
1SCIentIFIC REPORTS |  (2018) 8:6340  | DOI:10.1038/s41598-018-24724-1

www.nature.com/scientificreports

A Legionella pneumophila amylase 
is essential for intracellular 
replication in human macrophages 
and amoebae
Ashley Best1, Christopher Price1, Mateja Ozanic2, Marina Santic2, Snake Jones1 &  
Yousef Abu Kwaik1,3

Legionella pneumophila invades protozoa with an “accidental” ability to cause pneumonia upon 
transmission to humans. To support its nutrition during intracellular residence, L. pneumophila relies on 
host amino acids as the main source of carbon and energy to feed the TCA cycle. Despite the apparent 
lack of a requirement for glucose for L. pneumophila growth in vitro and intracellularly, the organism 
contains multiple amylases, which hydrolyze polysaccharides into glucose monomers. Here we 
describe one predicted putative amylase, LamB, which is uniquely present only in L. pneumophila and 
L. steigerwaltii among the ~60 species of Legionella. Our data show that LamB has a strong amylase 
activity, which is abolished upon substitutions of amino acids that are conserved in the catalytic 
pocket of amylases. Loss of LamB or expression of catalytically-inactive variants of LamB results 
in a severe growth defect of L. pneumophila in Acanthamoeba polyphaga and human monocytes-
derived macrophages. Importantly, the lamB null mutant is severely attenuated in intra-pulmonary 
proliferation in the mouse model and is defective in dissemination to the liver and spleen. Our data 
show an essential role for LamB in intracellular replication of L. pneumophila in amoeba and human 
macrophages and in virulence in vivo.

The accidental human pathogen, Legionella pneumophila, causes an atypical pneumonia when water droplets, 
stemming from a contaminated water source such a cooling tower or humidifier, are inhaled by humans, which 
are considered as accidental host1–3. Over 20 protozoa species are known to harbor Legionella species, likely with 
more yet to be identified4. Growth within the natural protozoan host serves as a “training grounds”, priming for 
infection of human alveolar macrophages, as these bacteria are more infectious than their free-living counter-
parts5–7. Success in replicating in macrophages may have been facilitated by the exploitation of evolutionarily 
conserved host processes, which allow L. pneumophila to modulate conserved pathways in both macrophages and 
protozoa4,8–10. Inhaled bacteria enter into the lungs where they primarily reside and proliferate within alveolar 
macrophages11–13. The intracellular lifecycle in the evolutionarily distant host cells is nearly identical4. Once the 
bacterium enters the host cell, it actively evades lysosomal fusion and intercepts ER-derived secretory vesicles to 
generate and ER-derived vacuole, known as the Legionella-containing vacuole (LCV)14–17, and modulate a pleth-
ora of cellular and innate immune processes18–21.

Essential to intracellular replication is the Dot/Icm Type 4b secretion system (T4SS), which inject proteins, 
known as “effectors”, from the bacterium to the host cytoplasm to modulate host processes22–24. Because of the 
broad host range, L. pneumophila has evolved over 320 effectors that are translocated by the Dot/Icm system and 
utilized as a “toolbox” to modulate cellular processes of various environmental hosts25–29. Many unique mech-
anisms of interfering with host processes, such as lysosomal-evasion and trafficking, have been identified and 
attributed to specific Dot/Icm effectors23,25,30–33. The effector’s ability to interfere with the function of eukaryotic 
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host target proteins, comes from their evolutionary history; many effectors are derived from eukaryotic proteins 
acquired by inter-kingdom horizontal gene transfer (HGT)26,34–36.

