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Familial Cancer Variant 
Prioritization Pipeline version 2 
(FCVPPv2) applied to a papillary 
thyroid cancer family
Abhishek Kumar  1, Obul Reddy Bandapalli1, Nagarajan Paramasivam2,3, Sara Giangiobbe1, 
Chiara Diquigiovanni4, Elena Bonora4, Roland Eils  2,5, Matthias Schlesner  2,6, 
Kari Hemminki1,7 & Asta Försti1,7

Whole-genome sequencing methods in familial cancer are useful to unravel rare clinically important 
cancer predisposing variants. Here, we present improvements in our pedigree-based familial cancer 
variant prioritization pipeline referred as FCVPPv2, including 12 tools for evaluating deleteriousness 
and 5 intolerance scores for missense variants. This pipeline is also capable of assessing non-coding 
regions by combining FANTOM5 data with sets of tools like Bedtools, ChromHMM, Miranda, SNPnexus 
and Targetscan. We tested this pipeline in a family with history of a papillary thyroid cancer. Only 
one variant causing an amino acid change G573R (dbSNP ID rs145736623, NM_019609.4:exon11:c.
G1717A:p.G573R) in the carboxypeptidase gene CPXM1 survived our pipeline. This variant is located 
in a highly conserved region across vertebrates in the peptidase_M14 domain (Pfam ID PF00246). The 
CPXM1 gene may be involved in adipogenesis and extracellular matrix remodelling and it has been 
suggested to be a tumour suppressor in breast cancer. However, the presence of the variant in the ExAC 
database suggests it to be a rare polymorphism or a low-penetrance risk allele. Overall, our pipeline is a 
comprehensive approach for prediction of predisposing variants for high-risk cancer families, for which 
a functional characterization is a crucial step to confirm their role in cancer predisposition.

Oncogenomics has been boosted with rapid advancements in the next-generation sequencing (NGS) technolo-
gies in the last 10 years with large consortia describing several thousands of somatic variants. However, there has 
been far less success in the discovery of new cancer predisposing genes (CPGs) as only some new genes were iden-
tified using germline genome sequencing1. The major fraction of CPGs were discovered in the late 1990s using the 
familial linkage analysis1. Since then the interest in collecting cancer pedigrees diminished and the consequence 
has been that whole exome/genome sequencing (WES/WGS)-based family studies have been forced to resort 
either to small pedigrees or single cases from affected families2. In cancer studies both types of approaches have 
been used3–6. CPGs found include for example an NTHL1 variant in colorectal cancer3 and an RECQL variant in 
breast cancer4.

As pedigree-based studies have a high discriminatory power if samples from many affected and unaffected 
members are available, we recently introduced the familial cancer variant prioritization pipeline (FCVPP5), which 
is a pipeline capable of detecting rare germline variants and their corresponding CPGs. In the current study, 
we describe FCVPPv2, an upgraded version of our FCVPP pipeline5. FCVPPv2 prioritizes rare deleterious and 
regulatory germline variants, both in the coding and non-coding region for cancer families. The advantages of 
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this approach are several-fold such as (a) reducing the large number of variants through the pedigree segregation 
step; (b) assessing the deleterious nature of missense variants by a combination of 12 ranking tools and 5 intol-
erance scores; (c) analysis of non-coding variants by specialized tools such as Miranda7 and Targetscan 7.08 for 
3′ UTR variants, SNPnexus9 for 5′ UTR variants and FANTOM5 and SNPnexus9 for variants in enhancers10 and 
promoters11,12 and (d) this pipeline also takes advantages of the improvements of population frequencies in public 
databases, which assists inferring rarity of a particular variant. Herein, we present the improvements of FCVPPv2 
as well as its application to a pedigree of papillary thyroid cancer (PTC).

Results
Familial cancer variant prioritization pipeline version 2 (FCVPPv2) comes with several improve-
ments. Overview of FCVPPv2 is provided in Figs 1 and 2 and description of this work involves several abbre-
viations of scientific words and tools as summarized in Supplementary Table S1. FCVPPv2 has implemented 
platypus tool13 for joint variant calling. It combines several resources for variant annotation like ANNOVAR14, 
exome aggregation consortium (ExAC15), exonic variant server with 6500 samples (EVS650016), 1000 Genomes 
phase III17, dbNSFP v3.018, and dbSNP19.

