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Combination of a high-fat diet 
with sweetened condensed milk 
exacerbates inflammation and 
insulin resistance induced by each 
separately in mice
Laureane Nunes Masi  1, Amanda Roque Martins2, Amanda Rabello Crisma2, Cátia Lira do 
Amaral3, Mariana Rodrigues Davanso2, Tamires Duarte Afonso Serdan1, Roberta Dourado 
Cavalcante da Cunha de Sá4, Maysa Mariana Cruz4, Maria Isabel Cardoso Alonso-Vale4, 
Rosângela Pavan Torres5, Jorge Mancini-Filho5, Joice Naiara Bertaglia Pereira2, Marta Maria 
da Silva Righetti6, Edson Aparecido Liberti6, Sandro Massao Hirabara1,2 & Rui Curi1,2

Obesogenic diets increase body weight and cause insulin resistance (IR), however, the association 
of these changes with the main macronutrient in the diet remains to be elucidated. Male C57BL/6 
mice were fed with: control (CD), CD and sweetened condensed milk (HS), high-fat (HF), and HF and 
condensed milk (HSHF). After 2 months, increased body weight, glucose intolerance, adipocyte size 
and cholesterol levels were observed. As compared with CD, HS ingested the same amount of calories 
whereas HF and HSHF ingested less. HS had increased plasma AST activity and liver type I collagen. 
HF caused mild liver steatosis and hepatocellular damage. HF and HSHF increased LDL-cholesterol, 
hepatocyte and adipocyte hypertrophy, TNF-α by macrophages and decreased lipogenesis and 
adiponectin in adipose tissue (AT). HSHF exacerbated these effects, increasing IR, lipolysis, mRNA 
expression of F4/80 and leptin in AT, Tlr-4 in soleus muscle and IL-6, IL-1β, VCAM-1, and ICAM-1 
protein in AT. The three obesogenic diets induced obesity and metabolic dysfunction. HS was more 
proinflammatory than the HF and induced hepatic fibrosis. The HF was more detrimental in terms of 
insulin sensitivity, and it caused liver steatosis. The combination HSHF exacerbated the effects of each 
separately on insulin resistance and AT inflammatory state.

Obesity is an independent high risk factor for metabolic diseases such as type 2-diabetes and non-alcoholic fatty 
liver disease. A high intake of fat or sugar induces obesity and associated co-morbidities, such as insulin resist-
ance, hyperglycaemia and dyslipidaemia in humans and experimental animals1, 2. Mice fed high-energy food 
are used as an experimental model to investigate the mechanisms associated with dysfunction in metabolism3–5. 
Several investigators have combined macronutrients fat and sugar (fructose) to induce the main features of meta-
bolic disorders observed in humans6, 7. The different compositions of energy-dense foods can increase weight and 
lead to insulin resistance with varying intensities. Maioli et al.6 reported that in C57BL/6 mice, compared with 
other obesogenic diets that have been reported to induce obesity or metabolic disorders, a diet rich in sucrose 
and lipids induces a more prominent body weight gain and increase in fasting blood glucose levels. The authors 
reported a reduced frequency of regulatory T cells as well as decreased levels of anti-inflammatory cytokines 
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(TGF-β and IL-10) in adipose tissue6. Obese patients regularly consume a diet rich in sugar and fat. However, 
whether fat or sugar has detrimental effects on metabolism remains to be investigated. In this study, we exam-
ined the effects of a high-fat diet, a high-sugar diet and a combination of high-fat and high-sugar in the diet on 
inflammation intensity and insulin resistance in C57BL/6 mice. Mice fed with high-sugar diet had free access to 
a sweetened condensed milk containing 68% in energy as carbohydrates.

