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Quantification of Aquaporin-Z 
reconstituted into vesicles for 
biomimetic membrane fabrication
Hui Xian Gan1,2, Hu Zhou1,3, Qingsong Lin   1,3 & Yen Wah Tong   1,2

Aquaporin incorporated biomimetic membranes are anticipated to offer unprecedented desalination 
capabilities. However, the lack of accurate methods to quantify the reconstituted aquaporin presents 
a huge hurdle in investigating aquaporin performance and optimizing membrane fabrication. Herein, 
we present three quantification methods to determine the Aquaporin-Z reconstituted into E. coli lipid 
vesicles: 1) nanogold labeling with transmission electron microscopy (TEM) visualization, 2) nickel 
labeling with inductively coupled plasma-mass spectrometry (ICP-MS) and 3) gel electrophoresis. 
The TEM method serves as a quick way to determine if aquaporin has been reconstituted, but is not 
quantitative. The numerical results from quantitative methods, ICP-MS and gel electrophoresis, 
correlate closely, showing that 60 ± 20% vs 66 ± 4% of Aquaporin-Z added is successfully reconstituted 
into vesicles respectively. These methods allow more accurate determination of Aquaporin-Z 
reconstituted and loss during reconstitution, with relatively commonly available equipment and 
without complex sample handling, or lengthy data analysis. These would allow them to be widely 
applicable to scientific studies of protein function in the biomimetic environment and engineering 
studies on biomimetic membrane fabrication.

Reverse osmosis is the leading technology in water desalination. The burgeoning need for water has fueled the 
search for higher performance membrane that can reduce the energy consumption and cost of reverse osmosis 
process1. Aquaporin (Aqp) water channel proteins provide passage to more than three billion water molecules 
per second per molecule while maintaining rejection to other solutes in cell membranes2, 3. It is anticipated that 
Aqp-reconstituted biomimetic membrane has the greatest potential for performance enhancement but yet fur-
thest from commercial viability4, 5. While many fabrication strategies and lab scale testing has been presented over 
the years, few fundamental studies have been done in this area and most works remain rudimentary6–18.

Aqp is the main component that distinguishes a biomimetic membrane from a conventional membrane, yet 
the actual amount of Aqp reconstituted is often neglected due to the lack of quantification methods. This hin-
ders systematic understanding of the intricate works of the biomimetic membrane, which is vital for scientific 
exploration and membrane performance optimization. Theoretically, a larger number of Aqp incorporated into 
vesicles or membrane should result in improved membrane performance. However, several studies have reported 
that increasing protein to lipid reconstitution ratio beyond a critical point led to deteriorated vesicle permeability 
instead8, 12, 13, 15, 18. Unexpectedly, there are also reports of poorer membrane performance with immobilization 
of vesicles of greater permeability10, 12. Nonetheless, the root cause of such phenomenon cannot be pinpointed 
without proper quantification methods.

Currently, stopped-flow light scattering (SFLS) serves as a standard method to evaluate Aqp reconstitution19. 
SFLS works as a functional assay, whereby protein incorporated vesicles are mixed rapidly with a solution of high 
osmolarity, which results in water efflux from vesicles. During the course, the rate of shrinkage of vesicles is meas-
ured to determine vesicle permeability. However, this method is an indirect representation of Aqp reconstitution 
since permeability can also be affected by a plethora of other factors such as vesicle quality, incorporation matrix, 
Aqp conformation and orientation in the bilayer. Furthermore, the stopped-flow assay is vulnerable to large signal 
to noise ratio for a sample of poor quality19, 20. There are several challenges in developing accurate quantification 
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methods, including interferences from incorporation matrix or non-reconstituted Aqp. Additionally, the quan-
tification method should also satisfy numerous criteria for it to be practical and useful. These include requiring 
small sample consumption, using relatively commonly available equipment and involving no complicated sample 
handling or data processing processes.

There has been an attempt to answer the need for quantification of Aqp reconstituted by the Danish company 
Aquaporin A/S19. They have presented several quantification methods including freeze-fracture transmission 
electron microscopy (FF-TEM), fluorescence correlation spectroscopy (FCS) and small-angle X-ray scattering 
(SAXS)19. However, FF-TEM can give ambiguous results for polymeric systems. Conversely, the latter two meth-
ods can provide detailed information but require access to large-scale facilities and knowledge in modelling and 
fitting for data progressing.

In this paper, we introduce three accurate and quantitative methods to determine the Aquaporin-Z (AqpZ) 
successfully reconstituted into Escherichia coli (E. coli) lipid vesicles. In order to enable accurate quantification, it 
is important to remove interferences by separating the non-reconstituted AqpZ from the vesicles prior to further 
analysis. This is achieved through ultracentrifugation of samples such that the reconstituted AqpZ was pelleted 
down along with vesicles while non-reconstituted AqpZ remained in the supernatant (Fig. 1). These three differ-
ent fractions obtained, supernatant (S), wash (W) and pellet (P), are then subjected to further analysis using the 
three quantification methods which would be discussed in the following section.

We aim to present quantification methods that can be performed with relatively commonly available equip-
ment, without complicated sample handling or data processing. The three methods are namely: (1) nanogold 
labeling and transmission electron microscope (TEM) visualization, (2) nickel labeling and inductively coupled 
plasma-mass spectroscopy (ICP-MS) quantification and (3) gel electrophoresis. The advantages and disadvan-
tages of each method will be further discussed. Based on the accuracy required and equipment availability, a 
suitable quantification method can be selected for the application. Conversely, these methods can also be applied 
in parallel for verification of results and harnessing more information.