The primary food source for L. pneumophila is amino acids which are used for carbon and energy through 
feeding the TCA cycle37–40.The generation of host amino acids by L. pneumophila is an effector-driven process41. 
Substantial generation of host amino acids is required in human macrophages and amoebae where the effector 
AnkB hijacks the host ubiquitin-proteasome protein degradation machinery, which is required for successful 
pathogen replication in the host41–44. In contrast to human macrophages and amoebae, during infection of mouse 
macrophages with the L. pneumophila LP02 strain, the mammalian target of rapamycin complex 1 (mTORC1), a 
nutrient/energy sensor, is inhibited by multiple effectors to prevent protein synthesis, thus liberating amino acids 
for bacterial consumption45. Distinct pathogen mechanisms of generating host cell amino acids may be employed 
within diverse host cells and the pathogen mechanism may differ by various strains of L. pneumophila to acquire 
the high levels of host amino acids needed for replication.

Glucose is minimally metabolized by L. pneumophila through the Entner-Doudoroff (ED) pathway39,46–48. 
Traditional glycolysis through the Embden-Meyeroff-Parnas (EMP) pathway is also minimal, despite all the nec-
essary genes being present in the L. pneumophila genome39,46. Glucose does not support growth of L. pneumo-
phila, but it is predominantly imported by L. pneumophila upon termination of growth39,46, as the bacterium is 
preparing for cellular egress, and used mainly for the generation of the storage molecule, poly-3-hydroxybutyrate 
(PHB) through the ED pathway46,49. During nutrition deprivation, PHB is converted to acetyl-CoA that feeds 
the TCA cycle50–52. Genes involved in glucose metabolism and glucose uptake are up-regulated during growth in 
amoebae and may play a role in infection52,53.

Amylases are a conserved group of enzymes that catalyze hydrolysis of starch and glycogen into glucose54. 
They are members of a larger family, called glucosidases, and include other enzymes such as cellulase and lactase55. 
Interestingly, despite the minimal need of glucose by L. pneumophila, four putative amylases have been identified 
in the L. pneumophila genome, Lpg0422, Lpg1669, Lpg1671, and Lpg2528. The Lpg0422 (GamA) enzyme is the 
only characterized amylase56. It is secreted by the Type II secretion system (T2SS) and expressed during exponen-
tial growth but not required for intracellular growth53,56. Lpg1669 is a putative amylase that lacks putative secre-
tion signals for the T4SS or T2SS, based on bioinformatical analysis. Lpg1671 is predicted to be a T4SS substrate 
but its role in intracellular infection is not known57,58. The gene for gamA is found in most Legionella species and 
lpg1669 and lpg1671 are found in three species of Legionella.

The predicted putative amylase, Lpg2528, has been designated as LamB. Among the 60 Legionella species, 
L. pneumophila and L. steigerwaltii are the only two Legionella species to harbor lamB. Since L. pneumophila is 
responsible for 85% of Legionnaire’s disease cases, we decided to determine the role of LamB in the intracellular 
infection of amoebae and human macrophages2,59. Here we show that despite the minimal role of glucose in  
L. pneumophila metabolism, the LamB amylase is surprisingly necessary for intracellular replication in amoebae 
and human macrophages, and is required for virulence in vivo, in the A/J mouse model.

Results
Identification of amylases in L. pneumophila. Based on domain sequence homology, three new puta-
tive amylases were identified in the L. pneumophila genome, in addition to the one described (GamA) amylase 
(Fig. S1a–c)56,60. The Lpg2528 putative amylase is designated as LamB, which is encoded by a monocistronic gene 
(Fig. 1d). Considering LamB is only present in L. pneumophila and L. steigerwaltii, of the 60 Legionella species, 
it is more likely that LamB has been acquired after the speciation event of L. pneumophila and suggests that L. 
steigerwaltii may have arisen recently from L. pneumophila (Fig. 1a). The evolution of this gene in L. pneumophila 
mirrors that of the strain evolution (Fig. 1a). L. pneumophila strain Lens is most related in genome sequence 
homology to strain 130b/AA100, which is seen with lamB (Branch length, 99)61. Similarly, L. pneumophila strain 
Alcoy is most homologous to strain Corby, as also seen with lamB (Branch length, 94)61. LamB shares amino acids 
sequence homology only with other soil and freshwater organisms such as, Methylobacterium and Insolitispirillum 
(see Supplementary Fig. S2). Thus, it is likely that lamB may have been acquired by HGT from other intra-amoe-
bal or planktonic, environmental organisms. Because L. pneumophila is responsible for 85% of Legionnaire’s 
disease cases, we characterized the role of this enzyme in the intracellular infections of human monocyte-derived 
macrophages (hMDMs) and A. polyphaga2,59.

