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Adding loci improves 
phylogeographic resolution in 
red mangroves despite increased 
missing data: comparing 
microsatellites and RAD-Seq and 
investigating loci filtering
Richard G. J. Hodel  1,2, Shichao Chen2,3, Adam C. Payton1, Stuart F. McDaniel1,2,4,  
Pamela Soltis  2,4 & Douglas E. Soltis1,2,4

The widespread adoption of RAD-Seq data in phylogeography means genealogical relationships 
previously evaluated using relatively few genetic markers can now be addressed with thousands of 
loci. One challenge, however, is that RAD-Seq generates complete genotypes for only a small subset 
of loci or individuals. Simulations indicate that loci with missing data can produce biased estimates of 
key population genetic parameters, although the influence of such biases in empirical studies is not 
well understood. Here we compare microsatellite data (8 loci) and RAD-Seq data (six datasets ranging 
from 239 to 25,198 loci) from red mangroves (Rhizophora mangle) in Florida to evaluate how different 
levels of data filtering influence phylogeographic inferences. For all datasets, we calculated population 
genetic statistics and evaluated population structure, and for RAD-Seq datasets, we additionally 
examined population structure using coalescence. We found higher FST using microsatellites, but 
that RAD-Seq-based estimates approached those based on microsatellites as more loci with more 
missing data were included. Analyses of RAD-Seq datasets resolved the classic Gulf-Atlantic coastal 
phylogeographic break, which was not significant in the microsatellite analyses. Applying multiple 
levels of filtering to RAD-Seq datasets can provide a more complete picture of potential biases in the 
data and elucidate subtle phylogeographic patterns.

Choice of molecular markers remains a critically important consideration when designing a phylogeographic, 
phylogenetic, or population genetic study, as researchers must optimize the amount of informative genetic data 
they can obtain for a fixed and typically modest cost. In phylogeographic studies, theoretical considerations 
impact decisions regarding whether to include more individuals or more loci. Microsatellites (or simple sequence 
repeats, SSRs) have been one of the workhorses of phylogeographic studies for over two decades—their high var-
iability made them popular for distinguishing between closely related conspecific or congeneric individuals1–3. 
Microsatellite markers are now being gradually replaced by RAD-Seq data for phylogeographic inference4.

There are advantages and disadvantages to using microsatellites in phylogeographic studies2,3,5. Microsatellites 
are a known quantity; hundreds of thousands of studies that use SSRs are in the literature—primers are already 
available for many groups. In addition, many user-friendly software packages are available for all aspects of 
microsatellite analysis, from loci development to population genetic inference3. If primers are already developed 
for the taxa of interest, microsatellites can be inexpensive to implement. Additionally, if initial results necessitate 
adding a few additional individuals and/or loci, project costs will increase linearly with microsatellites. However, 
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there are caveats to using SSRs. Perhaps most importantly, a limited number of loci (usually < 25) can feasibly be 
employed in a typical microsatellite study. Also, the mutational properties of SSRs are unusually high and almost 
certainly do not reflect those of the genome as a whole. Thus, the property that makes microsatellites excellent for 
distinguishing different individuals may inflate statistics such as FST and heterozygosity relative to the rest of the 
genome. Furthermore, microsatellites can be just as expensive to implement as newer high-throughput sequenc-
ing (HTS) techniques if there are no existing genetic resources (e.g., no primers already developed, or no available 
transcriptomic or genomic resources)6.

The use of RAD-Seq data has increased greatly over the past decade, largely because thousands of loci can be 
generated simultaneously for hundreds of individuals for a fixed, known cost7. RAD-Seq uses restriction enzymes 
(REs) to create a reduced representation library of the genome; single-nucleotide polymorphisms (SNPs) in 
regions of DNA between restriction sites are used to distinguish between individuals8. Barcoding to allow effi-
cient multiplexing during sequencing keeps costs down, which can be as little as $40 per individual for thou-
sands of loci, assuming judicious sharing of reagents, and a well-designed plan for multiplexing individuals9–11. 
Microsatellite genotyping has a similar cost per individual, assuming primers are not developed, but many fewer 
loci are obtained3. SNPs have several advantages over microsatellites, as they are less likely to exhibit homoplasy 
than SSRs12.

Despite advantages, there are also several caveats to using RAD-Seq. Unless there is a reference genome, 
loci obtained using RAD-Seq are anonymous, and some loci may be non-neutral7. Additionally, biases may be 
introduced at several stages in a RAD-Seq protocol: (1) digestion with REs samples a non-random portion of the 
genome due to biases in base composition; this is potentially worse if methylation sensitive enzymes are used; (2) 
polymorphisms in restriction sites that can lead to segregating presence/absence polymorphisms that are very dif-
ficult to detect without very deep sequencing and negating the cost-savings of using RAD-Seq in the first place7,13; 
(3) preferential PCR amplification of some loci during library construction necessarily reduces coverage of other 
loci13; (4) sequencing errors and/or low sequencing depth leads to incorrect genotype calling7; and (5) false loci 
are constructed due to the misassembly of paralogous reads14,15. Many potential problems are resolved by multiple 
PCR steps to even out loci coverage and by improvements in software when processing loci, but concerns remain 
that RE-based reduced representation methods do not capture a representative snapshot of the genome16. One 
other concern with RAD-Seq loci is that manual data curation is impossible, and errors may go undetected even 
by the most careful researchers14,17,18. Finally, the biggest potential problem when using RAD-Seq is that low cov-
erage and high proportions of missing data can make it difficult to infer heterozygotes accurately.