Results
Three groups of mice were fed obesogenic diets differing in macronutrient composition and total calories. The 
CD mice served as the baseline. The high quantity of fat in the diet decreased the calorie ingestion by 22% in the 
HF group and by 14% in the HSHF group. There was no difference in the calorie intake in the HS and CD groups 
(Table 1). Considering the total calorie ingestion and the energy composition of the diet, the CD and HS groups 
ingested carbohydrate as the main macronutrient source, 536.9 kcal and 541.4 kcal per week, respectively. The 
HF group ingested fat as the main macronutrient source (325.6 kcal per week), and the HSHF group ingested the 
combination of fat (297.5 kcal per week) and carbohydrate (228.4 kcal per week). The consumption of the HS and 
HF as compared to the CD led to a marked increase in body weight (increases by 4.8-fold and 5.3-fold, respec-
tively) during the experimental period. The HSHF led to a more pronounced increase (by 9.3-fold) (Table 1).

Compared to the CD, the obesogenic diets (HS, HF and HSHF) induced a consistent increase in visceral adi-
pose tissue (mesenteric, epididymal and perirenal) weight by 2-, 2.7- and 3-fold, respectively, liver wet weight by 
50%, 50% and 67%, respectively, and glucose intolerance intensity (as indicated by the area under the curve) by 
70%, 80% and 130%, respectively (Fig. 1A and Table 1).

A high quantity of fat in the diet (HF and HSHF) induced an increase in serum LDL-cholesterol levels by 65% 
and 34%, respectively, and in glycaemia by 47% and 31%, respectively, compared with the CD animals (Table 1). 
A high quantity of sugar in the diet (HS) increased AST activity by 2.3-fold compared to the CD (Table 1). The 
combination of high sugar and high fat (HSHF group) decreased insulin sensitivity (as indicated by the kITT) by 
29% and 40%, respectively, increased body weight by 77% and 97%, respectively, and 6-hour fasting serum insulin 
levels by 2-fold compared with the HS and HF groups, respectively (Fig. 1B and Table 1).

Subcutaneous adipocyte size was increased by the three obesogenic diets (HS by 10%; HF by 19%; HSHF 
by 24%) compared to CD diet (Fig. 2A). The HF and HSHF groups increased adipocyte size by 8.5% and 13%, 
respectively, compared to the HS group (Fig. 2A).

The combination of sugar and fat (HSHF) led to a marked increase in body weight. This was the only group that 
showed increased lipolysis in incubated subcutaneous adipocytes tissue in both un-stimulated (by 7.8-fold com-
pared with CD; by 2.6-fold compared with HS and by 2.3-fold compared with HF) and isoproterenol-stimulated 
conditions (by 2-fold compared with all the others) (Fig. 2B). The high fat content in the diet (in the HF and 
HSHF groups) reduced lipogenesis in insulin-stimulated subcutaneous adipocytes by 2- and 2.4-fold, respec-
tively, compared with the HS and HF mice, whereas there was a two-fold decrease compared with the CD mice 
(Fig. 2C).

CD HS HF HSHF

Initial body weight (g) 26.0 ± 0.67 25.0 ± 0.55 27.0 ± 0.70 25.0 ± 0.57

Body weight gain (g) 1.9 ± 0.42 9.9 ± 0.98a 8.9 ± 1.10a 17.5 ± 1.41a,b,c

Food ingestion (g/week) 177.2 ± 7.13 130.2 ± 4.86a 102.7 ± 1.17a,b 82.1 ± 1.66a,b,c

Condensed milk intake (g/week) — 74.8 ± 4.67 — 51.8 ± 6.57b

Caloric ingestion (kcal/week)* 673.7 ± 27.01 738.0 ± 15.99 548.5 ± 6.25a,b 606.8 ± 24.66a,b,c