Variants are filtered with criteria using read quality parameters like coverage and quality scores (QUAL) must 
be >5 and >20, respectively. FCVPPv2 uses minor allele frequency (MAF) below 0.1% in the European popula-
tions in all used databases. The hallmark of FCVPPv2 is use of family-pedigree variant screening (Fig. 1). Post this 
step, CADD v1.320 based variant filtering is performed with PHRED CADD score of 10 as a cut-off. Subsequently, 
deleterious variants are segregated on their locations. The coding variants are considered deleterious based on 
the consensus from 5 intolerance scores, 3 conservational scores and 12 deleteriousness prediction tools (Fig. 1, 
Tables 1 and 2). FCVPPv2 characterizes the regulatory nature in the UTR regions by combining a set of tools 
like the Haploreg V4.121, RegulomeDB22 and SNPnexus9 for variants in 5′ UTR and miRNA binding sites using 
Miranda7 and Targetscan 7.08 tools for variants in 3′ UTRs (Fig. 1).

Above 98% of the human genome is non-coding and dealing with non-coding variants is a daunting task. No 
tools can accurately predict the regulatory nature of non-coding variants. To overcome this issue, FCVPPv2 uses 
a combination of the several standard tools like chromHMM, Segway, FunSeq223 and FANTOM5 data (Fig. 2). 
FCVPPv2 focuses the FANTOM5 data by matching variants within promoters and/or enhancers using Bedtools 
intersect function. FCVPPv2 makes assessments of transcription factor (TF) binding sites using SNPnexus9. This 
pipeline makes use of signals for chromatin binding using ChromHMM and genomic segmentation data from 
Segway via CADDv1.3. Additionally, FCVPPv2 checks if a putative non-coding regulatory variant is localized in 
the ultra-conserved non-coding elements (UCNEs) or ultra-conserved genomic regulatory blocks (UGRBs) with 
the help of UCNEbase24, and in ultra-sensitive and sensitive regions (Ultrasen), defined by FunSeq223. FCVPPv2 
uses Bedtools intersect function to assign variants in regions of super-enhancers using super-enhancer archive 
(SEA)25 and dbSUPER26 databases.

FCVPPv2 visualises top ranked variants for their regulatory natures using different genome browsers like 
Locuszoom27, SNiPA28, the UCSC29 and ZENBU30 (Fig. 1). The status of RNA and protein expression for genes 
carrying potential deleterious variants is examined with the help of FANTOM5, BioGPS31 and Human Protein 
Atlas32 (Fig. 1). This tool uses literature mining to check if these variants are found in known lists of cancer pre-
disposing genes (CPGs1). Towards end, FCVPPv2 provides a summary of potential variants by combining fea-
tures from several databases like ClinVar33, Online Mendelian Inheritance in Man (OMIM, https://omim.org/), 
CanVar Browser34, cBioPortal35, COSMIC36, ICGC37 and IntOGen38 (Fig. 1).

Application of FCVPPv2 to a papillary thyroid cancer (PTC) family. We used FCVPPv2 to a family 
with PTC with two distantly related cases (sample no. 2 and 3) and one unrelated case (sample no. 1, Fig. 3A). 
We ranked top variants for this family after WGS of the three samples. After variant annotation and removal of 
variants with MAF higher than 0.1% in at least one variant database, a total of 120,323 variants remained (Fig. 3B 
& Supplementary Table S2). We applied pedigree-filtering criteria imposing that the two related cases must have 
the variant, while the unrelated case should not have it. With this pedigree filtering approach we narrowed down 
the potential list of variants to 1970, which is about 1.6% of the initial variant set (Fig. 3B). Subsequently, we 
examined these variants based on their location in the genome and we found that only 28 of them were located 
in the coding region, which is 1.4% of all pedigree segregated variants, while 98.6% of them were located in the 
non-coding region with 1015 intronic, 901 intergenic and 26 up- or down-stream variants (Fig. 3B). Out of the 
28 coding variants only 7 had a CADD PHRED score >10 and these included 5 exonic (4 non-synonymous and 
1 non-frameshift insertion) and two UTR (1 in 3′ UTR and 1 in ncRNA_UTR) variants (Fig. 3B and Table 3). 
The non-frameshift insertion and the UTR variants (Table 3) were indels localized in the repetitive regions in 
the human genome and hence these were not considered further. Of the non-coding variants, none was located 
within a predicted enhancer or promoter.

We focused on the 4 non-synonymous variants localized in four different genes-C1orf27 (chromosome 1 open 
reading frame 27), CPXM1 (carboxypeptidase X (M14 family), member 1), FAM129A (family with sequence 
similarity 129, member A) and ZBTB41 (zinc finger and BTB domain containing 41) (Figs 3B and 4A). All these 
4 variants had CADD score >20, which indicates top 1% deleterious variants in the human genome. The highest 
CADD score of 32 was reported for CPXM1 ranking it to the list of top 0.1% deleterious variants. We prioritized 
the variant G573R in CPXM1 as our top candidate, as it had very high conservation scores (GERP++ = 5.3, 
phastCons = 1.0, and phyloP = 7.6), and 9 out of the 12 deleterious prediction scores and 4 out of the 5 intolerance 
scores were favoring it. Also amino acid change from glycine to arginine is critical with a Grantham score of 125 
(moderately radical, deduced from CADD annotation20), while the remaining three variants had a low Grantham 
score (<30). Additionally, although the three other variants had a CADD score >20, mutations in C1orf27 and 
FAM129A were classified as tolerated by all 5 intolerance scoring tools (listed in Table 1) and the ZBTB41 variant 
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www.nature.com/scientificreports/