Previous studies have compared results from SNPs and SSRs, revealing that microsatellites provide much 
more information—up to an order of magnitude more—on a per-marker basis than SNPs19,20. However, SNP 
studies typically use several orders of magnitude more markers than an average SSR study. Evidence has shown 
that the large number of loci in SNP studies can effectively allow for more powerful inferences, even though the 
information at each locus is less than that in microsatellite markers21. Because of the low number of loci used 
in SSR studies, the standard practice is to aim to minimize missing data. However, the nature of current library 
preparation and sequencing means that higher percentages of missing data are an unavoidable part of RAD-Seq 
studies. Simulation studies have shown that the large amounts of missing data in RAD-Seq studies can inflate FST 
estimates due to allelic dropout13,18. As more loci were included in these simulations, FST appeared to increase 
because many loci had genotype data for only one or a few individuals. In many such loci FST = 1 because by 
chance the few individuals sampled were homogeneous within populations but different between populations, 
leading to high average FST. Heterozygosity can be similarly inflated if the more frequent allele is likely to be 
absent (e.g., because mutations in the restriction site, which lead to allelic dropout, are often in ancestral alleles 
that occur at a high frequency)18. Arnold, et al.13 confirmed results from Gautier, et al.18 and also concluded that 
other summary statistics, including Θ and π, could be inaccurately estimated from loci with missing data. In 
spite of these problems, more recent simulation studies have indicated that missing data in RAD-Seq studies may 
not lead to incorrect inference, and in fact including loci with missing data can be advantageous for identifying 
shallow divergences22.

Convention in phylogeographic studies often is to require 75 or 80% of individuals to have data for a given 
locus—otherwise that locus is discarded from the analyses (e.g., refs23–28). Presumably, requiring a locus to be 
present in a certain number of individuals will eliminate loci with high missing data that may be the cause of 
misestimated parameters13,18. However, the choice of a cutoff is arbitrary and is typically not justified in phyloge-
ographic studies— the number of SNPs is virtually always reported as a single fixed value (e.g., “we identified a 
total of 4,234 SNPs,” Jackson, et al.24). In reality, the various parameter values that determine how many loci are 
constructed and retained in SNP alignment methods means that there is a range of loci that could conceivably be 
included in a study27,29.

To date, no phylogeographic study has investigated the effect of varying amounts of missing data in an 
empirical RAD-Seq dataset, even those explicitly comparing RAD-Seq-generated SNPs and microsatellites30,31. 
To remedy this knowledge gap, we investigate the phylogeography of red mangroves (Rhizophora mangle L., 
Rhizophoraceae) in Florida, using both an existing microsatellite dataset32, and new RAD-Seq SNP datasets that 
vary in number of loci and the percentage of missing data. We filtered RAD-Seq loci to generate a dataset that 
would approximate the number of loci and amount of missing data typically used in RAD-Seq phylogeography 
studies, and we also generated datasets with more or less stringent filtering to test the effects of increasing or 
decreasing the number of loci and percentage of missing data. Specifically, we address the following questions: (1) 
In RAD-Seq datasets, how are phylogeographic inferences affected by the number of loci used? (2) In RAD-Seq 
datasets, how are phylogeographic inferences affected by the percentage of missing data? (3) What are the impor-
tant differences in performance between microsatellites and RAD-Seq data in population genetic and phylogeo-
graphic inference? (4) Do RAD-Seq data reveal any novel phylogeographic inferences not already recovered by 
microsatellites for red mangroves in Florida?
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To address these questions, we used 96 red mangrove (Rhizophora mangle) individuals collected from 12 
sampling locations on the coasts of Florida (Table 1, Fig. 1). Red mangroves are salt-tolerant trees that occur in 
coastal estuarine environments throughout the neotropics, experiencing high temperatures, frequent inundation, 
saline conditions, and periodic wave action associated with the coastal environment33. Red mangroves provide a 
variety of ecosystem services, including filtering water, providing habitat to animals, stabilizing shorelines, and 
protecting coastal environments from frequent wave action and occasional storm surges. Thus, red mangroves are 
important conservation targets—for which phylogeographic data can improve conservation strategies—making 
red mangroves a valuable study system.

Sampling Location Code Latitude (N) Longitude (W) % Loci Missing

Bahia Honda Key BHKFl 24.55286 81.76776 73.5

Convoy Point CvPFl 25.46347 80.33133 81.2

Cape Canaveral CpCFl 28.82173 80.75594 83.0

Hollywood HwdFl 26.03841 80.11780 79.4

Islamorada IsmFl 24.90031 80.65690 81.0

Key Largo KyLFl 25.09569 80.42957 88.9

Melbourne MlbFl 28.07435 80.60526 79.8

New Port Richey NPRFl 28.25432 82.75723 69.5

Seahorse Key ShKFl 29.10040 83.06185 65.8

Terra Ceia Bay TCBFl 27.59172 82.57524 81.7

Vaca Key VKyFl 24.71154 81.06992 85.1

West Palm Beach WPBFl 26.67505 80.04259 83.9

Table 1. The twelve sampling locations (each containing eight individuals), their codes, GPS coordinates, and 
the percentage of loci that have missing data for each sampling location before any filtering.

Figure 1. The 12 sampling locations (each with eight individuals) are indicated by orange circles. Sampling 
location codes are provided in Table 1. The map was generated using R (citation: R Core Team (2013). R: A 
language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 
http://www.R-project.org/), and the R package ‘maps’ (citation: Original S code by Richard A. Becker, Allan 
R. Wilks. R version by Ray Brownrigg. Enhancements by Thomas P Minka and Alex Deckmyn. (2017). maps: 
Draw Geographical Maps. R package version 3.2.0. https://CRAN.R-project.org/package=maps).

http://www.R-project.org/
https://CRAN.R-project.org/package=maps
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Further analysis of phylogeographic patterns in red mangroves and other species occurring in the Florida pen-
insula is also warranted. Although previous studies of many coastal and marine taxa revealed a phylogeographic 
discontinuity at or near the southern tip of Florida34,35, recent work on red mangroves using microsatellites failed 
to identify such a pattern32,36. Different types of molecular markers could reveal new phylogeographic insights, 
due to broader sampling of the genome, and provide a predictive framework for understanding how genetic vari-
ation in this iconic species will respond to climate change. Finally, red mangroves are an ideal system for compar-
ing the performance of alternative genetic markers, given previous analyses of microsatellite loci32,36,37 and the size 
of the genome (approximately 1 Gb; Hodel unpublished data, based on flow cytometry observations), enabling a 
rigorous test of the RAD-Seq method. Genome size is a necessary consideration with RAD-Seq; as genome size 
increases, the number of loci shared among many individuals for a given sequencing depth decreases.