Visceral adipose tissue (g) 0.64 ± 0.19 1.3 ± 0.24a 1.7 ± 0.41a 2.0 ± 0.26a,b

Liver weight (g) 1.2 ± 0.04 1.8 ± 0.15a 1.8 ± 0.13a 2.0 ± 0.12a

Total cholesterol (mg/dL) 137.0 ± 7.42 186.0 ± 5.84a 201.0 ± 7.82a 207.0 ± 8.52a

LDL-cholesterol (mg/dL) 85.0 ± 7.30 100.0 ± 4.27 140.0 ± 9.37a,b 114.0 ± 6.72a

Triacylglycerol (mg/dL) 62.0 ± 5.90 56.0 ± 3.41 66.0 ± 4.25 72.0 ± 3.29

AST (U/L) 13.8 ± 1.25 31.2 ± 4.23a 18.9 ± 2.39 25.1 ± 4.32

Fasted** serum glucose (mg/dL) 163.0 ± 7.84 190.0 ± 6.83 240.0± 13.64a,b 214.0 ± 13.49a

Fasted** serum insulin (ng/mL) 0.3 ± 0.03 1.1 ± 0.12 1.2 ± 0.25 2.4 ± 0.45a,b,c

Glucose intolerance (AUC) 8154 ± 840.6 14209 ± 1305a 14409 ± 1372a 18574 ± 1377a

Insulin sensitivity (kITT - %/min) 3.5 ± 0.25 3.1 ± 0.20 3.7 ± 0.28 2.2 ± 0.21a,b,c

Table 1. Body weight, food intake and serum metabolites levels in mice fed either the control diet or 
obesogenic diets (high-sugar (HS), high-fat (HF) and high-sugar/high-fat (HSHF)) for eight weeks. *Caloric 
ingestion considered the food ingestion calories for CD and HF group and food ingestion plus condensed 
milk intake calories for HS and HSHF groups; **Fasted for 3–4 hours. CD, control diet; HS, high-sugar diet; 
HF, high-fat diet; HSHF, high-sugar/high-fat diet; LDL-cholesterol, low density lipoprotein cholesterol; AST, 
aspartate aminotransferase; AUC, area under the curve of glycaemia - values obtained from the glucose 
tolerance test (GTT); kITT (%/min), the constant rate for plasma glucose disappearance - values obtained 
from the insulin tolerance test (ITT). The results are shown as the mean ± S.E.M. (n = 12–13). The values were 
analysed using the one-way ANOVA and Tukey’s post-test. (a) P < 0.05 versus CD; (b) P < 0.05 versus HS; and 
(c) P < 0.05 versus HF.
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The high-sugar diet (HS group) increased type I collagen deposition in the liver as demonstrated by 
the qualitative analyses, using picrosirius red staining, compared with the others (Fig. 3A). The livers from 
high-fat-diet-fed mice had large lipid droplets, as indicated by Sudan staining (Fig. 3B). The obesogenic diets also 
induced cell death, as indicated by the decreased density of nuclear staining with haematoxylin and eosin (HS by 
18%; HF by 16.5% and HSHF by 24.5%, compared with CD) (Fig. 3C,E) and led to an increase in the hepatocyte 
area (HS by 1.7-fold; HF by 2-fold and HSHF by 2.5-fold, compared with CD) (Fig. 3D,F).

The supply of condensed milk (HS group) increased the mRNA expression of leptin in eAT (by 3.3-fold) and 
type I collagen (by 2-fold) in the liver and decreased leptin mRNA expression (by 3.6-fold) in the soleus muscle 
(Table 2) compared with the CD group. The HF mice showed increased mRNA expression of leptin (by 3.5-fold) 
and decreased expression of adiponectin (by 2.8-fold) in eAT compared with the CD group (Table 2). The com-
bination of sugar and fat (HSHF group) increased the mRNA expression of F4/80 (by 5.7-fold) and decreased 
expression of adiponectin (by 2.8-fold) in eAT and increased Tlr-4 mRNA expression (by 1.6-fold) in the soleus 
muscle compared to the CD group (Table 2).