3SCientiFiC REPORtS |  (2018) 8:11635  | DOI:10.1038/s41598-018-29952-z

Figure 1. Summary of familial cancer variant prioritization pipeline version 2 (FCVPPv2). This pipeline uses 
platypus tool13 for joint variant calling after mapping of the sequencing reads from cases and controls. FCVPPv2 
uses several external tools for variant annotation namely ExAC, 1000 Genomes phase III data, ANNOVAR 
and dbNSFPv3, dbSNP and EVS6500. For candidate variants the variants are filtered using read quality 
parameters like coverage and quality scores (QUAL) must be >5 and >20, respectively. Minor allele frequency 
(MAF) must be below 0.1% in the European populations in all used databases. Furthermore, these variants 
are screened with respective to family-pedigree and this is the most critical step in the germline genomics 
(shown in black shade). After this step, variants are ranked with the help of CADD v1.320 and any variants with 
CADD PHRED score of >10 belongs to top 10% for probable functional and deleterious variants in the human 
genome. These deleterious variants are subsequently divided into 4 different categories based on their locations. 
The coding variants are considered deleterious based on the consensus from 12 deleteriousness prediction 
tools and 5 intolerance scores. Variants in the 5′ UTR are considered regulatory based on the Haploreg V4.121, 
RegulomeDB22 and SNPnexus9 while variants in the 3′ UTR are regulatory if supported by the presence of 
miRNA binding site using Miranda7 and Targetscan 7.08 tools and additional hints are received from Haploreg 
V4.121 and RegulomeDB22. For variants in the non-coding segments we combined several state-of- the-art 
tools such as chromHMM, Segway, FunSeq2 and FANTOM5 data. Non-coding (intergenic and intronic) 
variants may not always have CADD > 10 even though they will have regulatory implications, so we analyzed 
all non-coding variants after pedigree segmentation, either with or without CADD > 10. Putative deleterious or 
regulatory variants are visualized using Locuszoom, SniPA and UCSC genome browser. Potential variants are 
also checked with sets of additional features, e.g. list of known CPGs1 and clinically relevant variants (ClinVar), 
expression data and somatic mutations. We also checked the sequencing data of all cases and controls in a 
particular family for correctness using the IGV browser.
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was only predicted to be deleterious by 3 out of 12 tools (Fig. 4A). All in all, we found one predicted deleterious 
missense variant in the CPXM1 gene, which was not found in any other 77 cancer families (including 4 PTC 
families), we have whole-genome sequenced by now. We only found two other missense variants in the entire 
CPXM1 gene in three different families out of the 77 cancer families, each present either in only one case or only 
one control of the family (Supplementary Table S3). During the course of this study, the NM_019609.4:exon11:c.
G1717A:p.G573R variant was identified in one colorectal cancer patient (Supplementary Table S4) as reported 
in the CanVar Browser34 (a database of genetic variants of 1,006 early-onset familial colorectal cancer cases6). We 
also found a rare stop gained variant and 3 more frequent missense variants in this gene in the CanVar Browser34 
(Supplementary Table S4). Currently, the G573R variant (dbSNP ID - rs145736623) is also listed in the ExAC 
database with a frequency of 0.0004 in the total population (0.0006 in the European, non-Finnish population). 
Taken together, as we found the NM_019609.4:exon11:c.G1717A:p.G573R variant in 2 distantly related cases of 
our PTC family, it may be a low-penetrance allele predisposing to PTC, but it may also be a rare polymorphism.

Characterization of the CPXM1 variant and potential roles of the CPXM1 gene. Our familiar PTC 
candidate variant (NM_019609.4:exon11:c.G1717A:p.G573R) is located at the end of exon 11 of the CPXM1 gene, 
which is composed of 14 exons (Fig. S1A). To confirm the accuracy of variant calling, we examined the genomic 
data of all sequenced samples using Integrative Genomics Viewer (IGV)39, reassuring that this CPXM1 variant is 
only present in the two related cases (sample no. 2 and 3, Fig. S1B), but not in the unrelated case (sample no. 1).