Results
Datasets. Seven datasets, ranging from 8 loci (SSR_8) to 25,198 loci (RAD_25198; Table 2), were used to 
investigate in depth how variation in number of loci and percent missing data impacted phylogeographic infer-
ences. These were selected from all possible datasets, for which basic statistics were calculated (Supplementary 
Figure 1). The name of each of the seven datasets contains information about locus type (RAD or SSR) and num-
ber of loci in the dataset. The smallest RAD dataset contained 239 loci (RAD_239), and the percentage of missing 
data for RAD datasets ranged from 11.7% to 78.1% (Table 3). The dataset RAD_1180, which required a locus to 
be present in 75 of 96 individuals (78.1%), most closely mimicked the amount of loci filtering typically used in 
a phylogeographic study. Therefore, in our analyses, we used this as a baseline dataset against which to compare 
other RAD datasets. Across sampling locations, the proportion of missing data was relatively uniform (Table 1); 
percentage of missing loci in the data matrix for a given sampling location ranged from 65.8% to 88.9%.

Population genetic analyses. Measures of heterozygosity were not significantly different between the 
microsatellite dataset and the RAD datasets; average HO was 0.431 for the microsatellite dataset and 0.392 in 
RAD_1180, with a range from 0.354 to 0.477 across all RAD datasets (Table 3). Average HE was 0.388 for the 
microsatellite dataset and 0.307 for RAD_1180 and ranged from 0.300 to 0.340 for all RAD-Seq datasets (Table 3). 
Average FST for microsatellites was 0.124, which was significantly greater than average FST for only one of the RAD 
datasets—the smallest (RAD_239; Table 3). Within the RAD datasets, average HO was significantly greater in 
RAD_25198 than all others, and it was significantly lower in RAD_6255 than in all others; HO did not predictably 
increase or decrease as the number of loci increased (Table 3). Additionally, within RAD datasets, average HE 
was significantly greater in RAD_25198 than all others. FST ranged from 0.046 to 0.108 among the RAD datasets 
(Table 3). There was no significant difference in FST in the three smallest RAD datasets, but the three largest RAD 
datasets all had increased FST relative to the smaller datasets (Table 3). The dataset with the largest value of FST 
was RAD_6255 (Table 3). Average FIS using microsatellites was not significantly different than FIS calculated using 
RAD datasets; within RAD datasets, FIS generally increased as more loci were added, although RAD_25198 had 
the lowest value of FIS (Table 3). Many of the population genetic statistics were disproportionately affected by loci 
with very low or very high values of FST, FIS, or heterozygosity (Fig. 2). The effect of extreme loci was particularly 
evident in the larger datasets (RAD_6255 and RAD_25198), in which there were large numbers of loci with 
extreme values (e.g., FST of 1.0; Fig. 2).

Pairwise FST. The values of pairwise FST for each sampling location relative to other sampling locations were 
remarkably consistent across datasets (Table 4). For most sampling locations pairwise FST estimated by SSRs was 
approximately twice as large as RAD dataset estimates. For every dataset, pairwise FST between Seahorse Key and 
all other sampling locations was the highest. For every RAD dataset, Islamorada had the lowest value for pairwise 
FST, but the SSR dataset identified West Palm Beach as the sampling location with the lowest estimate of pairwise 
FST. Even as the amount of missing data increased, the pairwise FST estimates remained consistent; RAD_25198 
produced similar values to smaller RAD datasets (Table 4).

FIS by sampling location. Cape Canaveral was the location with the highest FIS using the microsatellite data 
(SSR_8), followed by Key Largo and Seahorse Key (Table 5). Meanwhile, for all RAD datasets, Seahorse Key had 
one of the lowest (i.e., most negative) FIS values among all populations. Within the RAD datasets, the number 
of loci and/or amount of missing data affected FIS. For example, in Key Largo, the largest dataset yielded a value 

Dataset
Individuals required to 
retain a locus

Number of 
loci

% individuals required to 
retain a locus

RAD_239 83 239 86.5

RAD_1180 75 1180 78.1

RAD_2317 65 2317 67.7

RAD_3831 50 3831 52.1

RAD_6255 30 6255 31.3

RAD_25198 1 25198 1.0

Table 2. The seven data sets used in this study; RAD-Seq data sets were generated by filtering loci from largest 
data set (RAD_25198). For all data sets (six RAD and one microsatellite), the total number of loci used is 
indicated.
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of 0.015, while the smallest dataset had a value of −0.194. This was not a large absolute change in FIS, but the 
interpretation of this statistic changed based on whether it is positive or negative (higher values indicate a greater 
level of inbreeding). In general, within RAD datasets, FIS increased as loci were added, although this trend was 
not universal, especially in the largest RAD dataset. For instance, in Bahia Honda Key, FIS was lowest in the largest 
dataset RAD_25198 (25,198 loci, 78.1% missing data). Conversely, in Islamorada, FIS was lowest in the smallest 
dataset (RAD_239, 11.7% missing data).

Heterozygosity by sampling location. Observed heterozygosity for each sampling location ranged 
from 0.320 (Seahorse Key) to 0.451 (Hollywood) when averaged across all datasets (Table 6). For most datasets, 
Seahorse Key was the sampling location with the lowest HO, although notably RAD_25198 identified six other 
sampling locations with lower HO than Seahorse Key (Table 6). Similarly, most datasets reported Hollywood 
as the sampling location with the highest HO, but SSR_8 found Convoy Point and Islamorada had higher HO 
than Hollywood, and RAD_25198 identified five other sampling locations with greater HO, with Key Largo hav-
ing the highest HO (Table 6). For most sampling locations, measures of HO, when ranked relative to other sam-
pling locations, remained similar across all RAD datasets except RAD_25198. Interestingly, the values of HO 
ranked relative to other sampling locations were more similar between SSR_8 and the five smallest RAD datasets 
(RAD_239-RAD_6255) than any of the five smallest RAD datasets were to RAD_25198 (Table 6).

