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The extremal pentagon‑chain 
polymers with respect 
to permanental sum
Tingzeng Wu1*, Hongge Wang1, Shanjun Zhang2 & Kai Deng3

The permanental sum of a graph G can be defined as the sum of absolute value of coefficients of 
permanental polynomial of G. It is closely related to stability of structure of a graph, and its computing 
complexity is #P-complete. Pentagon-chain polymers is an important type of organic polymers. In this 
paper, we determine the upper and lower bounds of permanental sum of pentagon-chain polymers, 
and the corresponding pentagon-chain polymers are also determined.

The permanent of an n× n real matrix M = (mij) , with i, j ∈ {1, 2, . . . , n} , is defined as

where the sum is taken over all permutations σ of {1, 2, . . . , n}.
Let A(G) be an adjacency matrix of a graph G of order n with a given vertex labeling. The permanental poly-

nomial of G is defined as

with b0(G) = 1.
Earlier, Kasum et al.1 and Merris et al.2 give a graphical interpretation of the coefficients of the permanental 

polynomial of G using linear subgraphs: for 1 ≤ k ≤ n,

where Sk(G) is the collection of all linear subgraphs H of order k in G, and c(H) is the number of cycles in H. 
Recall that A linear subgraph of a graph G is termed as a subgraph whose components are cycles or single edges.

The permanental sum of G, denoted by PS(G), is the sum of the absolute values of all coefficients of π(G, x) , i.e.,

Background.  The study of permanental polynomial of a graph in chemical literature were started by Kasum 
et al.1. They computed respectively permanental polynomials of paths and cycles, and zeroes of these polynomi-
als. Cash3 investigated permanental polynomials of some chemical graphs(including benzene, o-biphenylene, 
coronene, C20 fullerene). And he pointed out that studying the absolute values of coefficients of permanental 
polynomials is of interest. However, it is difficult to compute the coefficients of permanental polynomial of 
a graph. Up to now, only a few about the coefficients of permanental polynomials of chemical graphs and its 
potential applications seems to have been published4–14. A natural problem is researching the sum of coefficients 
of permanental polynomials of a chemical graph, i.e., how characterize the permanental sum of a chemical 
graph. There exists a peculiar chemical phenomenon which closely relate to the permanental sum. For the theo-
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retical study of nature, there exists 271 nonisomorphic fullerenes in C50 . Up to now, only a few fullerenes in C50 
is found. In 2004, Xie et al.15 captured a labile fullerene C50(D5h) . Tong et al.16 computed the permanental sums 
of all 271 fullerenes in C50 . They found that the permanental sum of C50(D5h) achieves the minimum among all 
271 fullerenes in C50 , and they also pointed out that the permanental sum could be closely related to the stability 
of molecular graphs. A bad news is the computing complexity of permanental sum is #P-complete17. In spite of 
this difficulty, the studies of permanental sums have received a lot of attention from researchers in recent years. 
Chou et al.18 studied the property of C70 . Li et al.19 determined the extremal hexagonal chains with respect to 
permanental sum. Li and Wei20 characterized the extremal octagonal chains with respect to permanental sum. 
Wu and Lai21 study some basic properties of the permanental sum of general graphs, in particular, they pointed 
out that the permanental sum is closed to the Fibonacci numbers. For the background and some known results 
about this problem, we refer the reader to22–25 and the references therein.

In addition, the permanental sum is similar to Hosoya index proposed by Haruo Hosoya. Hosoya index of 
a graph G, denoted by Z(G), is defined as the total number of independent edge sets of G26. The Hosoya index 
is closely related to the boiling points of chemical graphs. Wu and Lai21 shown that PS(G) ≥ Z(G) with the 
equality holds if and only if G is a forest. These indicate that the permanental sum is likely to explain certain 
characteristics of chemical molecules.

Base on arguments as above, it is interesting to study the permanental sums of chemical graphs.

