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Dual frequency sound absorption 
with an array of shunt loudspeakers
pengju Zhang1,4, Chaonan Cong2,4, Jiancheng Tao1* & Xiaojun Qiu3

Transformer noise is dominated by low frequency components, which are hard to be controlled with 
traditional noise control approaches. the shunt loudspeaker consisting of a closed-box loudspeaker 
and a shunt circuit has been proposed as an effective sound absorber by storing and dissipating the 
electrical energy converted from the incident sound. In this paper, an array of shunt loudspeakers is 
proposed to control the 100 Hz and 200 Hz components of transformer noise. The prototype under 
tests has a thickness of 11.8 cm, which is only 1/28 of the wavelength of 100 Hz. The sound absorption 
performance of the array under random incidence is analyzed with the parallel impedance method, 
and the arrangement of array elements is optimized. The test results in a reverberation room show 
that the proposed array has sound absorption coefficients of 1.04 and 0.93 at 100 Hz and 200 Hz, 
respectively, which provides potential of applying this type of thin absorbers for low-frequency sound 
control.

Effective absorption of the low frequency sound is a challenge in noise control and architectural acoustics. 
Traditional absorbers usually require large back cavity or thick depth for low frequency sound  absorption1–5. 
Acoustic metamaterials have been studied intensively due to their subwavelength  size6–20. For example, thickness 
of metamaterial absorbers can be significantly reduced with space coiling or  folding6–9; however, the absorp-
tion performance is hard to be tuned after they are  manufactured8,10. Membrane based  metamaterials11–13 and 
resonance coupling  metamaterials14–18 require specific elastic properties or Q-factors to attain optimal absorp-
tion performance, but they are difficult to be manufactured for large-scale applications. Active noise control 
 technology21–23 has problems of the system cost, complexity and robustness.

A typical shunt loudspeaker (SL) is composed of a closed-box loudspeaker with a shunt circuit connected to 
its terminals. Its absorption performance can be adjusted by tuning the shunt circuit. The SL was firstly proposed 
for the sound field control in a  duct24 and its working mechanism was proven to be equal to that of a feedback 
active control  system25. Negative impedance converters were employed to adjust the SLs flexibly by tuning the 
negative resistances, inductances or capacitances implemented in the shunt  circuit26, and micro-perforated panels 
were combined to extend the absorption frequency band of the  SLs27,28. Dual-resonance and multi-resonance 
absorbing SLs were also investigated for multi-tonal noise  absorption29–31, where the normal absorption coef-
ficients of the designed SL are larger than 0.9 at 100 Hz and its harmonic frequencies. These results demonstrate 
that a single SL can be an effective and adjustable sound absorber. For practical applications, multiple SLs have 
to be used. Although several SLs have been used for the room mode  equalizations32,33, the sound absorption 
performance of SL arrays under the random incidence is unknown, which is reported in this paper.

Results
Figure 1a shows an element of the SL array, which has a thickness of 11.8 cm and targets at 100 Hz and 200 Hz 
sound absorption. In the figure, − RE, C1 and L1 are negative shunt resistance, shunt capacitance and shunt induct-
ance, respectively. The side length of the square front surface of the SL is 16.3 cm and the effective radius of the 
loudspeaker diaphragm is 5 cm. The Thiele-Small (TS)  parameters34,35 of the loudspeaker driver and the electrical 
parameters of the shunt circuit are provided in the Supplementary Information. The normal absorption coefficient 
of each element in the array is calculated analytically (the details are listed in “The analytical method” section), 
simulated numerically (the details are listed in “The simulation method” section), and measured experimentally 
(the details are listed in “The measurement method” section), and the results are shown in Fig. 1b. The averaged 
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values of the measured normal absorption coefficients agree well with that from the theory and simulations, and 
the values at 100 Hz and 200 Hz are 0.94 and 0.97, respectively.

Figure 2 shows the SL array made with 64 elements distributed evenly in an area of S, where S0 is the effective 
area of the speaker diaphragm, Si is the area of the front surface of the ith element, and d is the interval between 
the elements. Define the area ratio σ as the ratio between the total effective area of the loudspeaker’s diaphragms 
to the area of the array S. The area ratio σ reaches the maximum value of 1 if d = 0 and Si equals to S0, but for 
practical closed-box loudspeakers with a circular diaphragm, σ is less than π/4.