PCA and SVDQuartets. The PCA analysis revealed that microsatellite data did not identify clear groupings 
of individuals based on sampling location or other geographical divisions (Fig. 3). Similarly, RAD_239 did not 
differentiate the samples into discrete clusters. However, RAD_1180, RAD_2317, RAD_3831, RAD_6255, and 
RAD_25198 all divided the samples into two groups with minimal overlap in the PCA visualization: one group 
was Gulf Coast samples, and the other group was Atlantic Coast samples (Fig. 3). Closer inspection of the PCAs 
revealed that most of the Cape Canaveral individuals formed a discrete cluster intermediate between the two 
other clusters (Gulf and Atlantic). Most RAD datasets had sufficient resolution to place Cape Canaveral between 
the Gulf and Atlantic clusters, but the use of a small number of loci (i.e., RAD_239) was unable to show this rela-
tionship. Furthermore, the two largest datasets, RAD_6255 and RAD_25198, showed Cape Canaveral individuals 
clustering more closely to the Atlantic than the Gulf cluster.

The 50% majority-rule consensus bootstrap trees generated with SVDQuartets showed substantial varia-
tion between datasets when inferring genealogical relationships between individuals and/or sampling locations 
(Fig. 4). In many cases, dataset RAD_239 did not identify genealogical relationships that were recovered with 
other datasets with more loci. However, certain key relationships among individuals were consistently shown 
in multiple datasets with thousands of loci. In every dataset except RAD_239 (i.e., every dataset with at least 
1180 loci), all Seahorse Key (ShKFl) samples formed a clade (Fig. 4). In four datasets (RAD_2317, RAD_3831, 
RAD_6255, RAD_25198), all Gulf Coast (NPRFl, ShKFl, TCBFl) samples (except one individual: NPRFl_R8), 
together with all Cape Canaveral (CpCFl) samples, formed a clade that is sister to all remaining Atlantic Coast 
samples plus NPRFl_R8. Interestingly, this relationship was not recovered in RAD_1180, the dataset with ‘ideal’ 
filtering of loci—but all datasets with more loci (and therefore more missing data) did recover the relationship. 
Each RAD dataset had nodes with varying levels of bootstrap support (Fig. 4). Datasets with fewer loci showed 
few nodes with bootstrap support >70%; RAD_239 had three such nodes. More loci resulted in more nodes with 
bootstrap support >70%, up to a point: RAD_1180 had six highly supported nodes, RAD_2317 had eight, and 
RAD_3831 had the most with nine. Then the number of highly supported nodes slightly declined as more loci 
were added: RAD_6255 and RAD_25198 each had eight nodes with bootstrap support >70% (Fig. 4).

Sampling loci. Analyzing differently sized samples of loci from RAD_25198 and SSR_8 provided several cru-
cial insights. A microsatellite dataset with seven loci sampled from SSR_8 performed better in estimating FST than 
a dataset with six loci, although in each case, all 100 sampled replicates fell within the 95% confidence interval of 

Figure 2. Stacked histograms of per locus estimates of FST, FIS, and HO for each of the RAD datasets. Datasets 
with more loci are stacked on top of datasets with fewer loci.
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FST for the complete SSR_8 dataset (Fig. 5). For all RAD datasets, the value of FST estimated using only originally 
filtered data is different from all 100 permuted values of FST calculated from an equivalent number of loci sampled 
from the largest dataset (RAD_25198). For almost all datasets, FST based on sampled loci was less than FST using 
original loci, except for one dataset (RAD_6255), FST based on the sampled loci was greater. Strikingly, in none 
of the datasets did the confidence intervals from the sampled loci overlap with the confidence intervals of the 
estimated FST values from the original data (Fig. 5). The percentage of missing data in the largest dataset clearly 
had an immense impact. Even when very few loci (e.g., 239 loci) were sampled from the largest dataset, the 

Figure 3. Principle component analysis (PCA) for all seven data sets. Note that the scales of the axes of the 
SSR_8 plot are different than the axes of all the RAD plots.
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distribution of FST values clustered around the estimated FST using all 25,198 loci (Fig. 5), indicating that missing 
data, not number of loci, affected the differences in measured FST.

Discussion
Insights regarding choice of loci. Our results indicate that filtering loci using the standard cutoff (i.e., 
75–80% of individuals must possess data for a given locus for that locus to be retained) should not be the gold 
standard in RAD-Seq studies—it is possible to retain many more loci without inflated statistics23–28. FST increased 
as missing data increased, as predicted by simulation studies, but the relationship is more nuanced than previ-
ously assumed. FST increases as the percentage of missing data increases—up to a point—and then decreases from 
RAD_6255 to RAD_25198, as the percentage of missing data nearly doubles, from 41.3% to 78.1% (Table 3). 
When more loci are included, the distribution of FST across the genome is more completely sampled. However, 
adding loci with more missing data may cause analyses to miss low-frequency alleles in the loci with extensive 
missing data, which would add error to average estimates of FST. Sampling analyses confirmed that FST generally 

Figure 4. Trees estimated using every individual for each RAD dataset in SVDQuartets. Orange branches 
indicate individuals from sampling locations in the Gulf of Mexico, and blue branches represent individuals 
from Atlantic sampling locations.

Table 3. Relevant population genetic statistics for each of the seven data sets used in this study. For each 
column, warmer colors indicate lower values and cooler colors show higher values. Immediately to the right of 
each of the four columns (FST, FIS, HO, HE) is the 95% confidence interval for each statistic.