Only the combination high-sugar and high-fat diet (HSHF group) induced a significant increase in proinflam-
matory protein production in epididymal adipose tissue compared with the other three groups: IL-6 (by 2.6-fold 
compared with CD; by 1.5-fold compared with HS; by 1.9-fold compared with HF), IL1-β (by 2.9-fold compared 
with CD; by 2-fold compared with HS and HF), leptin (by 14.5-fold compared with CD; by 3-fold compared with 
HS; by 5-fold compared with HF), VCAM-1 (by 2.4-fold compared with CD; by 2.3-fold compared with HF) and 
ICAM-1 (by 2.6-fold compared with CD) (Fig. 4A–E, respectively).

The LPS-stimulated peritoneal macrophages demonstrated a striking increase (by 28-fold) in IL-6 production 
in mice fed the HS diet compared to the CD diet (Fig. 4F). The HF and HSHF diets induced a 8-fold increase in 
TNF-α production compared with the CD diet (Fig. 4G), and only the HF diet increased nitric oxide production 
(by 6.2-fold) compared with peritoneal macrophages from the CD mice (Fig. 4H).

Discussion
High-calorie diets induce obesity and associated co-morbidities such as insulin resistance, non-alcoholic fatty 
liver disease (NAFLD) and chronic low-grade inflammation8–11. These diets present high contents of sugar, fat 
or both. The aim of this study was to investigate whether a marked increase in one of the macronutrients, fat or 
sugar, or both, could affect the consequences of obesity on inflammation and insulin resistance. The mice were 
fed one of three obesogenic diet regimes: control diet with free access to sweetened condensed milk, high-fat diet, 
or high-fat diet with free access to sweetened condensed milk. The main macronutrient present in the sweetened 
condensed milk used and that is usually commercially available at the market is carbohydrate (~53% sucrose 
and ~15% lactose)12. The three obesogenic diets induced body weight gain, glucose intolerance and increased 
visceral fat depots and liver wet weight, adipocyte size and serum total cholesterol levels compared to the control 

Figure 1. Variations in blood glucose levels during the (A) glucose tolerance test (GTT) and (B) insulin 
tolerance test (ITT) in mice fed the control diet (CD) or obesogenic diets (high-sugar (HS), high-fat (HF) or 
high-sugar/high-fat diet (HSHF) for 8 weeks. The results are expressed as the mean ± S.E.M. (n = 4–7/group).
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diet. These changes were more pronounced in the high-sugar/high-fat diet group and characterize a metabolic 
syndrome condition.

High-fat- and high-sugar/high-fat-fed mice ingested fewer calories whereas the high-sugar diet group ingested 
an equal calorie quantity as the control group. The consensus is that higher caloric intake induces higher body 
weight gain irrespective of the source13. The overconsumption of rapidly absorbable carbohydrates and palatable 
food such as condensed milk causes a rapid elevation of serum insulin levels, and food craving then occurs14, 15. 
Hall16 described the carbohydrate-insulin model in which diets with a high proportion of carbohydrates elevate 
insulin secretion, thereby suppressing the release of fatty acids from the adipose tissue into the circulation and 
direct the circulating fatty acids towards the adipose tissue storage and away from oxidation by metabolically 
active tissues, such as heart, muscle and liver. This altered fuel availability and distribution may lead to a state of 
cellular ‘internal starvation’, decreased energy expenditure and increased hunger17.

Fat is the highest caloric component in the diet (9 kcal/g compared with 4 kcal/g for carbohydrate)18 but it 
suppresses appetite19. Recently, Olsen et al.20 reported that old male C57BL/6 J mice fed a high-fat diet (60% fat) 
for five weeks had increased body weight but plateaued 6 weeks after commencing the high-fat diet feeding (at 11 

Figure 2. Inguinal adipocyte size (A), lipolysis (B) and lipogenesis (C) rates in mice fed the control diet 
(CD) or obesogenic diets (high-sugar (HS), high-fat (HF) and high-sugar/high-fat diet (HSHF) for 8 weeks. 
The results are expressed as the mean ± S.E.M. (n = 4–7/group). (a) P < 0.05 compared with CD, (b) P < 0.05 
compared with HS, and (c) P < 0.05 compared with HF, using one-way ANOVA and Tukey’s post-test.
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weeks of age). The authors also reported no difference in calorie intake between the HF and control mice neither 
during the light phase nor during the dark phase. The energy expenditure was measured, and the basal metabolic 
rate remained unchanged in obese mice compared with balanced chow-fed controls. The active metabolic rate 
seemed to be significantly reduced in obese mice. Additionally, diet-induced thermogenesis studies reported that 
lower energy was dissipated as heat after digestion of fat (~7%) compared to sucrose (~11.4%)21.

