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A deep learning‑based model 
for screening and staging 
pneumoconiosis
Liuzhuo Zhang1,2,7, Ruichen Rong2,7, Qiwei Li3,7, Donghan M. Yang2, Bo Yao2, Danni Luo2, 
Xiong Zhang1, Xianfeng Zhu4, Jun Luo1, Yongquan Liu4, Xinyue Yang1,5, Xiang Ji1, 
Zhidong Liu6, Yang Xie2, Yan Sha1, Zhimin Li1,5* & Guanghua Xiao2*

This study aims to develop an artificial intelligence (AI)-based model to assist radiologists in 
pneumoconiosis screening and staging using chest radiographs. The model, based on chest 
radiographs, was developed using a training cohort and validated using an independent test 
cohort. Every image in the training and test datasets were labeled by experienced radiologists in 
a double-blinded fashion. The computational model started by segmenting the lung field into six 
subregions. Then, convolutional neural network classification model was used to predict the opacity 
level for each subregion respectively. Finally, the diagnosis for each subject (normal, stage I, II, or 
III pneumoconiosis) was determined by summarizing the subregion-based prediction results. For 
the independent test cohort, pneumoconiosis screening accuracy was 0.973, with both sensitivity 
and specificity greater than 0.97. The accuracy for pneumoconiosis staging was 0.927, better than 
that achieved by two groups of radiologists (0.87 and 0.84, respectively). This study develops a deep 
learning-based model for screening and staging of pneumoconiosis using man-annotated chest 
radiographs. The model outperformed two groups of radiologists in the accuracy of pneumoconiosis 
staging. This pioneer work demonstrates the feasibility and efficiency of AI-assisted radiography 
screening and diagnosis in occupational lung diseases.

Pneumoconiosis is a major occupational lung disease with increasing prevalence and severity worldwide. The 
term “pneumoconiosis” summarizes all lung diseases caused by excessive exposure to dust (e.g., silica, asbestos, 
coal, and mixed dust), which often occurs in the workplace. It is an irreversible disease with no cure1. In 2013 
alone, it caused approximately 260,000 deaths globally2. In the United States, the prevalence of coal worker’s 
pneumoconiosis (CWP; a major type of pneumoconiosis) has been increasing over the last decade and now 
exceeds 10% among long-tenured miners nationwide and 20% in central Appalachia1. Recently, there has been a 
surprising resurgence of progressive massive fibrosis, a disabling and fatal form of CWP, in central Appalachia3,4. 
Lung transplantation is also increasingly common among CWP patients5. According to the Centers for Disease 
Control and Prevention (CDC), during 1999–2016, the mean years of potential life lost attributed to CWP 
increased from 8.1 to 12.6 years6. In addition, more than one million workers in the United States are exposed 
to crystalline silica, which potentially leads to silicosis7, an irreversible, often disabling type of pneumoconiosis8. 
Furthermore, in recent years, more reports have indicated that dental technicians also suffer from the disease 
caused by inhalation of various airborne particles9. Because of the lengthy and unnoticeable progression of 
pneumoconiosis, and the seriousness of its outcomes, regular screening of the population at potential risk is the 
key to the early intervention and prevention of pneumoconiosis.

Current clinical diagnosis of pneumoconiosis is mainly based on the examination of chest radiographs (i.e. 
X-ray images). In 1980, the International Labor Organization (ILO) established a standardized system to classify 
radiographic abnormalities of pneumoconiosis according to the profusion level of small opacities observed in 
the lung10. This system has greatly facilitated pneumoconiosis screening and staging by providing a commonly 
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accepted standard and guidelines. However, radiograph-based diagnosis of pneumoconiosis still requires a well-
trained and experienced radiologist to visually identify subtle graphic patterns and features described in the 
ILO guidelines. This process is laborious and subject to considerable inter- and intra-observer variations. For 
example, the concordance in pneumoconiosis diagnosis is between 85 and 90% among expert radiologists11, 
and around 80% in general medical staff12 in the United States. The consistency is likely to be even worse for the 
screening programs conducted at community sites, especially in developing countries. Therefore, early detec-
tion and intervention of pneumoconiosis still demand a solution to timely, accurate, and efficient screening at 
a relatively low economic cost.