Dataset % Missing FST FIS HO HE

RAD_239 11.7 0.046 ±0.009 -0.365 ±0.107 0.410 ±0.028 0.300 ±0.013 

RAD_1180 17.1 0.057 ±0.004 -0.298 ±0.061 0.398 ±0.016 0.307 ±0.007 

RAD_2317 22.2 0.057 ±0.002 -0.253 ±0.033 0.390 ±0.010 0.312 ±0.004 

RAD_3831 29.4 0.066 ±0.002 -0.213 ±0.027 0.382 ±0.006 0.315 ±0.003 

RAD_6255 41.3 0.108 ±0.002 -0.164 ±0.022 0.356 ±0.005 0.306 ±0.002 

RAD_25198 78.1 0.080 ±0.003 -0.403 ±0.016 0.477 ±0.003 0.340 ±0.002 

SSR_8 0.0 0.124 ±0.067 -0.110 ±0.694 0.431 ±0.187 0.388 ±0.111 
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Figure 5. Histograms showing the distribution of the 100 samplings of loci from a larger data set. In the first 
two panels, six and seven SSR loci, respectively, were randomly sampled 100 times from the SSR_8 data set, 
and the distribution of the 100 calculations of FST are shown. The solid blue line indicates the parameter value 
estimated using all eight loci, and the dashed blue lines show the 95% confidence interval. In the remaining five 
plots, the histogram shows parameter estimates using the number of loci (239, 1,180, 2,317, 3,831, and 6,255, 
respectively) in the data set randomly sampled from RAD_25198 100 times. The solid blue lines indicate the 
FST value estimated using all 25,198 loci, and the dashed blue lines show the 95% confidence interval. The solid 
orange lines indicate FST estimated using the original data set (RAD_239, RAD_1180, RAD_2317, RAD_3831, 
and RAD_6255, respectively) and dashed orange lines show the 95% confidence interval for this estimate.
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increased as missing data increased (Fig. 5). Heterozygosity was less affected by missing data, as there was little 
or no change in either observed or expected heterozygosity when the percentage of missing data ranged between 
11.7% (RAD_239) and 41.3% (RAD_6255). Only the largest dataset (RAD_25198, with 78.1% missing data) 
showed significantly higher heterozygosity than other datasets. Some simulation studies reported that missing 
data could inflate FST, and would likely inflate estimates of heterozygosity, leading to calls for removing loci with 
incomplete sampling13. However, more recent simulation studies showed that removing loci with higher mutation 
rates, which are more likely to have missing data, negatively impacted phylogenetic analyses22. Our study shows 
the importance of thoroughly exploring how loci are filtered in empirical systems. Extreme amounts of missing 
data yield higher estimates of FST and heterozygosity and lower estimates of FIS (Table 3). A large number of loci in 
RAD_25198 had very high values of certain statistics (e.g., hundreds of loci with FST > 0.975 and thousands of loci 
with HO > 0.975), which severely impacted average estimates of these statistics (Fig. 2). Notably, not all datasets 
have these extreme loci—dataset RAD_3831, which only requires 52.1% of individuals to have data for a given 
locus, and had 29.4% missing data, did not suffer from extreme loci, despite liberal filtering.

Although missing data caused some statistics to increase, it did not dramatically affect our conclusions. For 
many analyses, using datasets other than RAD_1180, especially RAD_2317 and RAD_3831, did not change the 
interpretation of the results. Regardless of which of the three datasets was used, FST was relatively low—between 
0.057 and 0.066. Importantly, nearly doubling the amount of missing data from 17.1% (RAD_1180, the ‘gold 
standard’) to 29.4% (RAD_3831) resulted in a very small increase in FST and no significant change in other sta-
tistics (FIS, HO, HE; Table 3). Furthermore, using very few loci (RAD_239) did not significantly change any of the 
statistics estimated using RAD_1180 (Table 3). Our data indicate that the often-used cutoff of 75–80% individuals 
with locus data is arbitrary, and different cutoffs should be considered and evaluated on a case-by-case basis to 
ensure an appropriate number of loci are used. The results suggest that in many cases, only minimal filtering of 
loci is needed, and many more loci can be retained than typically are. Researchers who wish to maximize the 
number of loci in their study could likely use very low cutoffs (e.g., require a locus to have data for >10% of 
individuals).

Typically, microsatellite datasets have lower FST values relative to SNPs due to a larger number of alleles, 
although simulation studies have shown evidence that FST can be elevated up to an order of magnitude in micro-
satellite datasets due to factors such as correlated allele frequencies38. Average FST ranged from 0.046 to 0.124 
across all datasets—so there is not high differentiation detected in any dataset (Table 3). When using any RAD 
dataset except RAD_239, FST calculated using RAD loci was statistically indistinguishable from the microsatellite 
dataset (Table 3). In theory, a three-to-four-fold change in FST could alter biological conclusions—possibly with 
deleterious results (e.g., identifying populations or management units that would be prioritized for conserva-
tion)—but no matter how the loci were filtered, there was a relatively small range of estimated FST. RAD-Seq 
studies where larger values of FST were detected could exhibit larger absolute changes in FST when using different 
loci filtering cutoffs (e.g., refs39,40).

Similarly, the interpretation of FIS and HO could impact how data are considered in a biological context (e.g., 
identifying locations at risk for inbreeding depression). Positive values of FIS and/or low values of HO often indi-
cate inbreeding, which means sampling locations are more vulnerable than other sampling locations. As noted 
earlier, SSR_8 identified five sampling locations with positive FIS values (Table 5). Only one of these sampling 
locations (Key Largo) also had positive FIS values in any of the RAD datasets. Clearly, marker choice (micro-
satellite versus RAD-Seq) affected the assessment of which populations are more vulnerable based on FIS val-
ues. Agreement between these two markers types would facilitate identifying sampling locations vulnerable to 
inbreeding depression. However, it is understandable that different markers would lead to different results, as 

Table 4. Pairwise FST for each sampling location (i.e., one sampling location versus all others) for each of the 
seven datasets. Within each data set, lower (warmer colors) and higher (cooler colors) values of FST are shown 
using color-coding.