Results and Discussion
Stopped-flow light scattering permeability test.  AqpZ-incorporated E. coli lipid vesicles were 
employed to demonstrate the viability of the three proposed protein quantification methods in this work. Control 
vesicles were prepared by adding a buffer without AqpZ during reconstitution. The effectiveness of AqpZ recon-
stitution was first evaluated with conventional methods, SFLS permeability test and dynamic light scattering 
(DLS). Successful AqpZ incorporation is evident from the results of SFLS functional assay (Fig. 2 and Table 1), 
which shows a marked increase in vesicle permeability from 24 µm/s to 800 µm/s with AqpZ addition. DLS results 
in Table 1 also show that vesicles of around 170 nm in diameter were formed for both control and AqpZ incorpo-
rated vesicles. However, it is also clear from the results that SFLS method is only able to provide information about 
vesicle permeability, but not further information on number and distribution of Aqp reconstituted in vesicles.

A critical evaluation of Aqp performance or reconstitution methods and materials can only be conducted with 
complete information on both actual Aqp incorporation and Pf, as shown for the calculation of Pa in equation (6).  
While the increase in Pf value does demonstrate the function of Aqp, it is only useful for comparison between 
control and Aqp reconstituted vesicles prepared under same experimental conditions. It is insufficient for under-
standing AqpZ performance or effectiveness of reconstitution under varying incorporating conditions. A fair 
assessment of AqpZ performance will require normalization of Pf values with vesicle dimensions and the actual 
number of AqpZ reconstituted in vesicles.

Other than the use for accurate evaluation of Aqp performance, actual Aqp reconstitution is also an essential 
information for engineering biomimetic desalination membranes. Vesicle immobilization is a preferred strategy 
for producing Aqp biomimetic desalination membrane19. Accordingly, immobilization of vesicles with highest Pf 
attainable has been the main pursuit of many work8, 12, 13, 18. There has been a wide range of vesicle size reported, 
ranging from a diameter of 80 to 200 nm, varying with method and material for reconstitution7, 10, 15–17. Notably, 
vesicles of larger size would likely be able to accommodate a greater number of AqpZ per vesicle and achieve a 
larger Pf value. Yet, vesicles of higher Pf may not necessarily result in better membrane performance as larger ves-
icle sizes would limit the number of vesicles that could be immobilized on the membrane20. In all, optimization 
of membrane performance would require information on vesicle dimensions and actual AqpZ reconstituted, on 
top of Pf.

Validation of ultracentrifugation separation method.  To quantify the incorporated protein in vesi-
cles, it is vital to remove the non-reconstituted AqpZ from the vesicles prior to further analysis. The effectiveness 

Figure 1.  Ultracentrifugation to separate non-reconstituted AqpZ from AqpZ reconstituted in vesicles.
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of the ultracentrifugation separation method was validated through separation of bovine serum albumin (BSA) 
from E. coli vesicles. BSA was selected as the control protein due to its inability to be incorporated onto the vesicle 
membrane bilayer of E. coli vesicle. Due to the water-soluble nature of BSA, it should be distributed predomi-
nantly in the buffer, with a limited amount bound on surface of vesicles. As such, an effective separation method 
will allow the BSA doped into E. coli vesicle solution to be predominantly recovered in the supernatant. However, 
we would like to highlight the limitations of BSA as a control as it is not a membrane protein and may behave dif-
ferently from AqpZ in its interaction with lipid membrane and separation under ultracentrifugation. The choice 
of BSA as a control is due to the lack of a better alternative protein which behaves similarly to AqpZ and yet gets 
incorporated into the bilayer.

BSA was doped in E. coli control vesicles at a lipid to protein weight ratio of 100 and mixed well at 750 rpm 
for 2 h. Ultracentrifugation was then performed twice to ensure complete separation of non-reconstituted BSA, 
including those that are just physically bound onto the vesicles. The procedure is as shown in Fig. 1, with the 
exception of having BSA in place of AqpZ. The three fractions collected were analyzed with gel electrophoresis. 
BSA can be identified from its band position corresponding to around 55 kDa and quantified by comparison 
against a calibration curve constructed from a series of a known amount of BSA.

The results shown in Fig. 3 demonstrate the effectiveness of separation of non-reconstituted BSA predomi-
nantly into the supernatant and wash fraction. There is a total of 4.00 µg of BSA loaded in the BSA doped E. coli 
vesicles, out of which, 2.98 µg was detected in the supernatant fraction and 0.65 µg was found in the wash fraction. 
After ultracentrifugation, a small amount of BSA that is beyond the quantification limit of our working curve can 
be observed in the pellet fraction (Fig. 3a). This could be attributed to BSA which is absorbed onto the vesicles 
and hence remains in the pellet fraction. Notably, the total mass of BSA recovered in three fractions sum up to 
90.1% of the BSA doped initially, with the other 10% of BSA either lost during the ultracentrifugation process or 
remaining in the pellet fraction.

Since the ultracentrifugation procedure was shown to effectively separate non-reconstituted protein from 
vesicles, the same procedure was applied to AqpZ reconstituted vesicles and control vesicles (with and without 
nickel labeling). This procedure yielded three different fractions for each sample, supernatant (S), wash (W) and 
pellet (P), as shown in Fig. 1. The bulk of the non-reconstituted AqpZ will remain in supernatant from the first 

Figure 2.  Stop-flow light scattering curve. An average of at least 5 independent curves is shown for each. ECC 
and ECZ refer to unlabeled control and AqpZ reconstituted E. coli lipid vesicles respectively. ECCNi and ECZNi 
refer to nickel labeled control and AqpZ reconstituted E. coli lipid vesicles respectively.