Structure of LamB and its potential secretion. LamB has an α-amylase domain (residues 18–376) that 
is structurally similar to the crystalized glucosidase of Streptococcus mutants, SmDG (Fig. S1d)62,63. The putative 
catalytic site, which is located within the predicted catalytic pocket of the enzyme, is conversed amongst amylases 
and in LamB of L. pneumophila and L. steigerwaltii (Figs 1b,c and S1d). Iterative Threading Assembly Refinement 
(I-TASSER) is a bioinformatics method of predicting the three-dimensional structure of proteins based on fold 
recognition64,65. The server also predicts ligand binding sites, and gene ontology. Structural modeling of LamB 
using the I-TASSER database shows structural similarity with other crystalized glucosidases (Fig. 1b).

L. pneumophila proteins can access the host cytosol by two major routes, translocation via the T4SS or through 
secretion into the LCV lumen by the type II secretion system (T2SS) and into the cytosol through the semiper-
meable LCV membrane22,66. L. pneumophila secretes many proteins via the T2SS, which is critical for intracellular 
growth and pulmonary disease67–69. Twenty proteins were identified to be secreted by the T2SS of L. pneumophila 
while an additional 250+ proteins have been suggested to contain a putative T2SS signal70. LamB was not iden-
tified by any of these methods as potential type-II substrate70. In addition, LamB lacks the N-terminal secretion 
signal characteristic of T2SS substrates69.

In order to be translocated by the Dot/Icm translocation system, effectors are recognized by a transloca-
tion signal on the C-terminus; alterations at the C-terminus of effectors causes a failure in translocation57,71,72. 
However, no translocation consensus sequence exists for all effectors of the Dot/Icm translocation system. 
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Machine learning techniques have identified conserved bi- and tri-residues at the C-terminal end of L. pneumo-
phila effector proteins, 10% of known effectors do not contain at any of these motifs and some proteins harbor-
ing these motifs are not translocated effectors57,73. LamB contains seventeen bi-residues identified to be heavily 
enriched in the last 100 amino acids of the C-terminus of T4SS effector proteins (see Supplementary Fig. S3)73. 
To determine whether LamB was Dot/Icm-translocated, the adenylate cyclase (CyaA) reporter function was 
used74,75. Transformation of plasmids expressing reporters CyaA-LamB or the positive control, CyaA-RalF, as 
fusion proteins was performed in WT L. pneumophila and the translocation-deficient mutant, dotA. The data 
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Figure 1. LamB is a putative amylase unique to L. pneumophila. (a) Phylogram representation of LamB 
divergence in L. pneumophila strains and L. steigerwaltii. Measure of node support was determined by aLRT 
using Phylogeny.fr (b) LamB is conserved among L. pneumophila strains and is only found in one other 
Legionella species, L. steigerwaltii. (c) The structure of LamB, generated from I-TASSER server, which suggests 
it is an amylase96. Highlighted within the catalytic binding pocket of amylases are resides critical for catalytic 
activity, D193, E227, and D296. The lamB gene is found on a monocistronic operon within the L. pneumophila 
genome, this area of the chromosome is shown in (d).
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showed that the CyaA-LamB reporter was not translocated by the Dot/Icm translocation system, as there was no 
significant difference between the secretion of CyaA-LamB by WT L. pneumophila or the dotA mutant (Student 
t-test, p > 0.2); whereas, the control, CyaA-RalF, was readily translocated into the host cells during infection with 
WT L. pneumophila but not the dotA mutant (Student t-test, p < 0.01) (Fig. 2).