SSR_8 RAD_239 RAD_1180 RAD_2317 RAD_3831 RAD_6255 RAD_25198 Average 

BHKFl 0.101 0.039 0.055 0.049 0.052 0.068 0.063 0.061 

CpCFl 0.155 0.055 0.069 0.066 0.069 0.075 0.078 0.081 

CvPFl 0.085 0.040 0.048 0.046 0.050 0.061 0.062 0.056 

HwdFl 0.163 0.052 0.056 0.059 0.063 0.073 0.076 0.078 

IsmFl 0.106 0.030 0.040 0.039 0.044 0.051 0.050 0.052 

KyLFl 0.108 0.063 0.071 0.073 0.081 0.100 0.097 0.085 

MlbFl 0.134 0.043 0.052 0.052 0.055 0.068 0.074 0.068 

NPRFl 0.130 0.045 0.060 0.062 0.064 0.083 0.081 0.075 

ShKFl 0.279 0.117 0.134 0.138 0.143 0.158 0.152 0.160 

TCBFl 0.100 0.056 0.077 0.076 0.083 0.101 0.098 0.084 

VKyFl 0.135 0.045 0.050 0.052 0.056 0.067 0.069 0.068 

WPBFl 0.083 0.046 0.058 0.056 0.053 0.070 0.073 0.063 



www.nature.com/scientificreports/

1 0ScieNtiFic REPORTS | 7: 17598  | DOI:10.1038/s41598-017-16810-7

mutation rate can affect estimation of FIS—in theory, as the mutation rate increases, FIS should decrease. The 
data showed opposite result though, as FIS was higher in the SSR_8 dataset for most sampling locations (Table 5). 
This is likely because estimates of HO and HE have larger variance when few loci are used, as in the SSR_8 dataset 
(Table 3). The relative values of HO and HE can dramatically affect the interpretation of FIS, especially when HO and 
HE are similar (e.g., using the equation FIS = (HE − HO)/HE would yield FIS of 0.25 when HO = 0.4 and HE = 0.5, 
but FIS = −0.25 if HO and HE are reversed). Within RAD datasets, estimates of FIS for each sampling location were 
fairly consistent and FIS increased as missing data increased, but this trend was not universal (Table 3). Identifying 
vulnerable sampling locations based on HO revealed that RAD_25198 led to different conclusions than most 
other datasets. Across datasets, measures of HO within each sampling location were consistent relative to other 
sampling locations, except for RAD_25198 (Table 6). Missing data impacted this analysis; a large number of loci 
in RAD_25198 had either very high or very low HO, possibly leading to the pattern of HO in RAD_25198 that 
contrasted with patterns in virtually every other dataset (Table 6, Fig. 2).

The PCA results show that as the number of loci increases, the definition of clusters improves, plateauing 
with RAD_2317 or RAD_3831. The clustering is similar in all RAD datasets with 1,180 or more loci, with Cape 
Canaveral individuals falling between the Gulf and Atlantic clusters. As more loci are added, the Cape Canaveral 
samples appear to be closer to the Atlantic cluster, especially in datasets RAD_6255 and RAD_25198 (Fig. 3). 
Taking into account the SVDQuartets results clarifies the clustering—all Cape Canaveral samples form a clade 
with all Gulf samples except one. However, this relationship is only present in datasets with 2,317 loci or greater—
the putatively ‘gold standard’ dataset RAD_1180 does not show this relationship.

Phylogeographic patterns in red mangroves. Based on previous studies using microsatellite data32,36, 
the relationship of Cape Canaveral samples to other sampling locations, as found here with both PCA and 
SVDQuartet analyses of RAD-Seq data, was surprising—previous studies did not find that any of the individ-
uals in the Cape Canaveral population clustered with any of the Gulf samples. These new data could indicate an 
Atlantic-Gulf phylogeographic discontinuity, and that Cape Canaveral is an anomaly due to a lack of phylogeo-
graphic resolution, recent population founding, or human-mediated transplantation. The intermediate placement 
of Cape Canaveral in many of the PCAs suggests that it may actually cluster with the Atlantic samples, especially 
when considering datasets RAD_6255 and RAD_25198, indicating a phylogeographic break (Fig. 3). However, 
the SVDQuartets results place Cape Canaveral in a clade with the vast majority of Gulf samples, although this 
relationship is not highly supported in any datasets (i.e., bootstrap support is not >70% for this clade in any 
dataset) (Fig. 4). Assuming that Cape Canaveral is more closely related to Gulf samples, the age of the divergence 
between the two clades (Atlantic, Gulf + CpCFl) comes into question. Northern Florida represents the northern 
limit of the range of red mangroves33. Typically, populations of these trees in northern Florida are periodically 
extirpated due to freezing events, and these areas are re-colonized. The lower values of HO in northern popu-
lations (CpCFl, MlbFl, ShKFl, NPRFl, TCBFl) relative to southern populations indicate that these populations 
were likely founded more recently from a small number of propagules. The Cape Canaveral population was likely 
founded by individuals from the Gulf Coast, suggesting that the divergence between the two clades (Atlantic, 
Gulf + CpCFl) is very recent.

Previous research indicates that gene flow is greater from the Gulf Coast to the Atlantic Coast in red man-
groves; there may be ongoing gene flow from the Gulf to Cape Canaveral32. Alternatively, alleles from the Gulf 
Coast could have migrated into an existing Cape Canaveral population and proliferated due to other processes 
(e.g., drift). Another explanation for the sister relationship between the Gulf samples and Cape Canaveral is 

Table 5. The variation in average inbreeding coefficient (FIS) among data sets and populations. Within each 
data set, lower (warmer colors) and higher (cooler colors) values of FIS are shown using color-coding. The 
average value of FIS across all data sets for each population is shown in the last column of the table.