In order to improve the diagnostic efficiency and accuracy among radiologists, a variety of methods have been 
developed to analyze the chest radiographs. Since 1975, researchers have been studying the feasibility of com-
puter-based classification of profusion in chest radiographs. For example, Hall et al.13 used pattern recognition 
techniques with spatial moments for the analysis of radiology images. Ledley et al.14 developed a texture analysis 
method to classify chest chest radiographs. Savol et al.15 investigated an adaptive object-growing algorithm based 
on image intensity in order to recognize small rounded opacities. Since 2010, with the rise of computer-aided 
detection (CAD), several image analysis methods for pneumoconiosis diagnosis based on texture features in chest 
radiographs have been proposed16–19. Several image analysis methods have been developed to assist radiologists 
by reducing their workload or improving the performance in various tasks in disease diagnosis20–22. However, all 
of these methods rely on certain level of “handcrafted” feature definition, which is technically challenging and 
time-consuming, especially for complex tasks23 like pneumoconiosis diagnosis and staging.

Recently, artificial intelligence (AI) has been making remarkable success in medical image analysis owing 
to the rapid progress of “deep learning” 24–27. For example, studies have demonstrated the feasibility of using 
AI for diagnosis of lung abnormalities such as lung nodules, pulmonary tuberculosis, cystic fibrosis, and 
pneumoconiosis28. AI algorithms have achieved performance comparable to radiology experts in interpreting 
radiographs29. However, there is a lack of AI-based diagnostic tools for pneumoconiosis because of the complex-
ity of the disease and the limited availability of well-annotated pneumoconiosis chest radiographs for training 
AI models.

Results
Staging consistency and accuracy for experienced radiologists.  For the 405 pneumoconiosis 
patients in the training cohort, radiologist groups A and B diagnosed the stage independently through first-
round reading (with discussion only within group and not between groups). The two groups reached the same 
staging results for 304 patients, while differed for the remaining 101 patients. Using the final stage as the ground 
truth (Fig. 1B), the staging accuracy was 0.84 and 0.87 for groups A and B, respectively, which underlines the 
challenge of accurate diagnosis even with a group of experienced radiologists.

Model development.  The subregion-based model training process stopped at the 1200th epoch after vali-
dation accuracy failed to improve after 600 epochs. The model with the highest validation accuracy was selected 
as the final model.

Model evaluation and validation.  Model evaluation results using the independent test dataset are sum-
marized in Table  1. At subregion level, the top-right, top-left, and middle-right subregions had outstanding 
performance in screening accuracy (> 0.9), while the other three subregions also had acceptable performance 
(> 0.8). The screening sensitivity of the two middle subregions were over 0.9, while that of the two bottom sub-
regions were slightly over 0.5. For the screening specificity, all subregions had good performance (0.88–0.94).

At subject level, the screening accuracy was 0.973 for the independent test cohort (n = 411), with both sen-
sitivity and specificity above 0.97 (Table 1). The staging accuracy was 0.927 (Table 1), better than that achieved 
by human experts (0.84 and 0.87 for radiologist group A and B, respectively). Table 2 lists the confusion matrix 
of the final staging results on the test dataset.

Discussion
According to the ILO guidelines, diagnosis and staging of pneumoconiosis are mainly based on the profusion 
level of small opacities and the presence of large opacities/assembly of small opacities in chest radiographs. Accu-
rate diagnosis and staging of pneumoconiosis requires a well-trained and experienced radiologist to distinguish 
subtle graphic patterns in the chest radiographs. This process is time-consuming, subjective, and often results 
in inconsistent and unreliable outcomes, especially for pneumoconiosis screening programs implemented in 
underdeveloped regions. In this study, we leveraged powerful deep learning algorithms and well-annotated chest 
radiographs to develop and validate a deep learning-based model for screening and staging of pneumoconiosis. 
In order to have a set of reliable labels as the “ground truth” to train the deep learning model, we assembled a 
team of eight experienced radiologists and performed a two-round reading in a double-blinded fashion. Half 
of these radiologists have participated in developing the latest diagnosis standard of pneumoconiosis in China, 
which ensured the reliability of the labels.