Diameter (nm)
Polydispersity 
index (PDI)

Kinetic rate constant, 
k (1/s)

Permeability, 
Pf (µm/s)

ECC 170 ± 10 0.08 ± 0.01 4.5 ± 0.6 24 ± 2

ECZ 166 ± 8 0.10 ± 0.02 150 ± 40 800 ± 200

ECCNi 170 ± 10 0.10 ± 0.01 4.4 ± 0.8 23 ± 3

ECZNi 170 ± 8 0.12 ± 0.02 130 ± 20 700 ± 90

Table 1.  Diameter of vesicles measured by DLS, size distribution by intensity. Note: The kinetic rate constant 
is determined from curve fitting on 5 to 10 stopped-flow measurements. Standard deviation is calculated from 
results obtained from three independent repeated experiments. ECCNi and ECZNi refer to nickel labeled 
control and AqpZ reconstituted E. coli lipid vesicles respectively. ECC and ECZ refer to unlabeled control and 
AqpZ reconstituted E. coli lipid vesicles respectively.
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round of ultracentrifugation. Conversely, minute amount AqpZ which could be physically bound to the surface 
of vesicles can be separated via resuspension and a second round of ultracentrifugation in the wash fraction. The 
measured amount of pelleted AqpZ is likely to be the maximum amount of AqpZ that is functionally integrated 
into the membrane since the pellet may also contain non-functional integrated AqpZ that are aggregated, trapped 
or absorbed onto vesicles.

Nanogold labeling and TEM visualization.  TEM is commonly employed to confirm vesicle formation, 
yet it is difficult to distinguish reconstituted Aqp unambiguously from the collapsed polymer chains of vesicles 
under TEM19. We propose to enhance the information that can be gathered using TEM by labeling His-tagged 
AqpZ with Ni-NTA linked nanogold. These 5 nm spherical nanogold, with a distinct size and shape and high 
electronic conductivity, can be easily visualized under TEM to determine the success of AqpZ reconstitution on 
vesicles. This would allow information about the morphology of vesicle and distribution of AqpZ on vesicles to 
be obtained simultaneously. Nickel ions recognize and bind to histidine tag (His-tag) with high affinity, as its imi-
dazole ring offers electron donor groups that coordinate with the metal ions21, 22. This interaction was leveraged 
to conduct the labeling. The on-grid labeling procedure was optimized to minimize non-specific binding and 
performed as described in the experimental section.

The TEM images show that control (without protein) does not have nanogold bound while those with AqpZ 
shows nanogold bound (Fig. 4). In this case, the TEM images show 2 to 3 nanogold bound on each vesicle. This 
method serves as a convenient method for quick visualization of Aqp reconstituted into vesicles. The labeling 
and TEM experiment only takes 2 h to complete. Furthermore, TEM visualization is a necessary characterization 
technique to determine vesicle formation. An additional step of nanogold labeling allows reconstitution informa-
tion to also be obtained. This method is exceptionally useful for a quick screening of different materials for vesicle 
preparation and incorporation method. Nonetheless, it should be applied with the caution that the result does not 
hold statistical significance until larger effort and time is devoted to counting the number of nanogold on a huge 
population of vesicles.

The nanogold number observed could be an underestimation of the actual number of AqpZ reconstituted. 
Since the 5 nm nanogold is similar in size to AqpZ and can cause steric hindrance to reconstitution, labeling 
has to be performed after reconstitution step. As such, His-tags on AqpZ which are oriented towards the inner 
core of vesicles will be inaccessible for nanogold labeling and the actual amount of AqpZ incorporated can be 
underestimated. In addition, the large size of nanogold would hinder binding to His-tag in close proximity, which 
would be the case for His-tags on the same tetramer. Lastly, the vesicles may cluster together during TEM sample 
preparation, posing greater difficulties in distinguishing the nanogold on each different vesicle. Since we are una-
ble to measure the channel function after labeling the AqpZ with nanogold, no comparison of channel activity 
with other methods or literature can be performed. The aforementioned reasons limit the value of TEM method 
for accurate quantification and led us to develop the next two approaches for more quantitative measurements.

Nickel labeling and ICP-MS quantification.  In order to circumvent the limitation of nanogold labeling 
method, we propose to label AqpZ with nickel (II) ions, which are of picometre size and are significantly smaller 
compared to AqpZ23. This allows labeling to be performed before reconstitution without affecting the incorpora-
tion and AqpZ function. Based on two-tailed t-test, there is an insignificant difference in the diameter between 
ECZ and ECZNi (P > 0.05) and between their ECC and ECCNi (P > 0.05). Similarly, t-test shows an insignificant 
difference in Pf between ECZ and ECZNi (P > 0.05) and between their ECC and ECCNi (P > 0.05).

Figure 3.  Gel electrophoresis results of different fractions of BSA-doped E. coli vesicles. (a) Gel electrophoresis 
result, the full length gel is presented in Supplementary Figure S1. (b) BSA calibration curve constructed from 
loading known mass BSA of 0.5 µg, 1.0 µg and 1.5 µg for gel electrophoresis. (c) Mass of BSA present in different 
fractions, determined through BSA calibration curve. ECBSA refers to BSA-doped E. coli control sample. P, W 
and S refer to the pellet, wash and supernatant fraction obtained from after ultracentrifugation. BSA refers to 
BSA standard solution loaded in known mass as indicated.

http://S1
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Determination of binding molar ratio between nickel and His-tag.  Nickel labeled AqpZ reconstituted can easily be 
quantified by measuring the nickel concentration, as long as the binding stoichiometric relation between nickel 
and His-tagged Aqp can be determined21. As such, verification of the binding ratio between nickel and His-tag 
is crucial for this method. For that, AqpZ and control buffer were labeled with nickel chloride solution in large 
excess and unbound nickel was removed by a desalting column and dialysis. The samples were then subjected to 
microwave digestion and ICP-MS. The protocol was optimized such that it allowed complete removal of nickel 
from the control buffer without AqpZ. Briefly, the nickel labeling amount, method of nickel removal, MWCO of 
dialysis cassette were investigated. Eventually, the dialysis buffer was collected for analysis to check that nickel 
concentration is reduced to a negligible amount in dialysis buffer after three buffer replacements. (Please refer to 
the supporting information for data on optimization.)