SSR_8 RAD_239 RAD_1180 RAD_2317 RAD_3831 RAD_6255 RAD_25198 Average 

BHKFl 0.049 -0.207 -0.161 -0.132 -0.126 -0.118 -0.263 -0.140 

CpCFl 0.095 -0.315 -0.208 -0.166 -0.159 -0.134 -0.113 -0.155 

CvPFl -0.300 -0.238 -0.201 -0.165 -0.158 -0.126 -0.109 -0.191 

HwdFl -0.206 -0.356 -0.274 -0.231 -0.206 -0.147 -0.105 -0.228 

IsmFl -0.130 -0.245 -0.163 -0.130 -0.111 -0.070 0.003 -0.128 

KyLFl 0.081 -0.194 -0.168 -0.146 -0.133 -0.123 0.015 -0.109 

MlbFl -0.018 -0.169 -0.121 -0.096 -0.092 -0.075 -0.039 -0.092 

NPRFl -0.090 -0.317 -0.251 -0.225 -0.214 -0.209 -0.307 -0.234 

ShKFl 0.067 -0.554 -0.506 -0.452 -0.426 -0.400 -0.427 -0.398 

TCBFl -0.041 -0.407 -0.357 -0.311 -0.300 -0.277 -0.335 -0.299 

VKyFl -0.109 -0.260 -0.214 -0.185 -0.158 -0.133 -0.086 -0.172 

WPBFl 0.020 -0.233 -0.236 -0.218 -0.203 -0.180 -0.152 -0.177 
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human-mediated transplantation of propagules or seedlings from the Gulf Coast to Cape Canaveral. However, 
all available publications and information from land managers who replied to requests for information confirm 
that any restoration that required importation of propagules used either local propagules or seedlings from the 
southern Atlantic Coast (ref.41, personal communication with Rangers from Cape Canaveral National Seashore). 
Another possible explanation for this result is that red mangrove propagules were accidentally transported from 
the Gulf Coast of Florida to Cape Canaveral during construction of the Kennedy Space Center in the 1960s. 
Construction of the Space Center was a massive project. It is noteworthy that nearly 100,000 tons of steel was 
transported from the Gulf Coast to Cape Canaveral in numerous trucks; the transport of a few mangrove prop-
agules during this process could easily have established a Gulf genotype in the Cape Canaveral area42. We con-
clude that, in contrast to microsatellites, RAD datasets recover a relationship between the Gulf Coast and the 
Atlantic Coast (excluding Cape Canaveral) that supports the presence of a maritime discontinuity in red man-
groves. However, as red mangroves can disperse long distances, a population or populations that recently estab-
lished in Cape Canaveral likely had a founder or founders that were predominantly of Gulf Coast origin. The fact 
that previous studies using SSRs did not elucidate this relationship is not surprising—both the PCA analysis and 
SVDQuartets analysis indicate that 1180 loci were barely sufficient to infer the placement of Cape Canaveral—
datasets with many more loci were needed (Figs 3 and 4). The large number of loci required to resolve such rela-
tionships highlights why liberal filtering of RAD-Seq loci is advisable.

Conclusions
We cannot overemphasize the importance of thoroughly exploring RAD-Seq datasets when performing phylo-
geographic analyses—it is too easy to jump to conclusions when only using one arbitrary cutoff to filter loci. Our 
empirical data confirm that estimates of FST and/or heterozygosity may become inflated as missing data increase. 
However, this does not happen as quickly as implied in simulation studies as loci with missing data are added—
liberal filtering of loci retains loci valuable for phylogeographic or phylogenetic inference, without inflating pop-
ulation genetic statistics. Thus, regardless of the cutoff value used to filter loci, researchers should investigate 
several other cutoffs with both increased and decreased amounts of missing data to appreciate fully the impact of 
missing data on parameters in their study. We found no evidence that the 75% or 80% cutoff commonly employed 
was optimal. In many analyses, other datasets with cutoffs ranging from 31.3% to 67.7% performed just as well as 
or better than RAD_1180. Many RAD-Seq studies aim to multiplex as many individuals as possible in a HTS run; 
our results show that retaining loci with more missing data is feasible and advantageous in empirical studies, and 
that researchers can include more samples in a single sequencing run. Our study confirmed that microsatellites 
were a valuable tool for inexpensively estimating population genetic statistics, such as FST, FIS, and heterozygosity. 
However, this study revealed that the thousands of additional loci from across the genome provided by RAD-Seq 
increased phylogeographic resolution. We found that red mangroves likely have a phylogeographic discontinuity 
at the southern tip of Florida that was not detected in previous studies using SSRs32,36 and that a single population 
from the Atlantic coast of Florida arose via recent colonization by propagules (either natural or human-mediated) 
from the Gulf coast.

Methods and Materials
Sample collection, DNA isolation. We collected leaf tissue from plants of R. mangle from 12 locations in 
Florida (Fig. 1). At each location, we collected one leaf from 10–20 individuals that were spaced at least 15 m apart 
to minimize collecting closely related individuals. For each sampling location, we randomly selected 8 individuals 

Table 6. The variation in observed heterozygosity (HO) among data sets and populations. Within each data set, 
lower (warmer colors) and higher (cooler colors) values of HO are shown using color-coding. The average value 
of HO across all data sets for each population is shown on the bottom row of the table.

SSR_8 RAD_239 RAD_1180 RAD_2317 RAD_3831 RAD_6255 RAD_25198 Average 

BHKFl 0.391 0.429 0.419 0.414 0.403 0.377 0.419 0.408 

CpCFl 0.359 0.379 0.346 0.350 0.355 0.336 0.306 0.348 

CvPFl 0.656 0.431 0.418 0.413 0.397 0.363 0.305 0.425 

HwdFl 0.516 0.487 0.464 0.451 0.435 0.395 0.392 0.451 

IsmFl 0.531 0.443 0.414 0.406 0.392 0.364 0.387 0.420 

KyLFl 0.438 0.393 0.370 0.361 0.339 0.308 0.468 0.382 

MlbFl 0.328 0.412 0.395 0.394 0.386 0.360 0.311 0.372 

NPRFl 0.359 0.353 0.339 0.341 0.348 0.335 0.403 0.351 

ShKFl 0.313 0.318 0.306 0.305 0.317 0.312 0.394 0.320 

TCBFl 0.453 0.366 0.354 0.360 0.364 0.351 0.415 0.376 

VKyFl 0.422 0.449 0.431 0.424 0.408 0.371 0.332 0.408 

WPBFl 0.406 0.459 0.444 0.438 0.426 0.389 0.346 0.418 
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to use in genetic analyses. GPS coordinates for each sampling location were recorded (Table 1). Each sampled leaf 
was placed in a labeled bag with silica gel and stored for 1–12 months; we then extracted DNA from the dried leaf 
tissue using a standard CTAB protocol43.

Microsatellite amplification and analysis. We PCR-amplified eight nuclear microsatellite loci for R. 
mangle (RM 11, 19, 21, 36, 38, 41, 46, 47)37. An M13 protocol44 was used to label amplicons with four fluo-
rescent dyes (6-FAM, NED, PET, VIC). The PCR (25-μL reactions) contained: 5X buffer (5 μL), 2.5 mM MgCl2 
(2 μL), 2.5 mM dNTP (0.5 μL), 0.12 μM forward primer with M13 label attached (1.25 μL), 4.5 μM reverse 
primer (1.25 μL), 4.5 μM fluorescent dye (2.5 μL), H2O (10 μL), Taq polymerase (0.5 μL), and 50 ng template 
DNA (2 μL). We carried out PCR in a Biometra T3 Thermocycler (Whatman Biometra, Goettingen, Germany) 
using the following cycles: initial denaturing at 94 °C for 3 minutes; 35 cycles of 94 °C (45 seconds), 52 °C (45 sec-
onds), 72 °C (75 seconds); final elongation at 72 °C for 20 minutes. We used the Applied Biosystems 3730 DNA 
Analyzer (Applied Biosystems, Foster City, United States) at the University of Florida Interdisciplinary Center 
for Biotechnology Research to detect the fluorescent peaks. We determined microsatellite peaks in Geneious 6.5 
(http://www.geneious.com/) using the GeneScan 600 size standard ladder for calibration45.

