Figure 4

Mapping IGDT in biological tissues. (a) IGDT eigenvalues observed for a spinal cord specimen, examined in a 10 mm NMR tube filled with Fluorinert® (cartoon in center exemplifies this model phantom). (b) Color-coded orientation maps generated from the directions of the first eigenvector (the one with lowest eigenvalue) with respect to the main magnetic field [red: z-axis (up-down), blue: x-axis (in-out), green: y-axis (left-right)]. The vector magnitude was weighted with a fractional anisotropy given by \({\rm{FA}}=\sqrt{\frac{3}{2}}\frac{\sqrt{{({\lambda }_{1}-\bar{\lambda })}^{2}+{({\lambda }_{2}-\bar{\lambda })}^{2}+{({\lambda }_{3}-\bar{\lambda })}^{2}}}{\bar{\lambda }}\) to highlight its orientation, where \(\bar{\lambda }=\sqrt{{\lambda }_{1}^{2}+{\lambda }_{2}^{2}+{\lambda }_{3}^{2}}\) and λ i are the three IGDT eigenvalues. Parameters for the NOGSE MRI measurements were: TR/TE = 4000/50 ms, resolution = 156 × 156 × 1000 μm3, six pairs of opposing-gradient NOGSE encodings according to the orientations given in Fig. 3, NA = 4, G = 35 G/cm, total number of NOGSE oscillations of ten, total NOGSE gradient modulation time =20 ms. A T 2~50–60 ms was measured in these white matter experiments, and the shortest delay x was 140 μs. (c) Microscopic DTI tensor determined from the sNOGSE amplitude modulation Δβ S is shown for comparison to demonstrate the consistency of the orientations. EPI sequences were used for collecting all images, the typical SNR was >35 at its lowest. A full set of measurements took 13 minutes to complete.