Figure 2. Overview of strategies for regulatory variant detection in the non-coding segments of the human 
genome. We utilized the FANTOM5 data using the SlideBase Tool (slidebase.binf.ku.dk) with 32693 enhancers 
and 184476 promoters (downloaded in March 2017). We matched our variants (pedigree segregated) with 
FANTOM5 data using Bedtools intersect to retrieve a list of potentially critical variants localized within 
promoters and/or enhancers, and we examined the status of transcription factor (TF) binding sites using 
SNPnexus9. We checked the signals for chromatin binding using ChromHMM and genomic segmentation 
data from Segway via CADDv1.320. In addition, we examined if the putative noncoding regulatory variants 
were localized in the ultra-conserved non-coding elements (UCNEs) and their clusters, also known as ultra-
conserved genomic regulatory blocks (UGRBs) with the help of UCNEbase24 and also if these variants were 
located in ultra-sensitive and sensitive regions (Ultrasen), defined by FunSeq223. The top-ranked variants were 
examined for their regulatory nature by using Locuszoom, SniPA, UCSC and ZENBU genome browsers. We 
also examined if the putative enhancer variant fall into the category of super-enhancers using super-enhancer 
archive (SEA)25 and dbSUPER26. Expression profile, RNA-seq data-based information and motif changes and 
disruptions were gathered with help from FANTOM5 data via the SlideBase.
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The human CPXM1 gene (also known as CPX1) encodes a zinc metallocarboxypeptidase. The human CPXM1 
protein is 734 amino acids long (Fig. 4B). Upon Pfam domain scanning, we found that the CPXM1 protein is 
composed of three Pfam domains, namely F5_F8_type_C (PFam ID - PF00754), peptidase_M14 (PF00246) and 
carboxypepD_reg (PF13620) located at amino acid positions 132–271, 306–611 and 625–688, respectively. The 
CPMX1 variant (NM_019609.4:exon11:c.G1717A:p.G573R) is localized in the peptidase_M14 domain (Fig. 4B). 
Upon examination the 25 amino acids flanking the variant position, we found the G573 residue and the majority 
of the flanking residues to be highly conserved from human to zebrafish (Fig. 4C). The CPXM1 protein has no 
carboxypeptidase activity but it is a secreted N-glycoprotein that binds collagen40. It has been reported to be 
involved in adipogenesis through extracellular matrix remodeling41. Peroxisome proliferator-activated receptor 
gamma (PPARγ) is the master adipogenic regulator and it may promote growth and invasion of undifferentiated 
thyroid cancer (TC) cells42. Whether CPXM1 may predispose to differentiated TC by acting as a complementary 
regulator to PPARγ in adipogenesis or through extracellular matrix remodeling, remains to be discovered41. There 
is experimental evidence indicating that expression of CPXM1 is epigenetically regulated in breast cancer and 
it may act as a tumor suppressor gene43,44. Recently, an indirect role for CPXM1 in PTC was also illustrated, as 
CPXM1 was downregulated by a long non-coding RNA (lncRNA, Ensembl ID - ENSG00000273132.1)45.

Discussion
The main theme for understanding the germline cancer genetics is the identification of pathogenic mutations 
and genes predisposing to cancer. Rapid improvements in scientific and technological aspects of genomics have 
contributed to revolutionary changes in cancer genetics in particularly in cancer treatment but also in cancer risk 
assessment, cancer screening and prevention, thus setting up a milestone for approaching towards personalized 
medicine46. With these advancements and decreasing costs, WES/WGS has become the state-of-the-art tool for 
identifying susceptibility loci in several types of Mendelian diseases2. There are a handful of successful reports 
on disease gene identification for cancer syndromes such as TERT promoter mutation47 and POT1 mutations48 
in familial melanoma, POLE, POLD149 and FAN150 mutations in familial colorectal cancer and KDR mutation51 
in familial Hodgkin lymphoma. However, delivering one out of several millions of human genetic variants as 
the main cause of hereditary cancer is a daunting computational task2. Recently, we developed a pipeline for this 
purpose, which is known as the FCVPP5. We applied several types of improvements to this pipeline while work-
ing with different cancer families and now we are representing the second version of this pipeline as FCVPPv2. 
FCVPPv2 can deal with missense variants in a more sophisticated way by employing 12 deleteriousness assess-
ment tools and 5 intolerance scores. Additionally, it has the capability of dealing with non-coding variants by the 
use of data from FANTOM5, super-enhancer databases, UCNEbase and FunSeq2, and without CADD filter as 
CADD may not pick up many non-coding positions as deleterious.

As an example we showed our experience in hunting predisposing genes for PTC in a high risk PTC family. 
Our approach involved WGS of germline DNA from several affected and unaffected family members. As a conse-
quence, we found that only 1 out of 61 variants (1970 variants out of 120,323 rare variants remained after pedigree 
segregation) was able to pass the pedigree segregation filter (Fig. 3B). Hence, pedigree-based variant filtering is a 
highly effective way for filtering out non-causative variants; in this case only <1.6% of the rare variants survived 
this step.