The graph model of a type of organic polymers.  Organic polymers are a fascinating class of chemi-
cal materials with a strikingly wide range of applications27–32. Many of them contain chains of five-membered 
rings as a building block, see Figure 1 in33. It is easy to see that the graph model of the organic polymer with n 
five-membered rings is an edge-pentagon-chain. An edge-pentagon-chain EPCn with n pentagons, which is a 
sub-chain of an edge-pentagon-chain, can be regarded as an edge-pentagon-chain EPCn−1 with n− 1 pentagons 
adjoining to a new terminal pentagon by a cut edge, see Fig. 1. By contracting operation of graphs, an edge-
pentagon-chain EPCn with n pentagons is changed new pentagon-chain called vertex-pentagon-chain. That is, A 
vertex-pentagon-chain, denoted by VPCn , is obtained by contracting every cut edge in EPCn , see Fig. 1. Checking 
the structure of a vertex-pentagon-chain, it is not difficult to see that the vertex-pentagon-chain also is a graph 
model of a type of organic polymers34,35.

In this paper, we focus on properties of permanental sum of pentagon-chain polymers. We hope that results 
of the paper will provide theoretical support for the study of organic polymers.

Preliminaries.  Let EPCn = S1S2 · · · Sn be a polyomino chain with n(≥ 2) pentagons, where Sk is the k-th 
pentagon in EPCn attached to Sk−1 by a cut edge uk−1wk , k = 2, 3, . . . , n , where wk = v1 is a vertex of Sk . A 
vertex v is said to be ortho- and meta-vertex of Sk if the distance between v and wk is 1 and 2, denoted by ok 
and mk , respectively. Checking Fig. 1, it is easy to see that wn = v1 , ortho-vertices on = v2, v5 , and meta-vertex 
mn = v3, v4 in Sn.

An edge-pentagon-chain EPCn is an edge-ortho-pentagon-chain if uk = ok for 2 ≤ k ≤ n− 1 , denoted by 
EPCo

n . An edge-pentagon-chain EPCn is an edge-meta-pentagon-chain if uk = mk for 2 ≤ k ≤ n− 1 , denoted 
by EPCm

n  . The resulting graphs see Fig. 2. Contracting every cut edge in EPCo
n and EPCm

n  , the resulting graphs 
are called a vertex-ortho-pentagon-chain VPCo

n and a vertex-meta-pentagon-chain VPCm
n  , respectively. See Fig. 3.

In21, some properties of permanental sum of a graph are determined.

Lemma 1.1  21 Let Pn be a path with n vertices. Then 

Figure 1.   An edge-pentagon-chain EPCn and a vertex-pentagon-chain VPCn.

Figure 2.   An edge-ortho-pentagon-chain EPCo
n and an edge-meta-pentagon-chain EPCm

n .
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where F(0) = 0, F(1) = 1 and F(n) = F(n− 1)+ F(n− 2) for n ≥ 2 denotes the sequence of Fibonacci numbers.

Lemma 1.2  21 The permanental sum of a graph satisfies the following identities:
(i ) Let G and H be two connected graphs. Then

(ii) Let e = uv be an edge of a graph G  and C(e) the set of cycles containing e. Then

(iii) Let v be a vertex of a graph G  and C(v) the set of cycles containing v. Then

By Lemma 1.2, we obtain the following corollary.

Corollary 1.1  Let G be a graph and v a vertex of G. Then PS(G − v) < PS(G).

Results
The bound of permanental sum of edge‑pentagon‑chains.  In order to prove the lemma 2.1, we give 
two auxiliary graphs. One is denoted by EPCo′

n  obtained from EPCo
n deleting a ortho-vertex in Sn . The other is 

denoted by EPCm′
n  obtained from EPCm

n  deleting meta-vertex in Sn . The resulting graphs see Fig. 4.

Lemma 2.1  Let EPCo
n and EPCm

n  be an edge-ortho-pentagon-chain and an edge-meta-pentagon-chain, respectively. 
Then

Proof  By Lemma 1.2, we have

Thus,

PS(Pn) =

{

1 if n = 0,
1 if n = 1,
Fn+1 if n ≥ 2,

PS(G ∪H) = PS(G) PS(H).

PS(G) = PS(G − e)+ PS(G − v − u)+ 2
∑
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PS(G − V(Ck)).
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∑

u∈NG(v)

PS(G − v − u)+ 2
∑

Ck∈C(v)
PS(G − V(Ck)).
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+
640237− 43067

√
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442

(

15−
√
221

2
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.