Five layout patterns with different intervals of 33 cm, 25 cm, 16.5 cm, 8.3 cm and 0 cm were investigated and 
the random incident absorption coefficient was measured in the reverberation room. The optimal layout with the 
largest absorption coefficients at 100 Hz and 200 Hz is illustrated in Fig. 3a. In this layout, the interval between 
SLs is d = 0 m and the total area of the array is S = 1.74 m2. The random incident absorption coefficient of the 
array is 1.04 at 100 Hz and 0.93 at 200 Hz as shown in Fig. 3d. The main reason for the measured absorption 
coefficient in Fig. 3d to be greater than 1 is the extra sound absorption caused by the diffraction from the edges 
of the test sample to the incident sound  wave36.

Figure 3b, c show two of the other four layout patterns with intervals of 16.5 cm and 33 cm, respectively. 
The areas of these two arrays are 6.10 m2 and 13.25 m2, so the area ratio σ are 0.082 and 0.038, respectively. The 
random incident absorption coefficients of the SL arrays with these two layouts are shown in Fig. 3e, f. The test 
results demonstrate that the proposed SL array has a good absorption performance while its thickness is only 
approximately 1/28 wavelength of 100 Hz.

Figure 1.  (a) The schematic of an element of the SL array for dual frequency sound absorption, (b) typical 
normal absorption coefficients of an element of the designed SL array [drawn with Microsoft Visio 2019 (https 
://itsc.nju.edu.cn/Visio /list.htm), MATLAB 2019a (https ://itsc.nju.edu.cn/21628 /list.htm) and Adobe Illustrator 
CC 2018 (https ://itsc.nju.edu.cn/adobe /list.htm)].

Figure 2.  The schematic diagram of the SL array [drawn with Adobe Illustrator CC 2018 (https ://itsc.nju.edu.
cn/adobe /list.htm)].

https://itsc.nju.edu.cn/Visio/list.htm
https://itsc.nju.edu.cn/Visio/list.htm
https://itsc.nju.edu.cn/21628/list.htm
https://itsc.nju.edu.cn/adobe/list.htm
https://itsc.nju.edu.cn/adobe/list.htm
https://itsc.nju.edu.cn/adobe/list.htm
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Discussions
The absorption coefficients of the SL array are determined by the properties of elements and their layout. The 
equivalent acoustic impedance Z of the array can be derived as

using the analytical method described in the “Methods” section, where ZSL is the equivalent acoustic imped-
ance of the SL. Figure 4a shows the random incident absorption coefficient of the SL array as a function of the 
equivalent acoustic impedance. When the real part of Z equals 1.51ρ0c0 and the imaginary part of Z is zero, 
where ρ0c0 is the characteristic acoustics impedance of air, the random incident absorption coefficient reaches 
a maximum value close to 0.97. As shown in Eq. (1), the equivalent acoustic impedance of the array is affected 
by the area ratio, so the maximum random incident absorption coefficient can be achieved by adjusting the area 
ratio σ when the real part of ZSL is smaller than 1.51ρ0c0. The optimal area ratio σopt is

(1)Z ≈
ZSL

σ

Figure 3.  (a) The optimal layout of the SL array, (b) the SL array with the interval of 16.5 cm, (c) the SL array 
with the interval of 33 cm, (d) random incident absorption coefficient corresponding to configuration in (a), (e) 
random incident absorption coefficient corresponding to configuration in (b), (f) random incident absorption 
coefficient corresponding to configuration in (c) [drawn with MATLAB 2019a (https ://itsc.nju.edu.cn/21628 /
list.htm) and Adobe Illustrator CC 2018 (https ://itsc.nju.edu.cn/adobe /list.htm)].

Figure 4.  (a) The random incident absorption coefficient for the array of SLs with different acoustic impedance 
ratios, (b)–(c) random incident absorption efficient of the SL array with different area ratios at target frequencies 
(b) at 100 Hz (c) at 200 Hz [drawn with MATLAB 2019a (https ://itsc.nju.edu.cn/21628 /list.htm) and Adobe 
Illustrator CC 2018(https ://itsc.nju.edu.cn/adobe /list.htm)].

https://itsc.nju.edu.cn/21628/list.htm
https://itsc.nju.edu.cn/21628/list.htm
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 where Re(ZSL) denotes the real part of ZSL.
Figure 4b,c shows the random incident absorption coefficients of the array with different area ratios at 100 Hz 

and 200 Hz, respectively, where the markers with “ × ” represent the measurement results. The theory and simu-
lation results show that the random incident absorption coefficient increases first and then decreases with the 
area ratio σ, and the maximum absorption coefficient is 0.97 when the area ratio is 0.29 for both 100 Hz and 
200 Hz. In the experiments, the maximal absorption coefficient at 100 Hz and 200 Hz appears when the interval 
is 0 cm as shown in Fig. 3a and the corresponding area ratio is 0.29. The optimal area ratio agrees well with the 
calculated value of 0.29 from Eq. (2).