We identified 28 variants out of 1970 (1.4%) as coding region variants, which is close to the proportion of 
coding regions of the whole genome (2%). A single coding variant, CPMX1 (NM_019609.4:exon11:c.G1717A:p.
G573R), passed our filtering criteria, CADD score >10, location in a highly conserved region, deleterious in 
>60% of the prediction tools and intolerance tools predicting it to be deleterious. We had three indel variants in 
the coding and untranslated regions but they were in repetitive genomic segments and hence were not considered 
for final prioritization. Furthermore, none of the 1942 non-coding variants were predicted to be located within a 
promoter or an enhancer. Literature search gave some evidence about a potential function of the CPXM1 gene in 
cancer. CPXM1 may serve as a tumour suppressor in breast cancer43,44, potentially through involvement in adi-
pogenesis or extracellular matrix remodelling40,41, and it is reported to be down-regulated by a lncRNA in PTC45. 
Our study identified one predicted pathogenic mutation located in the peptidase M14 domain of the CPMX1 
protein in the PTC family, yet this domain is inactive in CPMX1 protein and lacks a typical carboxypeptidase 

Tools Details Score Range Significant score Ref.

Residual Variation Intolerance Score (RVIS)
RVIS - NHLBI-ESP6500 data set

based upon allele frequency data Negative to 
Positive

RVIS < 0 - intolerant
RVIS > 0 - tolerant

60
RVIS - ExAC data set

RVIS - local data set

pLI score
Developed by ExAC  
Consortium for Loss-of-Function 
(LoF) mutations

pLI ≥ 0.9 - highly LoF-intolerant
pLI ≤ 0.1 - LoF tolerant

15

Z-score Developed by ExAC Consortium for 
missense and synonymous variants

Positive Z scores –intolerant
Negative Z scores -tolerant

15

Genomic Evolutionary Rate Profiling (GERP) −12.3 to 6.17 >2 61

PhastCons 0 to 1 >0.3 62

Phylogenetic P-value (PhyloP) −14 to +6 ≥3.0 63

Table 1. Summary of intolerance scores and conservational scores.
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function. Recent sequencing data on colorectal cancer and ExAC databases suggest that the identified variant may 
be a rare polymorphism. Alternatively it may be a low-penetrance PTC predisposing variant, as it was found in 
two distant relatives, with no other known PTCs in the family. Lack of functional data of the CPXM1 gene com-
plicates further evaluation of its function and the pathways it is involved. As tumour samples from the mutation 
carriers of the PTC family are not available, we cannot explore the tumour suppressor nature of CPMX1 in PTC.

In general, our understanding of human genes and their roles in human diseases, including cancer, are still 
limited. Lack of proper annotation and unknown physiology hampers mechanistic groundwork for candidate 
variants. Genes involved in known pathways and with more information in the literature are more likely to be 
studied further than genes with little or no functional characterization. Without this knowledge or convincing 
segregation data there may be doubts to accept the detected genes as new bona fide tumor suppressor genes. 
Recent findings on HABP2 gene in nonmedullary thyroid cancer52, deubiquitinating enzyme coding BAP1 in 
multiple cancers53, ovarian cancer gene 1 (OVCA1)54, promyelocytic leukemia protein (PML)55 and regucalcin 
(RGN)56 are offered by variable levels of supporting functional evidence. From these, the HABP2 mutation52 was 
later shown to be a common polymorphism57. Another problem faced by the WES/WGS results in Mendelian 
diseases is also highlighted in our study: the potentially pathogenic mutation was found only in one family2.

An estimate from 2012 suggested that WES/WGS studies in Mendelian diseases have a success rate of about 
60–80%2. However in cancer only handful of novel CPGs were found through WGS/WES58. We think that cancer 
is more complex than other Mendelian diseases because carcinogenesis is the interplay of germline and somatic 
events in the form of tumour growth.

In this study, we provide details of a variant prioritization pipeline FCVPPv2 for gene identification in 
high-risk cancer families applying pedigree segregation-based variant filtering and variant prioritization using 
state-of-the-art bioinformatics tools and databases. This pipeline detected a predicted deleterious variant in the 

Tools Methodology
Score 
ranges Prediction References

Sorting Intolerant from Tolerant 
(SIFT)

Position-specific scoring matrix (PSSM) 
with Dirichlet priors
Sequence based. uses PSI-BLAST

0 to 1* D – Damaging (<0.05)
T – Tolerated (>0.05)

64

Polymorphism Phenotyping 
version-2 (PolyPhen-v2) Naïve Bayes classifier trained using 

supervised machine-learning
Sequence and structure based

0 to 1**
D – probably damaging (0.957–1)
P – possibly damaging 
(0.453–0.956)
B – benign (0.00–0.452)

65
PolyPhen2_HDIV (HumDiv$)

Polyphen2_HVAR (HumVar%)

Log ratio test (LRT) Uses log ratio test
Sequence based 0 to 1***

D – Deleterious
N – Neutral
U – Unknown

69

MutationTaster
Naïve bayes model operated on the 
integrated data source
Based on sequence and annotation.