The major differences between the proposed deep learning-based model and the other models for screening 
of pneumoconiosis are: (1) The deep learning model developed in our study has a higher screening accuracy, 
compared to the reported values in other papers. The screening accuracies in other reported studies are 0.79 (Cai 
et al., 2012), 0.92 (Zhu et al., 2014) and 0.94 ~ 0.95 (Yu et al., 2011), while the screening accuracy for our model is 
0.97. (2) Our model not only provides a screening result (disease or not), but also the stage of the disease, which 
can greatly facilitate the diagnosis and treatment planning. (3) Our model for screening and staging pneumoco-
niosis is based on the profusion level of small opacities and the presence of large opacities in the six subregions 
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Figure 1.   Annotation scheme. (A) Group assignment for radiologists. (B) The procedure of labelling chest 
radiographs in the training dataset.

Table 1.   Screening and staging performance on subregion level and subject level, respectively, in the test 
dataset.

Subregion

Screening

Staging accuracyAccuracy Sensitivity Specificity

Top-right 0.929 0.882 0.942 0.866

Top-left 0.912 0.829 0.930 0.864

Middle-right 0.934 0.908 0.941 0.895

Middle-left 0.881 0.918 0.883 0.842

Bottom-right 0.856 0.604 0.907 0.849

Bottom-left 0.818 0.500 0.876 0.805

Subject 0.973 0.981 0.970 0.927

Table 2.   Staging prediction results in the test dataset.

Predicted stage

True stage

TotalNormal Stage I Stage II Stage III

Normal 295 2 0 0 297

Stage I 8 67 9 4 88

Stage II 0 4 12 2 18

Stage III 1 0 0 7 8

Total 304 73 21 13 411
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of a lung field, which provides more enriched radiographic information for early diagnosis and intervention. (4) 
The data augmentation methods are widely adopted in the computer vision and deep learning field. These are 
the most common techniques to increase sample size and avoid overfitting in training a deep learning model30,31. 
With proper augmentation, our deep learning model gained better generalization power and achieved the same 
level of accuracy and stability on unseen (testing) dataset compared with the training dataset.

Due to the large size of digital chest radiographs and the often limited computing resources at the actual 
screening sites, it is impractical to develop and deploy a deep learning-based tool that directly works on whole 
chest radiographs. Existing solutions either down-sample the image (e.g., Gaussian pyramid) or reduce the model 
capacity (e.g., shallow learning, small CNN, etc.) to a feasible scale. However, pneumoconiosis diagnosis highly 
relies on identifying subtle image features, rendering not much room for downgrading the image resolution or 
compromising feature richness by model simplification. Alternatively, in this study, we designed a two-stage 
deep learning model following a divide-and-conquer strategy, which simplifies the problem into classifying 
the relatively small subregions in the lung instead of the whole image. This modeling strategy also mimics the 
clinical diagnostic procedure, which allowed us to well incorporate human knowledge (Table 3) into the AI 
model. It has two major advantages: (1) it largely reduces the computational load and thus the requirement of 
computing resources; (2) by incorporating human knowledge on pneumoconiosis staging, it reduces the sample 
size needed in training data.

In practice, pneumoconiosis screening is usually conducted at community sites, where resources, image qual-
ity and expertise level may vary. In order to improve the robustness and generalizability of the developed model 
with a limited amount of training data, we performed extensive image augmentation, which is one of the most 
effective pre-processing strategies to enrich data variety and avoid overfitting. In this study, the original images 
were augmented with rotating, flipping, shifting, zooming and varying the image intensity, resolution and qual-
ity. These augmentation processes largely reduced the influence of sampling condition, image contrast and lung 
size, and reinforced the model to focus on image features associated with pneumoconiosis.