Free access to condensed milk induced an increase in serum AST activity and type I collagen deposition in 
the liver, as demonstrated by morphological analysis and confirmed by mRNA expression. Condensed milk has 
approximately 53% sucrose, a disaccharide that contains glucose and fructose. In humans, increased fructose 
consumption is associated with an increased severity of hepatic steatosis and fibrosis22, 23. The ingestion of sucrose 
containing fructose most likely accelerates the development of liver fibrogenesis24, 25. High sugar intake also pro-
motes inflammation, as demonstrated by augmented peritoneal macrophage IL-6 production and Tnf-α mRNA 

Figure 3. Photomicrographs illustrating the liver morphology of mice fed the control or obesogenic diets 
(high-sugar (HS), high-fat (HF) or high-sugar/high-fat diet (HSHF) for 8 weeks. (A) Picrosirius red staining; 
bar = 20 μm; (B) Sudan black staining; bar = 10 μm; (C) haematoxylin and eosin stain; bar = 20 μm; (D) azo 
carmine; bar = 20 μm; (E) nuclear density (nuclei/mm2) using 5 random fields/3 sections/animal; and (F) area 
of hepatocytes (μm2) measured in 45 cells per animal. The results are expressed as the mean ± S.E.M. (n = 4–7/
group). (a) P < 0.05 compared to CD, (b) P < 0.05 compared to HS, and (c) P < 0.05 compared to HF, using one-
way ANOVA and Tukey’s post-test.
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expression in the liver. Some authors have also described a link between leptin resistance and non-alcoholic 
steatohepatitis (NASH) development26–28.

NAFLD refers to a spectrum of liver diseases, including non-alcoholic fatty liver, which is characterized by 
steatosis with no or minor inflammation, and NASH, which is associated with inflammation and ballooning with 
or without fibrosis29, and it may progress to liver cirrhosis and hepatocellular carcinoma30, 31. As reported in this 
study and in work by others, the livers from mice fed a high-fat diet lacked fibrosis and showed mild steatosis and 
focal hepatocellular necrosis and apoptosis; their features were compatible with the progression of steatosis in 
NASH32. The increased peritoneal macrophage production of nitric oxide induced by a high-fat diet described in 
this study may contribute to NASH disease development. NO is involved in NASH progression, including mito-
chondrial dysfunction33 and biogenesis34.

Substituting a high-fat diet with a high-carbohydrate diet is associated with a decrease in LDL particle size and 
an increase in LDL density, which contribute to atherogenic dyslipidaemia35, 36. The high-fat diet increased the 
plasma levels of LDL-cholesterol, glycaemia, TNF-α production by peritoneal macrophages, led to hepatocyte 
and adipocyte hypertrophy, and decreased lipogenesis and adiponectin content in adipose tissue, regardless of 
the inclusion of condensed milk. This observation indicates an important fat-diet-induced metabolic dysfunc-
tion. Adipocyte and hepatocyte hypertrophy and inflammatory responses are associated with the development of 
insulin resistance and consequently increased glycaemia37. Adiponectin increases fatty acid β-oxidation38 and it is 
often lower in the plasma of obese subjects39. Liu et al.40 reported that peritoneal macrophages from diet-induced 
obese mice exhibit impaired autophagy with increased TNF-α production. Lipogenesis is stimulated by high food 
intake to promote triglyceride storage41. Brunengraber et al.42 reported reduced epididymal fat pad lipogenesis in 
mice consuming a lard-based high-fat diet compared with a high-carbohydrate diet.