ICP-MS is a highly sensitive technique to investigate trace metal concentration in samples24. This makes 
ICP-MS a suitable method to detect the nickel concentration in our samples. The results from nickel labeled 
AqpZ are presented in Fig. 5. The calibration curve shows that the nickel measurement is done within the linear 
range of readings. Based on the measured nickel concentration and the concentration of AqpZ determined using 
RCDC (reducing agent and detergent compatible) assay (Bio-Rad), the binding molar ratio between histidine and 
nickel is 1.8. This result is consistent with other published work that pH above 5 favors the behavior of His-tag as 
a tridentate ligand that coordinates with nickel ions in an octahedral geometry, giving rise to bis-histidine-nickel 

Figure 4.  Nanogold labeling TEM results. (a) Gold-labeled E. coli control vesicles without AqpZ. (b) Gold-
labeled E. coli vesicles with AqpZ reconstituted at a lipid to AqpZ weight ratio of 100. White arrows point 
towards 5 nm Ni-NTA nanogold.

Figure 5.  ICP-MS results of nickel labeled AqpZ. (a) Representative calibration curve for ICP-MS 
measurement. Standard deviation is calculated from results obtained from three independent repeated 
experiments. (b) Labeling process was performed three times and nickel concentration was determined from 
ICP-MS. Standard deviation is calculated from results obtained from three independent repeated experiments. 
Buffer refers to 20 mM Tris-HCl, 100 mM NaCl buffer with 0.2% DDM. NiC and NiZ refer to nickel labeled 
control and AqpZ respectively. 8 mg/L of AqpZ or equivalent volume of control buffer which were microwave 
digested was used for ICP-MS.
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complex21. The dissociation constant for the interaction between His-tag and Ni2+ was reported to be around 
10−6 M at neutral pH, showing the high stability of this interaction25. With a known binding ratio, AqpZ amount 
per unit volume of vesicle sample can be calculated with the measurement of nickel concentration from incorpo-
rated AqpZ with nickel labeling.

Quantification of AqpZ based on nickel concentration.  Next, this nickel labeled AqpZ or control buffer were 
reconstituted into E. coli lipid vesicles. A portion of each sample was subjected to ultracentrifugation before 
ICP-MS quantification analysis. Samples were broken down via microwave digestion before injecting into 
ICP-MS for quantification. The reconstitution and quantification procedure was performed three times. Results 
from the reconstitution of nickel labeled into E. coli lipid vesicles are summarized in Fig. 6.

Percentage of AqpZ successfully reconstituted.  The percentage of AqpZ successfully reconstituted, with respect to 
total amount of AqpZ added, can be calculated using equation (1).

= ×% AqpZ reconstituted Reading for pellet
Reading before dialysis

100%
(1)

Percentage of AqpZ in pellet fraction indicates the proportion of added AqpZ which were successfully 
reconstituted into E. coli vesicles, the rest of AqpZ were either lost through the incorporation process or not 
reconstituted. Using our current method of incorporation, 60 ± 20% of the AqpZ added in the beginning was 
reconstituted successfully.

Identification of procedure undermining AqpZ reconstitution.  Besides the percentage of AqpZ added that was 
successfully reconstituted, ICP-MS results can also be used to identify specific steps that lower incorporation. 
With that, specific conditions can be identified for optimization to improve reconstitution. The concentration 
of AqpZ at different stages of the reconstitution experiment can be monitored by collecting and measuring their 
nickel concentrations. In this work, the nickel concentration of samples collected at three different stages of the 
experiment, namely, before reconstitution dialysis, after reconstitution dialysis, and after ultracentrifugation was 
measured.

Each reading for AqpZ incorporated E. coli was corrected for the dilution effects of dialysis and deducting 
the reading of corresponding control samples before using for calculation. The resulting nickel concentration of 
AqpZ reconstituted E. coli vesicles at each stage of incorporation are tabulated in Table 2. It is evident that nickel 
concentration, which is directly proportional to AqpZ concentration, decreases after reconstitution dialysis and 
decreases even further after ultracentrifugation.

Since the dilution effect of dialysis has been accounted for, the remaining loss in nickel concentration can be 
attributed to AqpZ loss during the reconstitution and ultracentrifugation process. Using equations (2), (3) and (4),  
the percentage of AqpZ loss through dialysis and ultracentrifugation or AqpZ which are not lost in the reconsti-
tution process but yet not reconstituted into vesicles, can be calculated from the corrected nickel concentration 
(Table 3). 20 ± 10% of AqpZ was lost during the dialysis process, this is significantly higher than the 3.4 ± 0.9% 
of AqpZ remaining not reconstituted in the solution. This means that AqpZ which are not lost are predominantly 
reconstituted successfully into the vesicles. This further indicates that the primary reason for reduced efficiency 
of this reconstitution method is the AqpZ loss during incorporation, such as due to adherence onto dialysis 

Figure 6.  ICP-MS results of nickel labeled AqpZ incorporated into vesicles. (a) Representative calibration 
curve for ICP-MS measurement. Standard deviation is calculated from results obtained from three independent 
repeated experiments. (b) Reconstitution process was performed three times and nickel concentration was 
determined from ICP-MS. Buffer refers to 0.1 M MOPS buffer each sample was suspended in. Standard 
deviation is calculated from results obtained from three independent repeated experiments. ECCNi and ECZNi 
refer to nickel labeled control and AqpZ reconstituted E. coli lipid vesicles respectively. P, W, S refers to the 
pellet, wash and supernatant fractions collected after ultracentrifugation. 8 mg/L of AqpZ or an equivalent 
volume of control and buffer which are microwave digested is used for ICP-MS.
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membrane or loss to external dialysis buffer due to defects in dialysis membrane, rather than the lack of capacity 
for vesicles to accommodate more AqpZ.