In conclusion, the sound absorption coefficients of an array of shunt loudspeakers under random incidence 
were tested in a reverberation room and the results were analyzed with the parallel impedance method. With the 
optimized arrangement of the array elements, the proposed array achieves sound absorption coefficients of 1.04 
and 0.93 at 100 Hz and 200 Hz, respectively, but with a thickness of only 1/28 of the wavelength of 100 Hz. It is 
demonstrated that an array of shunt loudspeakers can be designed as thin sound absorbers for low frequency 
noise control.

Methods
the analytical method. The equivalent acoustic impedance of the SL can be derived by using the equiva-
lent circuit  model27. Figure 5 shows the equivalent circuit model of a SL, where p is the incident pressure acting 
on the diagram, Bl is electromechanical coupling factor, RE is the DC electrical resistance of the voice coil, LE is 
the equivalent inductance of the voice coil, Rms is the force resistance of the loudspeaker suspension system, Mms 
is the mass of the driver cone, Cms is the force compliance of the suspension system, and S0 is the effective area of 
the driver cone. Cac is the equivalent acoustic capacitance of the back cavity with volume V and Cac = V/ρ0c

2
0 . 

The values of all these parameters are given in the Supplementary Information. The acoustic impendence ZSL at 
the diaphragm can be described by

Assume ZW is the acoustic impedance of the wooden plate with a thickness of 0.9 cm to make up the closed 
box, the equivalent acoustic impedance of each SL element can be obtained by

The acoustic impedance of each space between SLs in the array can be obtained  by37

where k and h are the wave number and the thickness of the array respectively. The equivalent acoustic imped-
ance of the whole SL array is

When all SL elements are identical, using the relationship that ZW >> ZSL and kh << 1, Eq. (6) can be approximated 
as Eq. (1). And the random incident absorption coefficient αs can be calculated  by38

(2)σopt=
Re(ZSL)

1.51ρ0c0
= 0.66

Re(ZSL)

ρ0c0
,

(3)ZSL =
Rms

S0
+

jωMms

S0
+

(

1

jωCmsS
2
0

+
1

jωCac

)

S0 +
(Bl)2

S0
[

jω(LE+L1)+ 1
/

jωC1

] ,

(4)Zi =
Si

(

S0
ZSL

+
Si−S0
ZW

) .

(5)Zs =
ρ0c0

j tan kh

(6)Z =
S

∑64
i=1 (

1
Zi/Si

)+ 1
Zs/(S−64Si)

Figure 5.  The equivalent circuit model of the designed SL prototype [drawn with Microsoft Visio 2019 (https ://
itsc.nju.edu.cn/Visio /list.htm)].

https://itsc.nju.edu.cn/Visio/list.htm
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where the absorption coefficient of the SL array for the oblique incidence with an angle θ can be obtained  by37

Figure 6 shows the calculated oblique incident absorption coefficient of the SL array at different incident 
angles at 100 Hz and 200 Hz when the space between the elements is d = 0 m. The simulation results are obtained 
with COMSOL Multiphysics. The absorption coefficients increase first and then decrease with the incident angle. 
The maximal oblique absorption coefficient at 100 Hz occurs at θ = 48° (Analytical method)/47° (Simulation), 
while the maximum at 200 Hz occurs at θ = 49° (Analytical method)/47° (Simulation).