PS(EPCo
n) = 13PS(EPCo

n−1)+ 5PS(EPCo′
n−1),

PS(EPCo′
n ) = 5PS(EPCo

n−1)+ 3PS(EPCo′
n−1).

Figure 3.   A vertex-ortho-pentagon-chain VPCo
n and a vertex-meta-pentagon-chain VPCm

n .

Figure 4.   Chains EPCo
′

n  and EPCm
′

n .
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Direct computation yields PS(EPCo
2) = 194 and PS(EPCo

2) = 80 . Now,

Set matrix M =
(

13 5
5 3

)

. Then the characteristic polynomial of M equals to x2 − 16x + 14 . Solving 

x2 − 16x + 14 = 0 , we obtain that the eigenvalues of M are 8+ 5
√
2 and 8− 5

√
2 , respectively. And the cor-

responding eigenvectors of these eigenvalues are T1 =
(

1√
2− 1

)

 and  T2 =
(

−1√
2+ 1

)

.

Let T =
(

1 − 1√
2− 1

√
2+ 1

)

. Then the inverse matrix of T is T−1 =

(√
2+2
4

√
2
4√

2−2
4

√
2
4

)

. According to the property 

of a similarity matrix, we have

Therefore,

By (1) and (2), we have

Similarly, by Lemma 1.2, we obtain

So,

Direct computation yields PS(EPCm
2 ) = 194 and PS(EPCm

2 ) = 75 . Then,

Let M =
(
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)

 be a matrix. Then the eigenvalues of M are 15+
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221
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property of a similarity matrix, we have
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So,

By (3) and (4), we have

	�  �

Definition 2.1  Let EPCs = S1S2 . . . Ss(s > 1) and EPCt = S′1S
′
2 . . . S

′
t be two edge-pentagon-chains. Suppose 

that Ss = v1v2v3v4v5 in EPCs and u is a vertex of S′1 in EPCt . EPCs

o
⊗

EPCt is an edge-pentagon-chain obtained 

by attaching vertex u of S′1 in EPCt to a ortho-vertex of Ss in EPCs . EPCs

m
⊗

EPCt is also an edge-pentagon-chain 
obtained by attaching vertex u of S′1 in EPCt to a meta-vertex of Ss in EPCs . The resulting graphs see Fig. 5. We 

designate the transformation from EPCs

m
⊗

EPCt to EPCs

o
⊗

EPCt as type I.

Theorem 2.1  Let EPCs

m
⊗

EPCt and EPCs

o
⊗

EPCt be two edge-pentagon-chains defined in Definition 2.1. Then

Proof  Let w ∈ V(EPCs−1) be the neighbor of v1 in EPCs . By Lemma 1.2, we obtain that

and

Thus PS(EPCs

o
⊗

EPCt)− PS(EPCs

m
⊗

EPCt) = PS(EPCs−1 − w)PS(EPCt − u) > 0 . 	�  �

Let Gn be a collection of all edge-pentagon-chains EPCn with n pentagons.

Theorem 2.2  Let G ∈ Gn be an edge-pentagon-chain with n ≥ 3 pentagons. Then

T−1MT =

(

15+
√
221

2 0

0 15−
√
221

2

)

.

(4)M = T

(

15+
√
221

2 0

0 15+
√
221

2

)

T−1.

PS(EPCm
n ) =

640237+ 43067
√
221

442

(

15+
√
221

2

)n−3

+
640237− 43067

√
221

442

(

15−
√
221

2

)n−3

.

PS(EPCs

o
⊗

EPCt) > PS(EPCs

m
⊗

EPCt).