Low accuracies were observed in the three subregions: middle-left (0.881), bottom-right (0.856), and bottom-
left (0.818). This is because the middle-left region has a relatively small area due to its overlaps with the heart in 
a projection plane. Each of the right and left lungs has a hilum that lies roughly midway down the lung. When 
moving from the hilum to the periphery on the bottom, there will also be a gradual diminution of the lung 
markings. All these anatomical features weaken the accuracy in the two bottom subregions. In contrast, the right 
bronchus is relatively shorter and flatter than those in the left. As a result, inhaled dust tends to be deposited 
there. Thus, the top-right and middle-right subregions have more easily identifiable radiographic abnormalities 
in pneumoconiosis, resulting in higher accuracies.

There are several limitations in our study. Firstly, the sample size in the test dataset is relatively small. More 
subjects are needed, especially those with stage II and III pneumoconiosis, for a more comprehensive evaluation 
of the model. Secondly, the current datasets only contain chest radiographs. Although chest radiographs the 
standard modality for pneumoconiosis diagnosis, computed tomography (CT) typically provides more details of 
the opacities regions in the lung and should be tested in future studies. Lastly, the current deep learning-based 
model is mainly trained by those well-labeled chest radiographs from pneumoconiosis patients and healthy peo-
ple. It cannot differentiate pneumoconiosis from other lung diseases that share a similar pathology. The predictive 
model could be further improved by (1) integrating other useful key factors to pneumoconiosis, such as working 
history, respiratory assessment, lungs’ main function, and blood pressure, and (2) feeding more comprehensively 
labeled chest radiographs from patients with different lung diseases.

Methods
Ethics approval and consent to participate.  The University of Texas Southwestern Institutional Review 
Board granted approval for this research. Data were collected under information consent for study participation. 
All methods were performed in accordance with the relevant guidelines and regulations.

Training and test datasets.  The training dataset was obtained from a cohort of 805 subjects (400 healthy 
controls, 163 stage I, 125 stage II, and 117 stage III pneumoconiosis patients). The test dataset was obtained from 
an independent cohort of 411 subjects (304 healthy controls, 73 stage I, 21 stage II and 13 stage III pneumoco-
niosis patients), which was used to evaluate the model developed from the training dataset. The subjects were 
enrolled from two different sites to ensure generalizability of the resulting model. All the enrolled chest radio-

Table 3.   Rule-based determination of final stage according to GBZ70-2015.

Description

Normal No opacities discover, or
Level 1 profusion of opacity presented in one subregion

Stage I Level 1 profusion of opacities presented in more than two subregions, or
Level 2 profusion of opacities presented in four subregions or less

Stage II Level 2 profusion of opacities presented in four subregions or more, or
Level 3 profusion of opacities presented

State III Large opacities presented
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graphs (one image per subject) had been carefully checked for quality and graded either “Good” or “Acceptable” 
by radiologists, indicating no technical defects likely to impair the diagnosis and staging of pneumoconiosis.

In this study, we used the “final stage” determined by radiologists (see below) as the ground truth. To improve 
the diagnosis accuracy, we recruited eight experienced radiologists and divided them into three groups (Fig. 1A): 
three in group A and three in group B, with group C consisting of six radiologists (two from group A, two from 
group B, and two additional). The six radiologists in group C were selected from six different national institutions 
for occupational disease research in China, all of whom had more than 10 years’ experience in pneumoconiosis. 
Moreover, four of these radiologists participated in the development of the latest diagnostic standard of pneu-
moconiosis in China: “Diagnosis of occupational pneumoconiosis GBZ70-2015.”32.

For each subject, the radiologists in group A and B independently performed the first-round reading accord-
ing to the national standard, GBZ70-2015. The lung field in each chest radiographs had been divided into six 
mutually exclusive subregions (see “Lung field segmentation” section for details): top-right, top-left, middle-
right, middle-left, bottom-right, and bottom-left (Fig. 2). Radiologist groups A and B independently annotated 
for each subregion the profusion level of small opacities (level 0, 1, 2, or 3) and the presence of big opacities (see 
Table 4 for an example record form). Then, the stage of pneumoconiosis was determined following GBZ70-2015 
(Table 3). For each subject, if the staging by groups A and B agreed, it was used as the final stage. Otherwise, the 
radiologist group C would read the image again and determine the final stage. This procedure was applied to the 
entire training and test dataset (Fig. 1B). 