=
−

×% AqpZ loss (dialysis) Before dialysis After dialysis
Before dialysis

100%
(2)

=
− + +

×% AqpZ loss (ultracentrifugation) After dialysis (P W S)
Before dialysis

100%
(3)

=
+

×% AqpZ not reconstituted W S
Before dialysis

100%
(4)

Calculation of permeability per AqpZ monomer (Pa).  The combination of vesicle permeation measurement by 
SF, dimension test by DLS, and protein incorporation amount determination can be applied to investigate the 
performance of single protein. Since the lipid to protein weight ratio added is known to be 100, the actual amount 
of AqpZ reconstituted and the average AqpZ number per vesicle can be calculated. The permeability per AqpZ 
monomer (Pa) can be calculated from Pf and vesicle molecular weight using the method previously reported3, 26. 
At 100% incorporation, there would be an average of 52.7 tetramers per vesicle for a lipid to AqpZ weight ratio 
of 100. With the known actual percentage of incorporated AqpZ of 60 ± 20%, the average number of tetramer 
per vesicle is 32 ± 9. Coupled with stopped-flow data presented for nickel labeled samples previously, Pa was cal-
culated to be 51 × 10−14 cm3/s/subunit. With 95% confidence, the average Pa is between 20 × 10−14 cm3/s/subunit 
to 80 × 10−14 cm3/s/subunit. As expected, the value determined is higher than those reported in the literature, 
whereby Pa was reported to be greater than 10 × 10−14 cm3/s/subunit3 and 32.4 × 10−14 cm3/s/subunit17, as the 
incorporation was assumed to be 100% for those experimental studies Conversely, a Pa value of 16 ± 5 cm3/s/
subunit has been reported for molecular dynamics simulations done on AqpZ27. This shows the relevance of 
quantification methods in critical evaluation of AqpZ performance.

Nickel labeled AqpZ and ICP-MS is a highly accurate and sensitive quantification method to determine AqpZ 
reconstituted into vesicles. This is evident from its ability to detect the small percentage of AqpZ which is not 
reconstituted. The great sensitivity allows this quantification to be useful for both scientific studies on AqpZ 
interactions with the environment and optimization of biomimetic membrane fabrication. However, due to the 
additional steps involved in labeling AqpZ and measuring the nickel binding ratio prior to reconstitution, this 
method requires a longer duration of up to 2 weeks to complete. Additionally, the number of lipid vesicles was 
calculated assuming a negligible loss. Furthermore, nickel dissociating from AqpZ during sample handling and 
transfer cannot be verified for this method and may contribute to error in protein estimation.

ECZNi
Corrected nickel 
concentration (ppb)

Before dialysis 10 ± 2

After dialysis 8 ± 3

After ultracentrifugation 
(P + W + S) 7 ± 4

P 7 ± 3

W 0.08 ± 0.03

S 0.3 ± 0.2

Table 2.  Tabulation of ICP-MS results of nickel labeled AqpZ reconstituted E. coli samples (ECZNi) at different 
stages in the experiment. Note: 0.8 mL of each sample (at 10 mg/mL E. coli lipid concentration) was loaded 
for ICP-MS analysis. Standard deviation is calculated from results obtained from three independent repeated 
experiments. The nickel reading after ultracentrifugation separation is determined from the summation of 
readings for all three fractions (pellet, wash, and supernatant) of a sample. P, W, S refers to pellet, wash and 
supernatant fractions respectively.

ICP-MS Gel electrophoresis

ECZNi ECZNi ECZ

% AqpZ loss (Dialysis) 20 ± 10 9 ± 8 8 ± 16

% AqpZ loss 
(Ultracentrifugation) 15 ± 4 20 ± 10 26 ± 14

% AqpZ not reconstituted 3.4 ± 0.9 <LOD <LOD

% AqpZ reconstituted 60 ± 20 72 ± 8 66 ± 4

Table 3.  Calculated percentage of AqpZ loss, not reconstituted or reconstituted, based on results from ICP-MS 
and gel electrophoresis. Note: Standard deviation was derived from measurements obtained from three 
independent reconstitution and quantification experiments. <LOD refers to below limit of detection.
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Gel electrophoresis.  Unlike the previous two quantitation methods which rely on the detection of labels 
interacting with His-tag, gel electrophoresis is applied to measure protein amount by detecting a dye-stained 
protein band in the gel. Therefore, gel electrophoresis is able to provide a direct read out of protein amount rather 
than indirect information depending upon the label. During gel electrophoresis, incorporated AqpZ in vesicles is 
extracted by SDS detergent into gel sample loading buffer. The identity of AqpZ can then be determined by com-
paring its band position against a protein marker ladder and the corresponding amount can be further deduced 
by comparison with a BSA standard working curve.

The incorporation and quantification procedure was performed three times using unlabeled AqpZ and nickel 
labeled AqpZ. The representative gel result is shown in Fig. 7(a–c). As expected, only samples with AqpZ added 
for reconstitution shows a band which corresponds to the same position as AqpZ protein, at around 90 kDa. Since 
control samples do not have AqpZ added, the band at 90 kDa is absent for all control fractions. This confirms the 
identity of the band as a representation of AqpZ, which can be used to determine AqpZ amount in each sample.

Quantification of AqpZ based on AqpZ amount.  To quantify the protein in different fractions, Coomassie 
blue staining method was applied using BSA as the standard, as previously reported28. A series of BSA stand-
ard, at various dilutions, was prepared to obtain a calibration curve within a linear range to quantify the AqpZ 
amount based on band densitometry (Fig. 7(d)). The Coomassie blue staining method is based on a quantita-
tive binding of Coomassie blue dye (Coomassie brilliant blue G250) to proteins. AqpZ is known to maintain its 
tetrameric state on Coomassie blue stained gels but dissociates into monomers and dimers on SDS-PAGE gels29. 
Hence, Coomassie blue stained gel is selected for quantification of tetrameric AqpZ incorporated in this work. 
Theoretically, the amino acid composition and structural difference of different proteins vary the dye binding to 
the protein, and therefore the working curve of this method30. Therefore, we would like to highlight that BSA, 
a non-membrane protein, may exhibit a difference in staining by Coomassie blue as compared to AqpZ. This 
can contribute to error in protein estimation due to the working curve. Despite the inherent differences that 
limit the value of BSA as a control, it is difficult to find a better control protein. Since BSA has been adopted as a 
standard protein for AqpZ quantification in other work28, 31, BSA is selected as the standard in our work. Using 
the GelScan software for analysis, the amount of AqpZ in each fraction of the sample was obtained. The average 
result obtained from three independent reconstitution and quantification experiments are shown in Fig. 7(d). 