0 to 1**
A– disease_causing_automatic
D – disease_causing (>0.5)
N – polymorphism (<0.5)
P – polymorphism_automatic

70

MutationAssessor Multiple sequence alignment (MSA) and 
conservation scores

−5.135 
to 6.49**

H – High
L – Low
M – Medium
N – Neutral

71

Functional Analysis Through 
Hidden Markov Models 
(FATHMM)

Hidden Markov models (HMM)
Based on sequences and protein domains

−18.09 
to 11.0*

D – Damaging (< = −1.5)
T– Tolerated (>−1.5)

72

MetaSVM
Support vector machine (SVM) based 
score, derived by incorporating different 
scores#

−2 to 
3**

D – Damaging (>0)
T– Tolerated (<0)

18

MetaLR Logistic regression (LR) based score, 
derived by combining different scores# 0 to 1** D – Damaging (>0.5)

T – Tolerated (<0.5)
18

Variant Effect Scoring Tool 
version 3 (VEST3)

Supervised machine learning-based 
method
Combines conservational and structural 
features

0 to 1** NA 73

Protein Variation Effect Analyzer 
(PROVEAN) Pair-wise alignment-based scoring method −14 to 

14*
D – Damaging (< = −2.5)
N– Neutral (>−2.5)

74

Reliability index (RI)
SVM based
Combines protein sequence and structural 
features

0 to 10** D – Damaging (≥5)
N– Neutral (<5)

75

Table 2. Summary of used tools for deleteriousness prediction for missense variants. *Lower scores indicate 
deleterious nature. **Higher scores indicate deleterious nature. ***Score cannot decide deleterious nature. 
$HumDiv - collection of mendelian disease variants (5564 deleterious + 7539 neutral in 978 human protein) 
against divergence from close mammalian homologs of human proteins (> = 95% sequence identity). 
%HumVar - compilation of all human variants (22196 deleterious + 21119 neutral) associated with some disease 
(non-cancer mutations) or loss of activity/function vs. common (MAF > 1%) human polymorphism with no 
reported association with a disease. #10 scores from SIFT, PolyPhen-2 HDIV, PolyPhen-2 HVAR, GERP++, 
MutationTaster, Mutation Assessor, FATHMM, LRT, SiPhy and PhyloP and the maximum frequency observed 
in the 1000 G data.
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CPMX1 gene in a PTC family. However, as recent sequencing efforts have found the variant in both the ExAC 
population and a colorectal cancer family member, experimental validation of the identified variant and func-
tional characterization of the gene are necessary for mechanistic understanding and evaluation of the potential 
cancer predisposing nature of CPMX1.

Material and Methods
Ethic permissions for the experiments from two committees. All experimental protocols 
were approved by two ethical committees namely “Comitato Etico Indipendente dell ‘Azienda Ospedaliero-
Universitaria di Bologna, Policlinico S. Orsola-Malpighi (Bologna, Italy)” and “comité consultatif de protection 
des personnes dans la recherche biomédicale, Le centre de lutte contre le cancer Léon-Bérard (Lyon, France)”. 
Sample collection was carried out in accordance with relevant guidelines and regulations of these two commit-
tees. As per guidelines of these two committees, we obtained informed consents of patients for use of their blood 
samples and the DNA extraction from bloods.

Whole-exome/genome sequencing, mapping, variant calling, filtering and annotation. WES/
WGS of the cases and controls from different families considered into the current study was performed in the 
Illumina X10 platform using DNA extracted from the blood samples. WES/WGS was performed as a paired-end 
sequencing with a read length of 150 bp. Mapping of reads to reference human genome (assembly version hs37d5) 
was performed using BWA-0.7.8.r2.05 mem (convey and alignment parameter as –T 0)59 and duplicates were 
removed using bammarkduplicates-0–0.148. Variants were called by using Platypus-0.8.113 (with details as 

Figure 3. Summary of the papillary thyroid cancer (PTC) family and variant ranking within this family. (A) 
Pedigree of the PTC family. (B) Variant ranking for the PTC family and selection of CPXM1 variant as the top 
deleterious variant.
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Platypus-0.8.1.py callVariants —genIndels = 1 —genSNPs = 1 —minFlank = 0). Variants were annotated using 
ANNOVAR14, dbNSFP v3.018, 1000 Genomes phase III17, dbSNP19 and ExAC15. Variant filtering was performed 
with considering the quality score >20 and coverage of minimum 5 reads. Minor allele frequency (MAF) of 0.1% 
was used with respect to population databases (the 1000 Genomes phase III17, non-TCGA exome aggregation 
(ExAC) data15, and local data sets). A pairwise comparison of variants among the cohort was performed to check 
for sample swaps and family relatedness.