The high-sugar/high-fat diet intensified the effects induced by the two obesogenic diets separately, resulting 
in increased fasting serum insulin levels, insulin resistance, lipolysis, mRNA expression of F4/80 and leptin in 
adipose tissue, mRNA expression of Tlr-4 in soleus muscle and protein content of IL-6, IL-1β, leptin, VCAM-1 
and ICAM-1 in adipose tissue (Fig. 5). The HSHF group ingested as many calories as the control group. Obesity 
and its associated co-morbidities were aggravated by the combination of both. Maioli et al.6 reported that mice fed 
a high-sugar and butter diet for 11 weeks exhibited, as demonstrated in our study, changes compatible with met-
abolic syndrome and more intense inflammation compared with mice fed chow, an AIN93G diet, a high-sugar 
or a high-fat diet.

Animal models of nutrition have been developed to mimic the alimentary habits that culminate in obesity and 
related disorders as NAFLD in humans. The sweetened condensed milk was more inflammatory than the high-fat 
diet and induced hepatic fibrosis. The high-fat diet was more detrimental for peripheral insulin sensitivity, and 
it caused liver steatosis. The ingestion of the combination high-sugar and high-fat diet intensified all changes 
induced by the high-sugar and high-fat diets individually. A summary of the findings reported is in the Fig. 5.

Material and Methods
Ethical approval. The animal studies were performed according to protocols approved by the Animal Care 
Committee of the Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil (125/10/CEUA). All 
experiments were performed in accordance with relevant guidelines and regulations.

Animals. Male C57BL/6 mice (12 weeks old) were housed in a room with a light-dark cycle of 12–12 h and 
temperature of 23 ± 2 °C. The mice were divided into two groups and were fed a control diet (CD) (energy com-
position of 76% carbohydrates, 9% fat, 15% proteins; 3.8 Kcal/g) or a high-fat diet (HF) (energy composition of 
26% carbohydrates, 59% fat, 15% proteins; 5.3 Kcal/g) for 8 weeks. In both diets, the main source of fat was lard, 
and the main source of carbohydrate was corn starch. A similar protocol was applied in our previous studies43–46. 
Approximately 50% of the CD and HF mice, concomitantly with the diet, received a separate bowl of sweetened 
condensed milk (energy composition of 68% carbohydrates, 23% fat, 9% protein; 3.25 Kcal/g) (Italac, Sao Paulo, 
SP, Brazil) supplemented with a vitamin and mineral mix (Rhoster, Sao Paulo, SP, Brazil) to generate two other 