The amylase activity of LamB. To confirm the putative enzymatic activity of LamB as an amylase, in vitro 
biochemical activity was determined by using the standard amylase activity colorimetric assay, quantifying the 
cleavage of ethylidene-pNP-G7 to p-nitrophenol, which can be measured at 405 nm76,77. Three highly conserved 
residues, D193, E227, and D296 were identified in the catalytic pocket of LamB and confirmed with domain align-
ment to other amylases (Fig. 1b,c). Constructs harboring native LamB or three LamB variants of single amino 
acid substitutions in the catalytic pocket were expressed in E. coli as GST fusion proteins, controlled by an IPTG 
inducible promotor. Expression of these proteins was confirmed by western blot (Fig. S4). With IPTG induction, 
amylase activity was highest for the wild type protein compared to uninduced (Student t-test, p < 0.001) (Fig. 3). 
The three catalytic mutants showed no amylase activity after inducing with IPTG. These data confirmed that 
LamB is indeed an amylase and that the identified catalytic pocket is essential for enzymatic activity.

Requirement of LamB for growth in amoebae and hMDMs. In order to test the role of LamB in 
intracellular growth, a lamB null mutant was generated. Complementation was achieved by expression of lamB 
on a plasmid, lamB/C. The LamB variants with amino acid substitutions in the catalytic domain of LamB, D193A, 
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Figure 2. CyaA-LamB reporter is not translocated by the Dot/Icm T4SS. (a) Adenylate cyclase fusions 
of LamB expressed in L. pneumophila and infected into hMDMs for 1 hr, in triplicate, using known T4SS 
effector, RalF, as a positive control. Production of cAMP was assessed by ELISA. Data is shown as mean cAMP 
concentration ± SD, n = 3 independent infections.

Figure 3. LamB is a functional amylase. (a) Amylase activity of ITPG-inducible (+), GST-LamB fusions 
and catalytic site mutants, expressed in E. coli, was assessed by colormetric assay of cleavage of an artificial 
compound. Data are representative of three independent experiments represented by mean amylase activity, of 
triplicate sample, as measured by cleavage of ethylidene-pNP-G7 into p-nitrophenol, shown as mean amylase 
activity ± SD, n = 3 independent cultures.
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E227A, and D296A were also introduced into the lamB null mutant (Fig. 1c). Infections of Acanthamoeba poly-
phaga or hMDMs were performed, as we previously described78.

The lamB mutant was severely defective for intracellular growth in hMDMs and A. polyphaga (Figs 4 and 5). 
At 24 h post-infection, there was a significant difference in the replication of the null mutant and the three cat-
alytically inactive mutants compared to WT L. pneumophila (Two-way ANOVA, p < 0.001). The growth defect 
was partially restored to the mutant by in trans-complementation of the gene, which is likely due to loss of the 
plasmid. However, complementation of the null mutant with any of the three catalytic variants did not restore any 
growth to the lamB mutant in A. polyphaga or hMDMs (Figs 4 and 5). This defect is not attributed to a growth 
defect in vitro, as the lamB mutant grows just as well as the WT strain in broth (see Supplementary Fig. S5). 
These data show that LamB is necessary for intracellular replication of L. pneumophila in both hMDMs and A. 
polyphaga. Indeed, it is the amylase activity of LamB that contributes to its essential role in intracellular growth, 
indicating the requirement for degradation of polysaccharides by L. pneumophila. This is surprising, considering 
the minimal role of glucose in metabolism of L. pneumophila, and that it is mainly utilized during late stages of 
growth to synthesize the PHB storage compound.