Figure 7.  Gel electrophoresis results of AqpZ incorporated vesicles. (a–c) Electrophoretic analysis of E. 
coli lipid samples before and after incorporation via dialysis, full length gels are presented in Supplementary 
Figure S2(a–c). Samples were derived from the same experiment and the gels were processed using same 
settings in parallel. Sample containing 1 ug of AqpZ or equivalent volume of control buffer is loaded for 
gel electrophoresis. Duplicates of each sample were loaded for each gel electrophoresis for (a–b). Standard 
deviation is calculated from results obtained from three independent repeated experiments. Before and after 
refer to before and after dialysis respectively. Pellet, wash, and supernatant refers to the different fractions 
collected from ultracentrifugation separation process. ECC and ECZ refer to control and AqpZ reconstituted E. 
coli lipid vesicles respectively. ECCNi and ECZNi refer to nickel labeled control and AqpZ reconstituted E. coli 
lipid vesicles respectively. NiZ refers to nickel labeled AqpZ and Z refers to non-nickel labeled AqpZ. (d) BSA 
standard working curve and quantified AqpZ results.

http://S2(a�c)
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Although there is no need for AqpZ to be labeled with Ni ions, gel electrophoresis method was applied to ECZNi 
for a comparison with the ICP-MS method. It is observed that ECZNi has consistently higher reading than ECZ 
in the Coomassie blue staining method. This could be due to the presence of nickel in ECZNi compared to ECZ. 
Since Ni carries a positive charge, it can result in extra binding of the negatively charged dye to the sample, which 
is then evaluated as a larger amount of protein. Since the method is meant to be applied for non-labeled AqpZ, we 
will focus on the results obtained from ECZ in the following sections.

Percentage of AqpZ successfully reconstituted.  The previous equations (1) to (4) used for evaluating AqpZ per-
centage reconstitution and loss can also be applied here, with the exception of using AqpZ amount reading instead 
of nickel concentration reading. Using equation (1), the percentage of AqpZ reconstituted with respect to the total 
amount of AqpZ added for incorporation is 66 ± 4%. This is comparable to the percentage of reconstituted AqpZ 
evaluated using the ICP-MS results, 60 ± 20%.

Identification of procedure undermining AqpZ reconstitution.  In this case, there was no band at the 90 kDa 
position for both supernatant and wash fraction for AqpZ incorporated vesicle samples, showing that AqpZ is 
predominantly reconstituted. Similar to ICP-MS results, a large proportion of AqpZ appears to be lost through 
dialysis and ultracentrifugation processes.

Nonetheless, it should be noted that there could still be a minute amount of AqpZ which exist in the wash 
and supernatant fraction, but yet too low to be detected under gel electrophoresis. This can be cross verified 
with results from ICP-MS, which shows 3.4% of AqpZ are not lost during the incorporation process but yet not 
successfully reconstituted into vesicles. The method may also suffer from errors in protein estimation due to loss 
of lipid vesicles during sample handling and differences in the interaction of BSA and AqpZ with the Coomassie 
blue dye.

Calculation of permeability per AqpZ monomer (Pa).  Based on the successful incorporation of 66 ± 4% of AqpZ 
added, the number of AqpZ tetramer per vesicle is 35 ± 2 and Pa is 47 × 10−14 cm3/s/subunit. With 95% confi-
dence interval, the average Pa is between 41 × 10−14 cm3/s/subunit to 51 × 10−14 cm3/s/subunit. Once again, this 
shows the applicability of the quantification results to determine Pa, for evaluation of AqpZ performance.

Gel electrophoresis is a quantitative method for determining AqpZ reconstituted into vesicles. While it is diffi-
cult to detect a small percentage of AqpZ which are not reconstituted as compared to ICP-MS method, it requires 
smaller sample consumption and a shorter duration to complete.

Comparison of quantification methods.  The three methods presented differ in terms of accuracy, sam-
ple consumption, duration, and equipment requirements. Nanogold labeling is a simple and quick method that 
requires the least amount of sample. However, the huge discrepancy between the number of AqpZ per vesicle 
determined by TEM method as compared to ICPMS and gel electrophoresis method also shows that TEM is not 
an accurate method to determine the number of AqpZ incorporated. The TEM method serves only as a quick 
check to determine if AqpZ has been reconstituted, but not the exact number. All three methods provide infor-
mation about the success of reconstitution, however, further information, such as the exact number of tetramers 
per vesicles and percentage loss of AqpZ to reconstitution and ultracentrifugation can only be evaluated through 
the ICP-MS or gel electrophoresis method.

Nickel labeling and ICP-MS requires the longest time and greatest sample consumption due to the additional 
nickel labeling step and ICP-MS procedure. Nevertheless, it is the most sensitive method that is able to detect the 
small percentage of non-reconstituted AqpZ. Gel electrophoresis is a method that requires moderate time and 
sample amount as compared to the other two. Although the method is not sensitive towards a small percentage 
of non-reconstituted AqpZ, it is still able to provide a quantitative result that is comparable to that of ICP-MS. 
Inevitably, both methods are susceptible to systematic error arising from ultracentrifugation, loss during sample 
handling, transfer and labeling. As discussed previously, the measured amount of pelleted protein is likely to be 
the maximum amount of protein that is functionally integrated into the membrane since the pellet from ultracen-
trifugation may also contain non-functional integrated protein. In the case of Ni labeling, the nickel might disso-
ciate from the His-tag during sample manipulation and ultracentrifugation. Although dissociation during dialysis 
is unlikely based on the low Ni concentration present in the used dialysis buffer (please refer to the supplementary 
data), we are unable to verify the dissociation and loss during ultracentrifugation. On the other hand, the choice 
of BSA as a standard and control protein may also result in protein estimation error due to the inherent difference 
between BSA and AqpZ and hence the interaction with Coomassie blue stain and separation performance under 
ultracentrifugation. Despite the limited value of BSA as a good control and standard protein, there is a lack of 
a better alternative. Nonetheless, these methods still allow the more accurate relationship to be drawn between 
water transport and AqpZ incorporation.