Model strategy.  According to the routine diagnostic procedure for pneumoconiosis, we developed a two-stage 
deep learning model based on a divide-and-conquer strategy, which segmented a lung field into six subregions, 
trained subregion-specific models individually, and combined subregion-based predictions for staging (Fig. 2).

Lung field segmentation.  To identify the lung field in each chest radiographs, we developed a segmentation 
model by adapting a U-Net semantic segmentation model together with a ResNet backbone. We first downsized 
the images to 256 × 256 and fed them into the model, and then resized the resulting mask image back to the origi-
nal size. This resizing step allowed the model to process the images more efficiently. Then, we refined the mask 
with post-processing steps and extracted the lung field from the raw image (Fig. 2). To improve the accuracy and 

Figure 2.   A novel two-stage deep learning model for pneumoconiosis screening and staging.

Table 4.   Example of record form filled by each group of radiologists for diagnosis.

Index: 001 Photograph ID: 0001 Stage: II

Affected zones: Right Left Profusion of opacity 2

Top 1 2 Assembly of small opacities or large opacities 0

Middle 2 1
Reader A

Bottom 0 1
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robustness of the model, we further performed extensive data augmentation, including rotating, flipping, shift-
ing, zooming, and varying the image intensity, resolution and quality.

After segmentation, the lung field was divided into six subregions (by even distribution along the vertical 
direction; Fig. 2). Each subregion was only less than 1/8 of the whole image (less than 1024 × 1024), which makes 
the developed model feasible for the computational resources when deployed at real-world screening sites.

CNN for subregion classification.  Next, we developed a subregion-based CNN classification model. We adapted 
a ResNet model to classify the profusion level of small opacities as well as the presence of large opacities for each 
of the six subregions in the lung field. Each subregion was classified as level 0, 1, 2, or 3 based on its opacity level. 
At the model development stage, the training cohort (805 subjects) was randomly separated into training (72 
healthy controls, 72 stage I, 96 stage II, and 96 stage III), validation (24 healthy controls, 18 stage I, 8 stage II, and 
8 stage III) and test sets (304 healthy controls, 73 stage I, 21 stage II, and 13 stage III). The developed model was 
finally evaluated in the independent test cohort of 411 subjects. Last, each subject was assigned into one of the 
four stages: normal, stage I, II, or III, by integrating the subregion-based classifications following GBZ70-2015 
(Table 3).

Statistical analyses.  To evaluate the screening performance, we used three common metrics for binary 
classification systems: (1) accuracy (ACC​scr, the percentage of radiographs being correctly classified as normal 
or disease), sensitivity (SEN, the percentage of pneumoconiosis radiographs being correctly classified as abnor-
mal), and specificity (SPE, percentage of normal radiographs being correctly classified as normal). To evaluate 
the staging performance, we only used accuracy (ACC​sta , the percentage of radiographs being correctly classi-
fied as normal, stage I, II, or III). All statistical analyses were carried out using R version 3.6.1.

Computing environment.  In this study, computational works were conducted in a computing environ-
ment using the interface of Python 3.0 based on a TensorFlow deep learning framework, which was installed 
and executed on a server with Linux version 3.16.0-69-generic and Ubuntu 4.8.2-19 in 64 bits. This server also 
includes two Intel Xeon CPU E5-2680 v3 processors of 2.50 GHz and a 30 Mb Cache, where each processor has 
12 cores and the total number of logical CPU cores is 48. The server has 132 Gb RAM and an NVIDIA Tesla K40 
m GPU with 2880 stream cores, 12 Gb maximum memory, 288 Gb/s maximum memory bandwidth, and 6 GHz 
memory clock speed.
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