To determine if generation of host glucose by LamB was necessary for intracellular replication, A. polyphaga 
was supplemented with exogenous glucose during infection (Fig. S6). Glucose supplementation did not rescue 
the lamB mutant for its defect in intracellularly replication nor did it alter the growth of the WT strain or the 
complemented mutant (Fig. S6).
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Figure 4. LamB is required for growth in amoebae. To determine intra-vacuolar replication of the WT strain, 
the dotA mutant, the lamB mutant, catalytic mutants (D193A, E227A, and D296A), and complemented 
lamB mutant (lamB/C), A. polyphaga were infected and number of CFUs were determined at 2, 8, and 24 h 
post-infection. Data points represent (mean CFUs ± SD, n = 3) and are representative of three independent 
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Figure 5. LamB is required for growth in hMDMs. To determine intra-vacuolar replication of the WT strain, 
the dotA mutant, the lamB mutant, catalytic mutants (D193A, E227A, and D296A), and complemented lamB 
mutant (lamB/C), hMDMs were infected and number of CFUs were determined at 2, 8, and 24 h post-infection. 
Data points represent (mean CFUs ± SD, n = 3) and are representative of three independent experiments.
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Role of LamB in vivo. Given that A. polyphaga and hMDMs restrict the lamB mutant, we sought to deter-
mine the role of LamB in intrapulmonary growth in the mouse model, in vivo. Intra-trachael infection of A/J 
mice with WT L. pneumophila, the lamB mutant, or the complemented mutant (lamB/C) was performed, as we 
described previously43. Within 10 days, 50% of the mice infected with WT or the complemented mutant had died. 
However, 100% of mice infected with the lamB mutant survived for the 10 days of the study (Fig. 6a). Analysis 
of bacterial burden in the lungs of surviving mice, at 24, 48, and 72 hrs showed that the lamB mutant had sig-
nificantly decreased numbers of bacteria within the lungs, compared to the WT strain (Student t-test, p < 0.05) 
(Fig. 6b). The defective phenotype was completely recovered by complementation, indicating minimal loss of 
plasmid in vivo compared to ex vivo infection (Figs 4, 5). Histopathology on pulmonary biopsies taken at 12 and 
24 hrs post-infection, with wild type L. pneumophila showed severe inflammatory infiltrates of mononuclear cells 
(Fig. 6c,d). In contrast, following challenge with the lamB mutant, minimal inflammatory infiltration into the 
alveolar, bronchial, or peribronical spaces was observed (Fig. 6c,d).

The lamB mutant was less efficient in disseminating to the liver and spleen compared to the WT strain 
(Fig. 7a,b). At 48 hrs post-infection, there was a significant decrease in the amount of bacteria in the liver of mice 
infected with the lamB mutant compared to the WT strain (Student t-test, p < 0.01). Compared to the WT strain, 
fewer lamB mutants disseminated into the spleen at 48 hrs (Student t-test, p < 0.05) and 72 hrs (Student t-test, 
p < 0.01) post-infection compared to the WT strain. The reduced dissemination of the lamB mutant was com-
pletely restored upon complementation by lamB.

Discussion
A “bipartite” metabolism has been used to describe the nutritional needs and metabolic regulation of L. pneu-
mophila4,47,50,79. During early intracellular replication within human macrophages or amoebae, L. pneumophila 
relies on amino acids to generate carbon and energy from the TCA cycle37,80. Once amino acid levels become low, 
the bacteria undergo growth phase transition, switching from the replicative phase to the transmissive phase81–84. 
At this point, L. pneumophila increases uptake and utilization of glucose and converts it into the storage com-
pound PHB46,47. Experiments with 13C-glucose demonstrated that glucose is used for de novo synthesis of amino 
acids and PHB during late stages of infection39. Additionally, labeling of glucose demonstrated a carbon flux 
from glucose to pyruvate via the Enter Doudoroff (ED) pathway but not the Pentose Phosphate Pathway (PPP)39. 
However, addition of excess exogenous glucose does not result in increased growth of the organism during any 
stage46. Therefore, generation of excess glucose in the host, as a source of carbon and energy, through degradation 
of polysaccharides by LamB is unlikely to support growth. Thus, it is surprising to identify a major role for LamB 
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in intracellular growth, since L. pneumophila mainly utilizes amino acids for growth85. We speculate LamB is 
involved in processes other than nutritional virulence85,86.