The three quantification methods as presented above offer common advantages over existing quantification 
methods by keeping sample handling and data processing to a minimal, while avoiding the need for uncommon 
equipment. This is to ensure that the quantification methods can be easily implemented in any setting to obtain 
information of actual Aqp reconstituted. The information obtained from the quantification methods allows a 
critical evaluation of vesicle performance when pieced together with SFLS results. The nanogold labeling method 
allows the distribution of AqpZ on vesicles to be easily observed without the ambiguity faced by the FF-TEM 
method. Compared to FCS and SAXS method, ICP-MS and gel electrophoresis offer a more direct read out of 
AqpZ reconstituted, rather than relying on the indirect observation of phenomena such as diffusion time and 
curvature of vesicles. This reduced dependence on uncommon equipment, modeling and fitting, so that these 
methods can be easily implemented. Importantly, the three methods can be applied as a stand-alone method 
or applied together for verification of results. The information harnessed from different methods can also be 
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combined to gain a holistic analysis. As demonstrated previously, TEM provides the dimensions of vesicles for the 
accurate derivation of AqpZ per vesicle. On the other hand, the amount of AqpZ and percentage AqpZ reconsti-
tuted obtained from ICP-MS and gel electrophoresis can be compared for verification.

Conclusions
Three different methods to determine AqpZ reconstitution into vesicles for fabrication of biomimetic mem-
brane have been presented. With the current method of reconstitution, the percentage of AqpZ successfully 
reconstituted can be determined. It was shown that the results obtained using different methods are compara-
ble and correlate well to vesicle permeability. Furthermore, the quantification methods also provide insights on 
the predominant cause of reduced reconstitution, allowing better optimization strategies to be designed. Most 
importantly, the methods offer several advantages, without the need for uncommon equipment, complex sample 
handling, and data analysis. It is anticipated that these methods can facilitate an accurate understanding of water 
transport in relation to the protein reconstitution and also optimization of conditions for vesicle preparation. 
These would enable the fabrication of biomimetic membranes with better and well-controlled performance.

Materials and Methods
Materials.  E. coli lipid was purchased from Avanti Polar Lipids. Dialysis cassettes and zebra desalting columns 
were purchased from Thermo Fischer Scientific. 5 nm nickel-nitrilotriacetic acid (Ni-NTA) nanogold was pur-
chased from Nanoprobes. Gel electrophoresis reagents and apparatus were purchased from Bio-Rad. All other 
chemicals and solvents were purchased from Sigma-Aldrich unless otherwise mentioned.

Expression and purification of Aquaporin-Z.  The modified pET plasmid containing DNA sequence 
encoding AqpZ with N-terminal 6× his affinity tag was transformed into E. coli strain BL21 Star (DE3) 
(Invitrogen, Carlsbad, CA). Cells from a single colony were inoculated in LB medium with 100 µg/ml ampicillin 
and grown overnight at 37 °C. The overnight cultures were diluted 100-fold into fresh LB medium and propagated 
to an A600 nm of 1.2–1.5. The culture was induced with 1 mM isopropyl b-D-1-thiogalactopyranoside and grown 
at 37 °C for 2 h before harvesting.

The cells of 1 L culture was harvest by centrifugation at 6000 rpm for 15 min and resuspended in 10 mL of lysis 
buffer containing 20 mM Tris–HCl (pH 8.0), 100 mM NaCl, 1 mM MgSO4, 1 mM phenylmethanesulfonyl fluoride 
and 0.1 mg/mL deoxyribonuclease I. Cell resuspension was subjected to sonication and the lysate was centrifuged 
at 10,000 g for 30 min to remove the insoluble material. The membrane fraction was recovered from the superna-
tant by centrifugation at 140, 000 g for 1 h.

For AqpZ extraction, the membrane fraction was resuspended in solubilization buffer (1% 
n-dodecyl-beta-maltoside (DDM) in a buffer containing 20 mM Tris–HCl (pH 8.0), 100 mM NaCl) and incu-
bated overnight at 4 °C. Insoluble material was pelleted by 45 min centrifugation at 140, 000 g. The DDM solu-
bilized AqpZ was bound to cobalt resin by gentle shaking at 4 °C for 2 h in the presence of 5 mM imidazole. The 
protein bound cobalt resin was washed with 10 column volumes of buffer containing 20 mM Tris–HCl (pH 8.0), 
100 mM NaCl, 10 mM imidazole and 0.2% DDM. AqpZ was then eluted with washing buffer supplemented with 
150 mM imidazole.

E. coli vesicles preparation and AqpZ reconstitution.  E. coli lipid vesicles were prepared using dialysis 
incorporation method according to a previously reported protocol3. Briefly, E. coli lipids were dissolved in chloro-
form and dried into a thin film under vacuum. The thin film was rehydrated in 0.1 M MOPS buffer, adjusted to pH 
7.4 using 10 M sodium hydroxide. Lipid was mixed with AqpZ and 1.25% (wt/vol) of octyl glucoside (OG) deter-
gent with buffer until homogeneous. Lipid to AqpZ weight ratio was kept at 100. The mixture was then transferred 
into a 10 kDa molecular weight cut-off dialysis cassette for dialysis against 0.1 M MOPS-Na buffer over three days. 
During the process, dialysis buffer was replaced with fresh buffer daily.