Tissue mRNA CD HS HF HSHF

eAT

F4/80 1 ± 0.09 2.5 ± 0.36 4.5 ± 0.81 5.7 ± 1.42a

Adiponectin 1.4 ± 0.21 1.1 ± 0.28 0.5 ± 0.10a 0.5 ± 0.18a

Leptin 1.2 ± 0.15 3.9 ± 0.40a 3.0 ± 0.37a 2.4 ± 0.35b

Liver
Collagen 1.1 ± 0.23 2.2 ± 0.37a 1.3 ± 0.28 1.6 ± 0.17

Tnf-α 1.5 ± 0.41 2.9 ± 0.87c 0.7 ± 0.14 1.1 ± 0.27

Soleus Muscle
Leptin 1.1 ± 0.25 0.3 ± 0.07a,c 1.4 ± 0.17 1.1 ± 0.26

Tlr4 1.0 ± 0.11 1.3 ± 0.13 1 ± 0.13 1.6 ± 0.09a,c

Table 2. mRNA expression of inflammatory genes in insulin-responsive tissues: adipose tissue, liver and 
skeletal muscle from mice fed the control diet (2) or obesogenic diets: high-sugar (HS), high-fat (HF) and 
high-sugar/high-fat diet (HSHF) for eight weeks. mRNA gene expression in the epididymal adipose tissue 
(n = 6–7/group; Rplp0 as housekeeping gene), liver (n = 10–12/group; 18 S as housekeeping gene) and soleus 
muscle (n = 6–7/group; 18 S as housekeeping gene). The results are expressed as the mean ± S.E.M. (a) P < 0.05 
compared with CD, (b) P < 0.05 compared with HC, and (c) P < 0.05 compared with HF using one-way 
ANOVA and Tukey’s post-test. CD, control diet; HS, high-sugar diet; HF, high-fat diet; HSHF, high-sugar/high-
fat diet; Tnf –tumour necrosis factor; Tlr4, Toll-like receptor 4.
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groups: high-sugar (HS) and high-fat and high-sugar (HFHS)47. Condensed milk, water and both diets (CD and 
HF) were provided ad libitum. The mice were weighed once a week. Food and condensed milk intake was meas-
ured and re-issued every 2 days. Food intake ([food offered (g) − food remaining (g)]), condensed milk and cal-
orie intake ([food intake × kcal/g of diet] + [condensed milk intake × kcal/g of condensed milk]) were calculated 
for each group each week in a cage consisting of 6 mice. After 8 weeks of the obesogenic diets (20 weeks old), the 
mice were fasted for 2–4 hours and then were killed using carbon dioxide.

Blood measurements, glucose and insulin tolerance tests. Blood measurements, glucose tolerance 
tests (GTTs) and insulin tolerance tests (ITTs) were performed as described in our previous study46. The rate 
constant for the ITT (kITT) was calculated using the formula kITT (%/min) = 0.693/t½, where t½ is calculated 
from the slope of the plasma glucose concentration during the period from 0 to 20 minutes after insulin injection, 
using least squares analysis; the decline in plasma glucose concentration during this period was linear. Total cho-
lesterol48, triacylglycerol49 and the activity of aspartate aminotransferase-AST50 were evaluated using colorimetric 
assays (Labtest Diagnostics, Lagoa Santa, MG, Brazil), and insulin was determined using ELISAs (Millipore kit, 
St. Charles, MO). LDL-cholesterol was calculated using the Friedewald equation51.

Adipocyte isolation and adipose tissue metabolism. Subcutaneous adipocyte isolation was performed 
as previously described52 with slight modifications53. A small number of adipocytes were photographed using an 
optical microscope (×100 magnification) and a microscope camera (Moticam 1000; Motic, Richmond, British 
Columbia, Canada), and the mean adipocyte diameter was assessed by measuring 50 cells using Motic-Images 
Plus 2.0 software. Lipolysis and the incorporation of [1-14C]-acetate into fatty acids were assessed in subcutaneous 
adipocytes isolated as described in previous studies44, 53.

Figure 4. Content of IL-6 (A), IL-1β (B), leptin (C), VCAM-1 (D) and ICAM-1 (E) by epididymal adipose 
tissue and of IL-6 (F), TNF-α (G) and nitric oxide (H) by LPS-stimulated peritoneal macrophages (1 × 106 cells) 
from C57BL/6 mice fed the control diet (CD) or obesogenic diets (high-sugar (HS), high-fat (HF) or high-
sugar/high-fat diet (HSHF) for eight weeks. The results are expressed as the mean ± S.E.M. (n = 4–7/group). (a) 
P < 0.05 compared with CD, (b) P < 0.05 compared with HS, and (c) P < 0.05 compared with HF, using the one-
way ANOVA and Tukey’s post-test. VCAM, vascular cell adhesion protein 1; ICAM, intercellular cell adhesion 
molecular 1; IL, interleukin; LPS, lipopolysaccharide from E. coli 055:B5 (2.5 μg/mL for 24 h).
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Measurement of inflammatory markers. The inflammatory parameters were measured in the epididy-
mal adipose tissue (eAT) [interleukin (IL)-6, IL-1β, leptin, vascular adhesion molecule-1 (VCAM-1) and intercel-
lular adhesion molecule 1 (ICAM-1)] and peritoneal macrophages (IL-6 and tumour necrosis factor α - TNF-α) 
using ELISAs (DuoSet kits, R&D System, MN, USA). The values obtained for epidydimal adipose tissue were 
normalized to total protein content by applying the method of Bradford54. For epididymal adipose tissue, the total 
tissue weight was also used for normalization. The production of nitric oxide (NO) by peritoneal macrophages 
was determined using the method of Griess55 described in our previous study47.