Segregation in Pedigrees. The variants were filtered separately in each family based on the pedigree data 
by considering cancer patients as cases and unaffected persons as controls, and by applying to each individual a 
probability consideration for being a Mendelian case or a true control. However, a rule of thumb was that a maxi-
mum number of cases and a minimum number of controls in each family must carry the variant.

Variant ranking using combined annotation dependent depletion (CADD). After pedigree seg-
regation, variants were prioritized using the CADD tool v1.320 with the scaled PHRED-like CADD score greater 
than 10, which accounts for top 10% of probable deleterious variants in the human genome. Similarly the scores 
>20 and >30 are indicative of the top 1% and top 0.1% of deleterious variants, respectively20. All variants with 
CADD score >10 were taken into further consideration.

Screening genic variants using intolerance score. Intolerance score ranks genes based on their capa-
bilities to possess more or less common functional genetic variation relative to the genome wide expectation. 
Hence, genes, which have less common functional variation, are referred to as “intolerant” genes while genes 
prone to have more variations are called as “tolerant” genes. Tools were developed for calculating intolerance 
scores as reported in Table 1. Initially, residual variation intolerance score (RVIS) was developed based on allele 
frequency data as represented in whole exome sequence data from the NHLBI-ESP6500 data set60. We used this 
scoring system with ExAC15 and with our local datasets to create two additional intolerance scores, which were 
included into the prioritization process (Table 1).

Based on large-scale exome sequencing data, the ExAC consortium has developed two scoring systems which 
are known as loss-of-function (LoF) intolerance score (pLI score) and Z-score for missense and synonymous vari-
ants15. The pLI score is the probability that a gene is intolerant to a LoF mutation. There are three major classes for 
LoF mutations: (i) null, where LoF variation is completely tolerated; (ii) recessive, where heterozygous LoFs are 
tolerated; and (iii) haploinsufficient, where heterozygous LoFs are not tolerated. The closer the pLI score is to 1, 
the less tolerant the gene is to LoF, with pLI > = 0.9 reflecting an extremely LoF-intolerant set of genes. Similarly, 
the Z-score was developed by the ExAC consortium for missense and synonymous variants. The Z-score is based 
on the deviation of the observed from the expected number (Table 1). Positive Z-scores indicate that the gene has 
less variants than expected and hence is intolerant to variation, while genes with more variants will have negative 
Z scores15.

Conservational screening of variants. Since high evolutionary conservation indicates functional impor-
tance of a position, it can be used to predict if a variant is deleterious or not. Based on this approach, evolutionary 
conservation-based parameters were developed as summarized in Table 1. Genomic Evolutionary Rate Profiling 
(GERP)61 and the PhastCons62 were utilized for the assessments of variant conservation with the GERP score of 
>2.0 and the PhastCons score of >0.3 indicating a high level of conservation of the variant position and were 
used as threshold in the screening of variants. PhyloP is a module of the PHAST package63, which calculates 
p-values for conservation using a defined multiple alignment63. PhyloP scores range from −14 to + 6 where a 
higher score indicates a higher level of conservation. During the variant ranking process, a PhyloP score ≥3.0 was 
used as a criterion for a high level of conservation (Table 1).

Gene Name Gene Description Variant Variant nomenclature$ Variant type
No. of 
cases

No. of 
unknown 
cases

ANNOVAR 
Annotation

Exonic 
Classification

CADD 
score

C1orf27 chromosome 1 open reading 
frame 27 1_186355211_G_A NM_017847.5:exon4: 

c.G326A:p.R109H SNVs 2 0 exonic nonsynonymous 
SNV 25.1

FAM129A family with sequence similarity 
129, member A 1_184792402_T_C NM_052966.3:exon8: 

c.A884G:p.K295R SNVs 2 0 exonic nonsynonymous 
SNV 23.9

ZBTB41 zinc finger and BTB domain 
containing 41 1_197128680_C_T NM_194314.2:exon10: 

c.G2539A:p.D847N SNVs 2 0 exonic nonsynonymous 
SNV 23.1

CPXM1 carboxypeptidase X (M14 
family), member 1 20_2776248_C_T NM_019609.4:exon11: 

c.G1717A:p.G573R SNVs 2 0 exonic nonsynonymous 
SNV 32

KCNE3
potassium voltage-gated 
channel, Isk-related family, 
member 3

11_74167200_
AATAT_A

NM_005472.4: 
c.*1097–1097delATAT Indel 2 0 ncRNA_UTR3 . 11

AR androgen receptor X_66765158_T_
TGCAGCAGCA

NM_000044.3: 
c.239_240insGCAGCAGCA Indel 2 0 exonic nonframeshift 

insertion 12.8

NLK glucose-6-phosphate 
isomerase

17_26522009_T_
TCACA

NM_016231.4: 
c.*347_*348insCACA Indel 2 0 UTR3 . 11.7

Table 3. Overview of the 7 top-ranked germline variants detected in the PTC family. $ - as per guidelines of the 
Human Genome Variation Society (HGVS, website http://www.hgvs.org/).

