+ chan-
nels in OCs might not be activated sensitively44, 45. To view the situation as a whole, the bone resorption activity in 
OVX + LP and OVX + BP weights than bone formation. Thus, LP and BP exposure did not ameliorate decrease 
of bone mass and deterioration of bone microarchitecture and mechanical strength in OVX mice.

HP not only sharply decreased the bone formation activity but also progressively decreased bone resorption 
activity compared with OVX, evidenced by decreased serum bone formation and resporption markers and osteo-
genesis and osteoclastogenesis related gene expressions compared with OVX. Although high frequency magnetic 
field could not ignite resonate effect, the electric field with high frequency could be induced. Thus, the cytoplasm 
is penetrated by a high frequency electric field46, which might lead endoplasmic reticulum and mitochondria to 
release large amount of calcium into cytoplasm47, 48. As a result, disturbance of anabolic functional response and 
initiation event for apoptosis could be brought about49, 50. Although bone resorption activity was inhibited by HP 
exposure, the bone formation activity was also inhibited by HP exposure. Therefore, HP might not ameliorate 
decrease of bone mass and deterioration of bone microarchitecture and mechanical strength induced by OVX in 
mice.

AP might have accumulative effects of LP, BP and HP, which significantly increased bone formation 
and decreased bone resporption compared with OVX. This view was demonstrated by increased serum 
bone formation and osteogenesis-related gene expressions and decreased bone resporption markers and 
osteoclastogenesis-related gene expressions compared with OVX. As a result, AP exposure ameliorated decrease 
of bone mass and deterioration of bone microarchitecture and mechanical strength induced by OVX in mice, 
which was demonstrated by decreased body weight, increased biomechanical, µCT and histological charac-
teristics of bone in mice 8 weeks after OVX. To our knowledge, no investigations have directly reported the 
same results exposured by the same EMF as in our study. However, similar results were found by using EMF 
whose frequency spectrum in frequency domain include both ICR frequency and high frequency components. 
15 Hz PEMF with 200 µs pulse width exposure presented stimulus efficacy in OVX-induced bone loss in rats51. 
According to our analysis, the frequency spectrum of 15 Hz PEMF with 200 µs pulse width in frequency domain 
lies in the bandwidth from 15 to 5,000 Hz in frequency domain. Therefore, ICR frequency and high frequency 
components are all involved in this kind of PEMF. Consistently, 8 Hz PEMF with 200 µs pulse width (band width 
of frequency spectrum: 8–5,000 Hz) stimulation also prevent OVX-induced OP in rats13, 38, 52.

EMF has been a non-pharmacological and non-invasive alternative method for the treatment of osteoarthri-
tis, brain and cardiac ischemia and traumatic brain injury53. However, epidemiology studies reported that EMF 
might in relation to brain cancer and leukemia54–56. Despite many in vitro and in vivo investigations, there is no 
established causal relationship yet. The inconsistencies on the effects of EMF might come from different type of 
EMF employed in both laboratory research and clinical trial. According to our experiment, the low frequency 
EMF might have positive effects on OBs, and the high frequency EMF might have side effects on OCs. Moreover, 
this side effects of high frequency EMF is required for the treatment of osteoporosis. What’s more, the side effects 
of high frequency EMF might also be useful to suppress abnormal cells such as cancer cells. However, it should 
be cautious to use EMF devices clinically and EMF devices cannot be recommended without scientific evidence 
from high-quality, double-blind and randomized trial.

In summary, our results showed that ICR related frequency components significantly increased bone for-
mation activity, and it slightly increased bone resorption activity indirectly. However, predominated bone 
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resorption activity resulted in limited effects on decrease of bone mass and deterioration of bone microarchitec-
ture and mechanical strength in OVX-induced OP in mice. Besides, high frequency components not only sharply 
decreased the bone formation activity but also progressively decreased bone resorption activity. As a result, 
HP had limited effects on decrease of bone mass and deterioration of bone microarchitecture and mechanical 
strength in OVX-induced OP in mice. What’s more, combined ICR related frequency with high frequency com-
ponents could have therapeutic effects on bone loss in OVX-induced OP in mice, which results from increased 
bone formation and decreased bone resporption.
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