PS(EPCs

o
⊗

EPCt)

= PS(EPCs−1)[PS(C5)PS(EPCt)+ PS(P4)PS(EPCt − u)]
+ PS(EPCs−1 − w)[PS(P4)PS(EPCt)+ PS(P3)PS(EPCt − u)]

= 13PS(EPCs−1)PS(EPCt)+ 5PS(EPCs−1)PS(EPCt − u)

+ 5PS(EPCs−1 − w)PS(EPCt)+ 3PS(EPCs−1 − w)PS(EPCt − u)

PS(EPCs

m
⊗

EPCt)

= PS(EPCs−1)[PS(C5)PS(EPCt)+ PS(P4)PS(EPCt − u)]
+ PS(EPCs−1 − w)[PS(P4)PS(EPCt)+ PS(P1)PS(P2)PS(EPCt − u)]

= 13PS(EPCs−1)PS(EPCt)+ 5PS(EPCs−1)PS(EPCt − u)

+ 5PS(EPCs−1 − w)PS(EPCt)+ 2PS(EPCs−1 − w)PS(EPCt − u).

Figure 5.   Two edge-pentagon-chains EPCs

o
⊗

EPCt and EPCs

m
⊗

EPCt.



6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:17470  | https://doi.org/10.1038/s41598-020-74612-w

www.nature.com/scientificreports/

where the first equality holds if and only if G ∼= EPCm
n , and the second equality holds if and only if G ∼= EPCo

n.

Proof  Let G = S1S2 . . . Sn ∈ Gn be the edge-pentagon-chain with the smallest permanental sum. We show 
that G = EPCm

n  . Suppose to the contrary that G  = EPCm
n  . Then there must exist i ∈ (1, 2, . . . , n) such that 

G = EPCi

o
⊗

EPCn−i . By Theorem 2.1, there exists G′ = EPCi

m
⊗

EPCn−i such that PS(G′) < PS(G) , which 
contradicts the hypothesis G attains the minimum permanental sum. Thus, G = EPCm

n .
Similarly, let G = S1S2 . . . Sn ∈ Gn be the edge-pentagon-chain with the largest permanental sum. The fol-

lowing we prove that G = EPCo
n . Suppose to the contrary that G  = EPCo

n . Then there must exist i ∈ (1, 2, . . . , n) 

such that G = EPCi

m
⊗

EPCn−i . By Theorem 2.1, there exists G′ = EPCi

o
⊗

EPCn−i such that PS(G′) > PS(G) , 
which contradicts the hypothesis G attains the maximum permanental sum. Thus, G = EPCo

n.
By Lemma 2.1 and argument as above, direct yields Theorem 2.2. 	�  �

The bound of permanental sum of vertex‑pentagon‑chains.  We first present two auxiliary graphs. 
One is denoted by VPCo′

n  obtained from VPCo
n deleting a ortho-vertex in Sn . The other is denoted by VPCm′

n  
obtained from VPCm

n  deleting meta-vertex in Sn . The resulting graphs see Fig. 6.

Lemma 2.2  Let VPCo
n and VPCm

n  be a vertex-meta-pentagon-chain and a vertex-orth-pentagon-chain, respectively. 
Then

Proof  By Lemma 1.2, we have

Thus,

Direct computation yields PS(VPCo
2) = 105 and PS(VPCo

2) = 49 . Now,

Set matrix M =
(

5 8
3 2

)

. Then the eigenvalues of M are 7+
√
105

2  and 7−
√
105

2  , respectively. And the corresponding 

eigenvectors of these eigenvalues are T1 =
(

16√
105− 3

)

 and  T2 =
(

−16√
105+ 3

)

.

640237+ 43067
√
221

442

(

15+
√
221

2

)n−3

+
640237− 43067

√
221

442

(

15−
√
221

2

)n−3

≤ PS(G)

≤
194+ 137

√
2

2

(

8+ 5
√
2
)n−2

+
194− 137

√
2

2

(

8− 5
√
2
)n−2

,

PS(VPCo
n) =

1575+ 157
√
105

30

(

7+
√
105

2

)n−2

+
1575− 157

√
105

30

(

7−
√
105

2

)n−2

,

PS(VPCm
n ) =

14501+ 3517
√
17

34

(

4+
√
17
)n−3

+
14501− 3517

√
17

34

(

4−
√
17
)n−3

.

PS(VPCo
n) = 5PS(VPCo

n−1)+ 8PS(VPCo′
n−1),

PS(VPCo′
n ) = 3PS(VPCo

n−1)+ 2PS(VPCo′
n−1).