Vesicle characterization.  Vesicle size was measured via dynamic light scattering (Zetasizer Nano ZSP 
equipped with Helium-Neon laser beam at 633 nm, Malvern Instrument Ltd., Malvern, UK). Three measure-
ments were made to obtain an average value for each reading.

Vesicle permeability was studied using stopped-flow apparatus spectrometer (Applied Photophysics, UK) 
method. Vesicle solution was quickly mixed with sucrose buffer at 0.6 osmol/L concentration. The high osmolar-
ity of sucrose will result in water efflux from vesicles, which was recorded in the form of increasing light scattering 
signal. The initial gradient of the signal curve can be fitted to an exponential equation to represent the rate of 
change in vesicle shrinkage. The osmotic water permeability was then calculated using following equation (5).

= × × ∆P k V
(5)

f S
V

w osmA

0

where Pf is the osmotic water permeability (m/s), SA is the vesicle surface area (m2), V0 is the initial vesicle volume 
(m3), Vw is the partial molar volume of water (0.018 L/mol) and Δosm is the osmolarity difference that drives the 
vesicle shrinkage (osmol/L).

The permeability per AqpZ subunit (Pa) was determined using the method as described in another work3, 
using equation (6).
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where Pf,z and Pf,c is the osmotic water permeability (m/s) of AqpZ incorporated and control vesicles respectively, 
S is the vesicle surface area (m2), and m is the number of AqpZ monomer subunit incorporated into vesicles.

The vesicle molecular weight was calculated using the following equation (7)26.

=
πΝ

δ − δ + δM 4
3v (3R 3R ) (7)

A 2 2 3

The equation is based on interpolation of Zimm plot, an approximation of static light scattering from macro-
molecular solution whereby intermolecular interactions only occur through a single contact26. This assumption 
is valid for our vesicle samples in this case which are dilute macromolecular sample. In this equation, R is the 
vesicles radius, δ is the membrane thickness of the vesicles, NA is the Avogadro’s number and v is the specific 
volume of the vesicle. v is assumed to be 1 cm3/g, as reported previously3. The loss of lipid vesicles during the 
measurements was assumed to be negligible.

Ultracentrifugation.  Ultracentrifugation was applied to separate non-reconstituted AqpZ from AqpZ in 
vesicles. Vesicle samples were centrifuged at 250, 000 g for 2 hours at 4 °C with Optima MAX XP ultracentrifuge 
(Beckman Coulter Inc, USA). For the first round of ultracentrifugation, 500 µL of 10 mg/mL E. coli vesicle sample 
was loaded in each vial for ultracentrifugation. After which, resultant supernatant was collected and labeled as 
supernatant (S) fraction. The pellet was suspended in 200 µL of 0.1 M MOPS-Na buffer at pH 7.4. The solution 
was then subjected to a second round of ultracentrifugation. Following, the resultant supernatant was collected 
and labeled as wash (W) fraction while the pellet was suspended in 200 µL of 0.1 M MOPS-Na buffer at pH 7.4 
and labeled as pellet (P) fraction. The S, W, P fractions collected were subjected to further analysis using TEM, gel 
electrophoresis, and ICP-MS. An equal amount of vesicles from each fraction was loaded for all analysis.

Nanogold labeling.  A drop of sample solution at 0.5 mg/mL of lipid was dropped on TEM grid, followed 
by nanogold solution at 10 times of the calculated amount of AqpZ by molar ratio. The solutions were incubated 
on the grid for 20 min and excess solution was wicked off with a filter paper. A drop of blocking buffer, 150 mM 
imidazole in 100 mM NaCl solution, was dropped on the grid and incubated for 2 min. The grid was washed with 
ultrapure water and stained with 1% phosphotungstic acid solution. Excess solution was wicked off and the grid 
was air dried thoroughly before TEM visualization.

Transmission electron microscopy.  The samples were observed using JEM-2100F Transmission electron 
microscope (JEOL, USA) at accelerating voltage of 200 kV.

Preparation of nickel labeled AqpZ.  AqpZ or control without AqpZ was incubated with nickel chloride 
labeling solution (0.16 M) at room temperature, 750 rpm shaking speed for 2 h. After labeling, unbound nickel 
was removed with Zeba spin desalting column (40 kDa molecular weight cut off), following with dialysis (2 kDa 
molecular weight cut-off) against 20 mM Tris-HCl buffer (pH 7.4) containing 100 mM NaCl with 0.2% DDM, at 
200 times of sample volume over four days. During the process, dialysis buffer was replaced daily.

Sodium dodecyl sulfate polyacrylamide (SDS-PAGE) gel electrophoresis.  An aliquot of the sam-
ples was incubated for 0.5 h at room temperature in sample loading buffer containing 1% sodium dodecyl sulfate 
(SDS) and then analyzed by SDS-PAGE of 15% polyacrylamide gels with further staining by Coomassie brilliant 
blue G-250. The stained gels were scanned with G BOX gel doc system from Syngene and analyzed with the soft-
ware of GeneTools to identify the protein size and amount.

Inductively coupled plasma-mass spectrometry.  The sample was firstly digested with Ethos One 
microwave digester (Milestone Inc, USA). Measurement of nickel concentration of digested sample was then 
made on Agilent 7700x ICP-MS system. The operating conditions are summarized in Table 4. In all experiments, 
the sample uptake was directed through Agilent integrated autosampler with a micro mist nebulizer. Calibration 
samples were prepared from dilution of Periodic table mix 1 for ICP purchased from Sigma Aldrich.

Parameter Description

Sample introduction

Peristaltic pump

Agilent integrated autosampler (I-AS)

Micromist nebulizer (0.10 rps)

RF plasma source power 1550 W

Plasma gas 15.02 L/min

Auxiliary gas 0.90 L/min

Carrier gas 1.03 L/min

Table 4.  ICP-MS operating conditions (Agilent 7700x ICP-MS).
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