Gene expression analysis. The expression levels of genes involved in inflammation in eAT, liver and 
soleus muscle were evaluated using real-time PCR (polymerase chain reaction) as previously reported by 
our group43. The expression of Rplp0 was used as internal control for eAT and the expression of 18S for liver 
and soleus muscle. Reference genes were defined in preliminary assays that indicated unaffected expres-
sion levels in the experimental conditions herein used56, 57. The primer sequences were: F4/80, NM_010130.4, 
sense CCTGAACATGCAACCTGCCAC, antisense GGGCAT GAGCAGBCTGTAGGATC, Adiponectin, 
NM_009605.4, sense TCTTAATCCTGCCCAGTCATGC, antisense TCCAACATCTCCTGTCTCACCC, Leptin, 
NM_008493.3, sense TCACACACGCAGTCGGTATCC, antisense ATGGAGGAGGTCTCGGAGATT, Collagen, 
NM_009931.2, sense CTCTATGTCCAAGGCAACGAG, antisense TCACAAACCGCACACCTG, TNF-α, 
NM_001278601.1, sense TCTTCTCATTCCTGCTTGTGGC, antisense CACTTGGTGGTTTGCTACGAC G, 
Tlr4, NM_021297.3, sense TTCAGAACTTCAGTGGCTGG, antisense TGTTAGTCCAGAGAAACTTCCTG, 
Rplp0, NM_007475.5, sense CCACTTACTGAAAAGGTCAAGGC, antisense TGGTTGCTTTGGCGGGATTA, 
18S, NM_030720.1, sense CGCTACACTGACTGGCTCAG, and antisense CAGGGACTTAATCAACGCAAG.

Histomorphometric analysis of the liver. Fragments of the right lobe liver were collected, fixed in 10% 
paraformaldehyde for 24 hours and washed in distilled water for 6 hours for light microscopy. After the liver 
fragments were fixed, the material was dehydrated in ascending alcohol series, diaphanized in xylene and embed-
ded in paraffin. Semi-serial histological cross-sections of 5 μm in thickness were stained with picrosirius red58 
under polarized light to detect types I and III collagen fibres and with Sudan black for lipid detection. Images 

Figure 5. Summary of the effects of the three obesogenic diets, high-sugar (HS), high-fat (HF) and high-
sugar/high-fat (HSHF), given to the mice for eight weeks. Up arrows indicate an increase, and down arrows 
indicate a decrease. The descriptions of the effects descriptions were subdivided into common general features, 
inflammatory state, insulin resistance (IR) state and changes in blood. AST, aspartate aminotransferase; VCAM, 
vascular cell adhesion protein 1; ICAM, intercellular cell adhesion molecular 1; IL, interleukin; TNF, tumour 
necrosis alpha; Tlr-4, toll-like receptor 4; IR, insulin resistance.
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of hepatocytes (area and density) were captured using a camera (AxioCam) coupled to a trinocular microscope 
(Zeiss, Oberkochen, Germany) and were analysed using the image analysis software Axio Vision 4.3. To deter-
mine the area of hepatocytes (μm2), azo carmine stained sections were randomly measured (45 cells per animal). 
Nuclear density (nucleus/mm2) was calculated using 5 random fields/3 sections/animal stained with haematox-
ylin and eosin59.

Statistical analysis. The results are presented as the mean ± standard error of the mean (S.E.M.). All groups 
were compared to each other using the one-way ANOVA and a Tukey post-test (GraphPad Prism, version 5.01). 
The differences were considered to be statistically significant for P < 0.05.
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