(

PS(VPCo
n)

PS(VPCo′
n )

)

=
(

5 8
3 2

)(

PS(VPCo
n−1)

PS(VPCo′
n−1)

)

.

(5)

PS(VPCo
n) = 5PS(VPCo

n−1)+ 8PS(VPCo′
n−1),

=
(

5 8
)

(

5 8
3 2

)(

PS(VPCo
n−2)

PS(VPCo′
n−2)

)

= · · ·

=
(

5 8
)

(

5 8
3 2

)n−3 (
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)

.

Figure 6.   A vertex-ortho-pentagon-chain VPCo
′

n  and a vertex-meta-pentagon-chain VPCm
′

n .
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Let T =
(

16 − 16√
105− 3

√
105+ 3

)

. Then the inverse matrix of T is T−1 =

(√
105+35
1120

√
105
210√

105−35
1120

√
105
210

)

. According to 

the property of a similarity matrix, we have

So,

By (5) and (6), we have

Similarly, by Lemma 1.2, we obtain

So,

Direct computation yields PS(VPCm
2 ) = 105 and PS(VPCm

2 ) = 41 . Then

Let M =
(

5 8
2 3

)

 be a matrix. Then the eigenvalues of M are 4+
√
17 and 4−

√
17 , respectively. And the cor-

responding eigenvectors of these eigenvalues are T1 =
(

1+
√
17

2

)

 and T2 =
(

1−
√
17

2

)

.

Let T =
(

1+
√
17 1−

√
17

2 2

)

 . Then the inverse matrix of T is T−1 =

( √
17
34

17−
√
17

68

−
√
17
34

17+
√
17

68

)

 . By the property of 

a similarity matrix, we have

Therefore,

By (7) and (8), we have

	�  �

Definition 2.2  Let VPCs = S1S2 . . . Ss(s > 1) and VPCt = S′1S
′
2 . . . S

′
t be two vertex-pentagon-chains. Suppose that 

Ss = v1v2v3v4v5 in VPCs and u is a vertex of S′1 in VPCt . VPCs

o
⊗

VPCt is a vertex-pentagon-chain obtained by splic-

ing vertex u of S′1 in VPCt to a ortho-vertex of Ss in VPCs . VPCs

m
⊗

VPCt is also a vertex-pentagon-chain obtained 
by splicing vertex u  of S′1 in VPCt to a meta-vertex of Ss in VPCs. The resulting graphs see Fig. 7. We designate the 

transformation from VPCs

m
⊗

VPCt to VPCs

o
⊗

VPCt as type II.

T−1MT =

(

7+
√
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2 0

0 7−
√
105

2

)

.

(6)M = T
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7+
√
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2 0
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√
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2

)

T−1.
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√
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√
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2

)n−2

+
1575− 157

√
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(

7−
√
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2

)n−2

.

PS(VPCm
n ) = 5PS(VPCm

n−1)+ 8PS(VPCm′
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PS(VPCm′
n ) = 2PS(VPCm

n−1)+ 3PS(VPCm′
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Theorem 2.3  Let VPCs

m
⊗

VPCt and VPCs

o
⊗

VPCt be two vertex-pentagon-chains defined in Definition 2.2. Then

Proof  Let w1,w2 ∈ V(S′1) be two neighbors of u in VPCt . By Lemma 1.2, we obtain that

and

By Corollary 1.1 and argument as above, we have

	�  �

Let Gn be a set of consisting all VPCn with n pentagons.

Theorem 2.4  Let G ∈ Gn be a vertex-pentagon-chain with n  pentagons. Then

where the left equality holds if and only if G ∼= VPCm
n , and the right equality holds if and only if G ∼= VPCo

n.

Proof  Let G = S1S2 . . . Sn ∈ Gn be the vertex-pentagon-chain with the smallest permanental sum. We show 
that G = VPCm

n  . Suppose to the contrary that G  = VPCm
n  . Then there must exist i ∈ (1, 2, . . . , n) such that 

PS(VPCs

o
⊗

VPCt) > PS(VPCs

m
⊗

VPCt).