Uptake of glucose is increased by L. pneumophila during post-exponential growth, most notably for the gen-
eration of the storage molecule, PHB39,46,49, and nutrient importers are important for intracellular growth of  
L. pneumophila6,87. Having large stores of PHB allows the organism to persist outside of the host for extended 
periods of time51.Transcriptomic studies in the human macrophage cell line THP-1 have demonstrated that 
expression of lamB is highest early in infection (8 hrs) rather than later (14 hrs), opposite of when the organism 
starts increasing consumption of glucose46,88. Faucher et al. also classified this gene as “highly induced in cells”88. 
LamB may be involved in increasing availability of glucose in the host ahead of when the organism prepares to 
utilize it during the late stages of infection. However, our data excludes that possibility. Increasing the availability 
of glucose with an amylase could allow L. pneumophila to generate more PHB, promoting long-term survival. It 
is possible that failure to store sufficient amounts of PHB by the lamB mutant results in an early defect in intra-
cellular growth, due to the lack of a rapid influx of acetyl-CoA from reduced levels of PHB. Alternatively, since 
amylases are known to act on the glycosylation of proteins, LamB may be acting on the post-translational modifi-
cation of host proteins to control processes important for replication, independent of nutrition or PHB storage89. 
This could allow the bacterium to evade some aspect of the innate host immune response necessary for successful 
intracellular replication. Future studies are aimed at identification of target(s) of LamB and how they contribute 
to infection. Considering LamB is unique to L. pneumophila and its loss causes complete defect in intracellular 
growth in macrophages and amoebae, and attenuation in vivo, it may contribute to the enhanced virulence of  
L. pneumophila and its prevalence as a disease-causing species compared to other Legionella species.

Bioinformatical analysis indicates that LamB does not contain a T2SS secretion signal, but it does however 
contain putative T4SS translocation signals57,58,70. However, through the CyaA reporter assay our data show that 
LamB is not translocated. Previous reports have shown effectors that not translocated as CyaA reporter assay, 
were actually translocated T4SS effectors25,58. This reporter could interfere with the translocation of LamB, like 
seen with other effectors25. Predicted strength of the translocation signal is not a definitive answer to whether 
a protein is translocated, low-scoring predicted effectors have been shown to be translocated by the Dot/Icm 
System and high-scoring proteins have been shown to not be translocated58. Lifshitz et al. identified LamB to be 
a high-scoring putative effector and in the same study tested 10 new high-scoring putative effectors, of which 
three were confirmed to not be translocated by the Dot/Icm system using the CyaA reporter assay, but LamB was 
not tested58. Despite being a high-scoring putative effector, LamB may not be translocated, as observed in our 
CyaA reporter assay. Loss of lamB does not affect L. pneumophila’s ability to grow in vitro, supporting the idea 
that LamB is likely secreted into the host cytosol or into the lumen of the LCV, but the mechanism remains to be 
determined.

In summary, we report an amylase essential for intracellular proliferation of L. pneumophila within the two 
evolutionarily distant hosts, human macrophages and amoebae. Given its uniqueness to L. pneumophila, LamB 
serves as an interesting enzyme that may contribute to the prevalence and virulence of L. pneumophila compared 
to other Legionella species.
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with 106 CFUs of WT (white bars), the lamB mutant (black bars), or the completed, lamB/C (grey bars). 
Dissemination of the bacteria to the (a) liver and (b) spleen, as measured by CFU organ burden was assessed at 
the various time points.
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Materials and Methods
Strains and cell lines. L. pneumophila strain AA100/130b (ATCC BAA-74) and the dotA T4SS-deficient 
mutant, were grown on Buffered Charcoal Yeast Extract (BCYE) agar, as we previously described78. To gener-
ate the isogenic mutant lamB (lpg2528), 2 kb flanking DNA on either side of lamB, was amplified using PCR 
with primers listed in Table S1. The resulting amplicon was cloned into the shuttle vector, pBCSk+, to generate 
pBCSK + lamBKO. To delete the entire gene of lamB, inverse PCR was employed using the primers listed in 
Table S1, resulting in pBCSK + lamBKO2. The kanamycin resistance cassette from the Ez-Tn5 transposon was 
amplified using primers listed in Table S1. The resulting PCR product was subcloned in pBSCK + lamBKO2 
between the lamB flanking regions using standard molecular procedures, resulting in pBCSK + lamBKO3. 
This plasmid was introduced into L. pneumophila AA100/130b via natural transformation, as we previously 
described90. Natural transformants were recovered by plating on BCYE agar supplemented with 50 μg/ml 
kanamycin. To complement the lamB mutant, PCR was used to amplify the lamB gene and its upstream pro-
motor region, using primers listed in Table S1, and subcloned into pBCSK + , generating pBCSK + lamB/C. 
Complement mutants of lamB with mutations in the catalytic pocket were made by substituting the amino acid 
for alanine, to generate pBCSK + lamBD193A, pBCSK + lamBD296A, and pBCSK + lamBE227A, using prim-
ers listed in Table S1. These plasmid was introduced into the lamA mutant, via electroporation, as previously 
described91. Complemented lamB mutants were selected on BCYE plates supplemented with 5 μg/ml chloram-
phenicol, resulting in the complemented strains, lamB/C, lamB/D193A, lamB/D296A, and lamB/E227A.