RAD-Seq library preparation and data processing. We followed the double-digest RAD-Seq protocol 
developed by Peterson, et al.46. For each sample, we constructed 96 DNA libraries by digesting approximately 
200 ng genomic DNA with EcoRI and MseI. We then ligated Illumina adapters and unique 8–10-nucleotide 
barcodes to the DNA fragments. The DNA libraries were PCR-amplified in two separate reactions and pooled 
to minimize early PCR bias. We size selected 250–450-bp fragments using gel electrophoresis and sequenced 
the DNA fragments using the 1 × 100-bp setting on the Illumina HiSeq. 2500 platform. Raw sequence data were 
deposited in the NCBI Sequence Read Archive (accession numbers pending). We processed the raw Illumina 
reads using the FAST-X toolkit (http://hannonlab.cshl.edu/fastx_toolkit/) to filter sequences; we required 95% 
of bases to be above a quality score of 30 to retain a read. We then converted the sequences from FASTQ to 
FASTA, demultiplexed the reads, sorted them by barcodes, and trimmed the sequences by removing the final 2 
bases to ensure that we were using only high-quality sequence data. We assembled the sequences into loci using the 
STACKS 1.24 pipeline47 with the following parameter settings: -n 3 -m 3 -M 2 (parameters were optimized following 
Mastretta-Yanes, et al.29); all other parameters were left as the default. We selected seven datasets (one microsatellite 
and six RAD-Seq) and used a variety of analyses to compare the results produced by each dataset (Table 2). We 
used the ‘populations’ program in STACKS to produce an unfiltered dataset of RAD-Seq loci using the ‘write single 
SNP’ command and requiring a minor allele frequency >0.05. We then removed human, fungal, and microbial 
contamination from the loci and filtered loci by representation across individuals using an R script to create five 
smaller datasets (Data_aquisition.R; this script and all other scripts are available at https://github.com/richiehodel/
red_mangrove_RAD_SSR). Filtered datasets were required to have locus data for a certain number of individuals 
for the given locus to be retained in the analysis; the number of individuals could range from 1–96 (Supplemental 
Fig. 1). The datasets were chosen such that they encompassed a wide range of loci and missing data.

Population genetic analyses. We used an R script (Basic_stats.R) and the R package ‘hierfstat’48 to cal-
culate average FST, the inbreeding coefficient FIS, HO, and HE for each of the seven datasets. To investigate how 
the number of loci affected comparisons of population genetic statistics among populations, we calculated pair-
wise FST (one sampling location versus all others combined) for each sampling location for each dataset using 
GenoDive49 and an R script (Pairwise_Fst.R). Additionally, we calculated FIS and HO for each sampling location 
for each dataset to determine how measures that often inform conservation practices might be affected by the 
number of loci and amount of missing data. We measured how missing data were partitioned across sampling 
locations to verify that there were not any sampling locations with unusually high or low amounts of missing data 
(Table 1). Additionally, we investigated how several population genetic statistics were distributed across loci in 
each of the datasets (Stat_Distribution.R; Fig. 2).

Principal components and SVDQuartets. We used a principal component analysis (PCA) implemented in 
the R package ‘SNPRelate’50 to identify clusters of individuals in the RAD data with an R script (VCF_PCA.R) and 
GenoDive to run a PCA on the microsatellite data. After visualizing the initial results, we tested several ways of group-
ing sampling locations together based on geography. We used SVDQuartets51 to determine genealogical relationships 
among individuals. This program selects the optimal topology for a quartet of taxa, and, after sampling millions of 
quartets, infers a phylogeny for all individuals based on choosing the quartets with the best scores and assembling them 
into a phylogenetic tree. We used an R script (Nexus_creation.R) to convert the output from the ‘populations’ program 
in STACKS into nexus files that could be read for the SVDQuartets analysis. For each RAD dataset, we evaluated all 
possible quartets and selected trees under the multispecies coalescent using QFM (Quartet Fiduccia Mattheyses) quar-
tet assembly52. We used non-parametric bootstrapping (100 replicates for each dataset) to assess confidence in inferred 
genealogical relationships between individuals. The R script Tree_formatting.R was used to visualize and annotate the 
50% majority-rule trees from SVDQuartets using the R packages ‘ape’53 and ‘ggtree’54.

Sampling loci. To test whether the number of loci or percentage of missing data for the loci used is the more 
important factor impacting measures of fixation, population differentiation, and heterozygosity, we randomly sampled 
from RAD_25198 (the RAD-Seq dataset comprising 25,198 loci) the equivalent number of loci contained in RAD_239, 
RAD_1180, RAD_2317, RAD_3831, and RAD_6255, respectively, and used these five sets of sampled loci in analyses. 
We used an R script (Subsample.R) to randomly sample loci without replacement from RAD_25198 and repeated the 
sampling 100 times for each dataset. We compared measures of FST calculated using the original datasets with results 

http://www.geneious.com/
http://hannonlab.cshl.edu/fastx_toolkit/
https://github.com/richiehodel/red_mangrove_RAD_SSR
https://github.com/richiehodel/red_mangrove_RAD_SSR
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calculated using the sampled loci from RAD_25198 (Fig. 5). We used bootstrapping to calculate 95% confidence inter-
vals around FST for the original datasets and for the sets of loci sampled from RAD_25198 (Fig. 5).

Data availability. The datasets generated during the current study are available in the NCBI Genbank repos-
itory, https://www.ncbi.nlm.nih.gov/bioproject/PRJNA397667 (accession numbers SRR5918296-SRR5918355).
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