http://www.hgvs.org/
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Screening missense variants using 12 deleterious ranking tools. All missense variants were 
assessed for deleteriousness using 12 tools as summarized in Table 2. These tools were developed using informa-
tion based on (a) sequence conservation, (b) structure, (c) combination of sequence and structure information 
and (d) meta-prediction using already known tools. SIFT is based on sequence data64, while PolyPhen uses both 
sequence and structure features65, and MetaSVM and MetaLR are combining pre-existing tools and hence these 
are examples of meta prediction tools18. Scores from these tools were gathered using dbNSFP18. Variants pre-
dicted to be deleterious by at least 60% of these tools were analysed further.

Prediction of regulatory nature of the non-coding variants. Putative miRNA targets among the 3′ 
UTR variants were detected using the miRanda suite; a mirSVR score lower than −0.1 is indicative of a “good” 
miRNA target7. Furthermore, we used entire dataset of the human miRNA target atlas from targetscan 7.08 and 
scanned it with help of the intersect function of the bedtools66,67. The 5′ UTRs were scanned for transcription 
factor binding sites using SNPnexus9. For regulatory variants, we merged enhancer10 and promoter11,12 data from 
the FANTOM5 consortium using the intersect function of bedtools. We employed a similar strategy for vari-
ants potentially localized in the super enhancer regions using super-enhancer archive (SEA)25 and dbSUPER26. 
Furthermore, the regulatory nature and impact of non-coding variants were assessed using CADD v1.320, 
HaploReg V421 and RegulomeDB22, which are based mainly on the ENCODE data68. SNPnexus9 was used to 
evaluate changes in transcription factor binding sites. Additionally, epigenomic data and marks from 127 cell lines 
from the NIH Roadmap Epigenomics Mapping Consortium were accessed via CADD v1.320 for regulatory var-
iants. We also tested if our variants were located within the ultra-conserved non-coding elements (UCNEs) and 
their clusters also known as ultra-conserved genomic regulatory blocks (UGRBs) with the help of UCNEbase24 
and also if these variants were located in ultra-sensitive regions (Ultrasen), defined by FunSeq223.

Visualization of the variants. Variants were visualized in the human genome (version hg19) using the 
Locuszoom27, SNiPA28, the UCSC29 and ZENBU30 genome browsers.

Figure 4. Overview of the top missense variants in the PTC family. (A) The 4 top ranked variants are shown 
with their favorable and unfavorable features. Grantham scores - 0–50 - conservative, 51–100 - moderately 
conservative, 101–150 - moderately radical and ≥151 - radical. (B) Location of the G573R variant in 
the peptidase M14 domain of CXPM1. (C) The G573R variant is localized in a highly conserved region. 
CXPM1 protein sequences were downloaded from GenBank as human (GenBank ID - NP_062555.1), 
gorilla (XP_004061758.1), cat (XP_003983774.1), pig (XP_003134381.1), seal (XP_021544821.1), lizard 
(XP_008120663.1), Xenopus (XP_002936314.1), catfish (XP_017320329.1), carp (XP_018934262.1), molly 
(XP_014844715.1) and zebrafish (XP_693256.4).
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Ranked deleterious variants were examined for additional features. Potential variants were exam-
ined carefully for several additional features like if these variants were found in known list of CPGs1. It was also 
examined whether clinical data and associated phenotypic data from ClinVar33, Online Mendelian Inheritance 
in Man (OMIM, https://omim.org/) and other disease gene databases were available for the concerned variants. 
The status of RNA and protein expression for genes carrying potential deleterious variants was examined with the 
help of BioGPS31 and Human Protein Atlas32, respectively. We also checked if the concerned germline variant was 
already reported in known germline variant databases like CanVar Browser34 or in the somatic mutation cancer 
databases like cBioPortal35, COSMIC36, ICGC37 and IntOGen38. The sequencing data for the concerned variants 
were rechecked manually using Integrative Genomics Viewer (IGV)39 and validated using Sanger sequencing.

Other data analysis by FCVPPv2. We can assist with data analysis using FCVPPv2, please send us a per-
sonal communication to either AK (a.kumar@dkfz.de) or AF (a.foersti@dkfz.de).
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