Intracellular replication. For infection of cell monolayers, L. pneumophila strains were grown in BYE 
broth with appropriate antibiotic selection, at 37 °C with shaking, to post-exponential phase (OD550nm 2.1–2.2). 
A. polyphaga was cultured in PYG media at 22 °C, experiments were performed in PY media at 35 °C, as previ-
ously described78. Glucose supplementation experiments were done in presence of 100 mM glucose in the media. 
Human monocyte-derived macrophages (hMDMs) were isolated from healthy donors and cultured in RPMI 
1640, supplemented with 10% fetal bovine serum, as previously described78,92. All methods were approved and 
carried out in accordance to the University of Louisville Institutional Review Board guidelines and blood donors 
gave informed consent as required by the University of Louisville Institutional Review Board (IRB # 04.0358).

The wild type strain; the isogenic mutants, dotA and lamB; and complements lamB/C, lamB/D193A, lamB/
E227A, and lamB/D296A were grown to post-exponential phase in BYE broth at 37 °C with shaking, prior to 
infection and used to infect hMDMs and A. polyphaga, as previously described78,92. A total of 1 × 105 host cells 
were plated in 96 well plates and infected with L. pneumophila at an MOI of 10. Plates were centrifuged at 200 × g 
(5 mins), to synchronize infection. After 1 h, cells were treated for 1 h with gentamicin to kill extracellular bacte-
ria, as previously described78,92. Over a 24 h time course, host cell were lysed with sterile water (hMDMs) or 0.02% 
v/v Triton X-100 (A. polyphaga). L. pneumophila CFUs were determined by plating serial dilutions onto BCYE 
agar.

Bioinformatics analysis of LamB. Protein domain analysis was performed using NCBI’s Search for 
Conserved Domains (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). Phylogenetic analysis was 
determined using amino acid sequences of LamB, with the Phyologeny.fr platform. Branch length was deter-
mined by aLRT93,94. Predicted structures were generated via I-TASSER (https://zhanglab.ccmb.med.umich.
edu/I-TASSER/)60. Structures generated from I-TASSER were aligned using TM-align to generate a TM-score of 
structural similarity (https://zhanglab.ccmb.med.umich.edu/TM-align/).

Translocation Assay. To assess translocation of LamB by L. pneumophila T4SS, during infection of host 
cells, an adenylate cyclase fusion74 was generated using standard biology techniques with primers listed in 
Table S1. A total of 1 × 106 hMDMs were infected with wild type or dotA mutant L. pneumophila harboring plas-
mids expressing various adenylate cyclase fusions at an MOI of 20 for 1 h, as previously described74,92. Following 
infection, the cell monolayers were lysed and processed to assess cAMP concentration by ELISA using the Direct 
cAMP ELISA kit (Enzo) according to the manufacturer’s protocol and measure with a Synergy H1 microplate 
reader (BioTek).