the simulation method. In order to validate the analytical model, a numerical approach is adopted based 
on the Finite Element Method (FEM). The finite element simulation model established in COMSOL Multiphys-
ics 5.3a is shown in Fig. 7. The surface at z = 0 is set as the impedance boundary, where the acoustic impedance in 
the middle circular region with radius of 5 cm is set as ZSL and the rest area is set as a rigid wall. The region with 
0 < z < Hq is set as the plane wave radiating sound field and the target measurement plane is z = Hp. The region 
with Hq < z < H is set as a Perfectly Matched Layer (PML), which prevent the sound wave from reflecting when it 
propagates to the plane of z = Hq. Thus, we can simulate a free field condition. The side surfaces with x = 0, Lx and 
y = 0, Ly are set as Floquent periodic boundaries, which makes the simulation model repeat periodically in both 
x and y directions. Thus, we can simulate an array with infinitely many shunt loudspeakers. The parameters H, 
Hq, and Hp are set as 0.9 m, 0.6 m and 0.5 m respectively and Lx, Ly are determined by different area ratio σ. The 
maximum element size is set as 3.43 cm and the geometric model is divided into 10,749 domain elements, 1,692 
boundary elements, and 315 edge elements for numerical calculation.

(7)αs =

∫ 78◦

0 α(θ) sin (2θ)dθ
∫ 78◦

0 sin (2θ)dθ

(8)α(θ) =
4ρ0c0Re(Z) cos θ

[ρ0c0 + Re(Z) cos θ ]2 + [Im(Z) cos θ ]2

Figure 6.  Oblique incident absorption coefficient with different incident angle when the space between the 
elements is d = 0 cm (a) at 100 Hz (b) at 200 Hz [drawn with MATLAB 2019a (https ://itsc.nju.edu.cn/21628 /list.
htm)].

Figure 7.  The finite element simulation model used in the research [drawn with COMSOL Multiphysics 5.4 
(www.comso l.com) and Adobe Illustrator CC 2018 (https ://itsc.nju.edu.cn/adobe /list.htm)].

https://itsc.nju.edu.cn/21628/list.htm
https://itsc.nju.edu.cn/21628/list.htm
http://www.comsol.com
https://itsc.nju.edu.cn/adobe/list.htm
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When a background plane wave sound field with an incident angle θ is applied at the region of 0 < z < Hq, the 
incident sound pressure pinc and the reflected sound pressure pscat on the target measurement plane at z = Hp are 
calculated. The sound absorption coefficient α(θ) could be obtained as

The normal absorption coefficient can be calculated by Eq. (9) when the incident angle θ is 0°, and the random 
incident absorption coefficient is calculated by Eqs. (9) and  (7) when the incident angle θ is swept between 0° 
and 78° with a step of 1°.

the measurement method. The normal incident absorption coefficient was measured in an impedance 
tube according to ISO 10534-239 with a B&K PULSE 3560D analyzer as shown in Fig. 8a. The sound source is 
fixed at the other end of the pipe and cannot be seen in the figure. The pipe is made of acrylic with a thickness of 
15 mm, which can be considered as a rigid wall, because the acoustic characteristic impedance of acrylic is much 
larger than that of air. The diameter of the pipeline is 12 cm and the distance of the two microphones is 30 cm.

The measurement of the random incident absorption coefficient was conducted in the reverberation room 
of the Institute of Acoustics of Nanjing University and the sound source interruption method according to 
ISO 354:200340 was adopted with a B&K PULSE 3560D analyzer. The volume of the reverberation chamber 
is 224.8 m3. The temperature and the relative humidity of air during the measurements were 25 °C and 72% 
respectively. Two β3-MU15 speakers manufactured by Elder Audio Manufacture Co., Ltd were used as the sound 
sources and placed at the corners of the reverberation room. Six microphones produced by Beijing AcousticSens-
ing Technology Ltd were evenly placed in the reverberation room with a height of 1.2 m. The positions of the 
microphones and the sound sources are illustrated in Fig. 8b. The tonal sound ranging from 80 and 230 Hz with a 
step of 5 Hz was used in the measurements and the frequency step is reduced to 2 Hz between 90 and 110 Hz and 
between 190 and 210 Hz for better frequency resolution. Each measurement is repeated three times for averaging. 
A panoramic view of the measurement system without and with the SL array is shown in Fig. 8c,d, respectively.

Data availability
All data generated or analyzed during this study are included in this published article (and its Supplementary 
Information files).

(9)α(θ) = 1−

(

pinc

pscat

)2

.

Figure 8.  (a) Measurement apparatus for normal absorption coefficients, (b) the position of the microphones 
and the sound sources in the reverberation room, (c, d) the photo of the measurement setup without (c) and 
with (d) the shunt loudspeaker array in the reverberation room [drawn with Adobe Illustrator CC 2018 (https ://
itsc.nju.edu.cn/adobe /list.htm)].
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