PS(VPCs

o
⊗
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PS(VPCt − V(S′1))+ 2PS(VPCs − V(Ss))PS(VPCt − u)

= [5PS(VPCs−1)+ 6PS((VPCs−1 − v1))]PS(VPCt − u)

+ [3PS(VPCs−1)+ 2PS((VPCs−1 − v1))][PS(VPCt − u− w1)

+ PS(VPCt − u− w2)+ 2PS(VPCt − V(S′1))]
+ 2PS(VPCs − V(Ss))PS(VPCt − u)

PS(VPCs

m
⊗

VPCt) = PS(VPCs − v3)PS(VPCt − u)+ PS(VPCs − v3)[PS(VPCt

− u− w1)+ PS(VPCt − u− w2)] + [PS(VPCs − v3 − v2)

+ PS(VPCs − v3 − v4)]PS(VPCt − u)+ 2PS(VPCs − v3)

PS(VPCt − V(S′1))+ 2PS(VPCs − V(Ss))PS(VPCt − u)

= [5PS(VPCs−1)+ 6PS((VPCs−1 − v1))]PS(VPCt − u)

+ [2PS(VPCs−1)+ 3PS((VPCs−1 − v1))][PS(VPCt − u− w1)

+ PS(VPCt − u− w2)+ 2PS(VPCt − V(S′1))]
+ 2PS(VPCs − V(Ss))PS(VPCt − u).

PS(VPCs

o
⊗

VPCt)− PS(VPCs

m
⊗

VPCt)

= [PS(VPCs−1)− PS((VPCs−1 − v1))][PS(VPCt − u− w1)+ PS(VPCt − u− w2)

+ 2PS(VPCt − V(S′1))] > 0.

14501+ 3517
√
17

34

(

4+
√
17
)n−3

+
14501− 3517

√
17

34

(

4−
√
17
)n−3

≤ PS(G)

≤
1575+ 157

√
105

30

(√
105+ 7

2

)n−2

+
1575− 157

√
105

30

(√
105− 7

2

)n−2

,

Figure 7.   Two vertex-pentagon-chains VPCs
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⊗

VPCt and VPCs

m
⊗

VPCt.
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G = VPCi

o
⊗

VPCn−i . By Theorem 2.3, there exists G′ = VPCi

m
⊗

VPCn−i such that PS(G′) < PS(G) , which 
contradicts the hypothesis G attains the minimum permanental sum. Thus, G = VPCm

n .
Similarly, let G = S1S2 . . . Sn ∈ Gn be the vertex-pentagon-chain with the largest permanental sum. The fol-

lowing we prove that G = VPCo
n . Suppose to the contrary that G  = VPCo

n . Then there must exist i ∈ (1, 2, . . . , n) 

such that G = VPCi

m
⊗

VPCn−i . By Theorem 2.1, there exists G′ = VPCi

o
⊗

VPCn−i such that PS(G′) > PS(G) , 
which contradicts the hypothesis G attains the maximum permanental sum. Thus, G = VPCo

n.
By Lemma 2.2 and argument as above, it is straightforward to obtain Theorem 2.4. 	�  �

Discussions
Determining extremal value is an important problem in scientific research. In this paper, we characterize the 
tight bound of permanental sums of all edge-pentagon-chains and vertex-pentagon-chains, respectively. And the 
corresponding graphs are also determined. For an edge-pentagon-chain(resp. vertex-pentagon-chain), using the 
computing method in Lemma 2.1(resp. Lemma 2.2) can compute the permanental sum of any edge-pentagon-
chain(resp. vertex-pentagon-chain). For every organic polymers, we always find a graph model corresponding 
it. Thus, the permanental sum of a organic polymers can be computed by the formulas in Lemma 1.2.

C50(D5h) is captured and its permanental sum achieves the minimum among all C50 . Is the phenomenon a 
coincidence? Does the phenomenon exist for other chemical molecular? These are very interesting problems. 
However, we cannot answer them. Our motivation is to determine the extremal graphs with respect to perma-
nental sum for some type chemical graphs in this paper. In the future, we will find the answers of the problem 
as above.
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