Amylase activity. To determine if LamB is a functional amylase, the lamB gene was cloned into the 
IPTG-inducible GST-fusion expression vector pGEX-6p-1 (Amersham) and expressed in E. coli BL21 using prim-
ers listed in Table S1. Additionally, residues within the predicted catalytic pocket were substituted to alanine using 
inverse PCR using primers listed in Table S1. E. coli cultures (5 ml) harboring either the empty vector, lamB, or 
the various catalytic inactive mutants were grown in LB broth at 37 °C with shaking until the OD600nm reached 0.8. 
The cultures were spilt and one half was induced with 0.1 mM IPTG for 2.5 h at room temperature. One ml of each 
culture was pelleted by centrifugation and subjected to lysis with 0.5 ml buffer (0.1% v/v Triton X-100, 150 nM 
NaCl, 10 mM Tris pH7.5), containing protease inhibitors. Insoluble material was pelleted by centrifugation 
(16000 × g, 10 min, 4 °C) and the resulting supernatant was retained. Expression of fusion proteins was similar 
in all cultures (see Supplementary Fig. S3). To measure amylase activity, 25 μl of supernatant was analysed using 
an Amylase Assay Kit (Sigma), following the manufacturer’s instructions. This kit utilizes an artificial substrate, 
ethylidene-pNP-G7, which when cleaved by an amylase generates a colorimetric product detectable at 405 nm.

Mouse model. For testing the virulence of the lamB mutant, specific pathogen-free, 6–8 weeks old A/J mice 
were used, as previously described43,92. Groups of 3 A/J mice, for each time point, were infected intratracheally 
with 1 × 106 CFUs. At 2, 12, 24, 48, and 72 h after infection mice were humanely sacrificed and lungs, liver, and 
spleen were harvested and homogenized in sterile saline (5 ml) followed by cell lysis in distilled water. To deter-
mine CFUs, serial 10-fold dilutions were plated on BCYE agar and incubated at 37 °C. For histopathology, lungs 
of infected mice were fixed in 10% neutral formalin and embedded in paraffin. Serial 5 μm sections were cut, 

https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
https://zhanglab.ccmb.med.umich.edu/I-TASSER/
https://zhanglab.ccmb.med.umich.edu/I-TASSER/
https://zhanglab.ccmb.med.umich.edu/TM-align/
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stained with haematoxylin and eosin (H&E), for light microscopy analysis. Twenty random high-powered fields 
(HPFs) were assessed to grade inflammation severity including alveolar and bronchial damage, as well as percent-
age of parenchyma involved. The histology assessment included the number of the mononuclear cells and percent 
of parenchyma involved by using modification of double-blind scoring method at a magnification of 40x, as we 
described previously95. The inflammation process was graded normal (score of 0), when there were 0–19 monoc-
ular cells infiltrates per HPF with no alveolar and bronchial involvement; mild (score of 1), for 20 to 49 cells per 
HPF, including mild damage of alveolar and bronchial regions; moderate (score of 2), for 50 to 99 cells per HPF 
with moderate alveolar and bronchial inflammation; or severe (score of 3), for 100 to 200 mononuclear cells per 
HPF with severe effacement of alveolar and bronchial regions. The murine lung section was examined in sagittal 
direction and percent of parenchyma involved was scored as 0 when no area was compromised. The involvement 
of the parenchyma was scored as 1 when up to 25% of the total area was occupied by inflammatory exudate, 
or scored as 2 when 26 to 50% of parenchyma area was occupied with inflammatory cells, and 3 if comprised 
of more than 51% of the total area. The total histology score was calculated as an average of individual criteria 
scores. Uninfected tissue was used as a baseline score. All the experimental procedures were in accordance with 
National guidelines and were approved by the Institutional Animal Care and Use committee (IACUC) at Faculty 
of Medicine, University of Rijeka.

Data availability. All data generated or analysed during this study are included in this published article (and 
its Supplementary Information files).
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