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Understanding the genetic 
architecture of the metabolically 
unhealthy normal weight 
and metabolically healthy obese 
phenotypes in a Korean population
Jae‑Min Park1,2,5, Da‑Hyun Park3,5, Youhyun Song1, Jung Oh Kim3, Ja‑Eun Choi3, 
Yu‑Jin Kwon4, Seong‑Jin Kim3, Ji‑Won Lee1* & Kyung‑Won Hong3*

Understanding the mechanisms underlying the metabolically unhealthy normal weight (MUHNW) 
and metabolically healthy obese (MHO) phenotypes is important for developing strategies to prevent 
cardiometabolic diseases. Here, we conducted genome-wide association studies (GWASs) to identify 
the MUHNW and MHO genetic indices. The study dataset comprised genome-wide single-nucleotide 
polymorphism genotypes and epidemiological data from 49,915 subjects categorised into four 
phenotypes—metabolically healthy normal weight (MHNW), MUHNW, MHO, and metabolically 
unhealthy obese (MUHO). We conducted two GWASs using logistic regression analyses and 
adjustments for confounding variables (model 1: MHNW versus MUHNW and model 2: MHO versus 
MUHO). GCKR, ABCB11, CDKAL1, LPL, CDKN2B, NT5C2, APOA5, CETP, and APOC1 were associated 
with metabolically unhealthy phenotypes among normal weight individuals (model 1). LPL, APOA5, 
and CETP were associated with metabolically unhealthy phenotypes among obese individuals (model 
2). The genes common to both models are related to lipid metabolism (LPL, APOA5, and CETP), 
and those associated with model 1 are related to insulin or glucose metabolism (GCKR, CDKAL1, 
and CDKN2B). This study reveals the genetic architecture of the MUHNW and MHO phenotypes in a 
Korean population-based cohort. These findings could help identify individuals at a high metabolic risk 
in normal weight and obese populations and provide potential novel targets for the management of 
metabolically unhealthy phenotypes.

Obesity is associated with numerous metabolic disorders, including type 2 diabetes mellitus1, dyslipidemia2, 
hypertension3, cardiovascular disease4, and cancers5, which are leading causes of mortality in adults. The ongo-
ing worldwide obesity epidemic constitutes an enormous public health burden6. However, not all individuals 
with obesity have cardiometabolic complications despite excess adiposity; this phenotype is called metabolically 
healthy obese (MHO). A commonly used definition for MHO requires individuals to be obese and lack metabolic 
abnormalities7. Conversely, individuals with normal weight occasionally exhibit metabolic abnormalities that 
are usually observed in individuals with obesity, and this phenotype is termed metabolically unhealthy normal 
weight (MUHNW)8. Since there are no universally accepted standard definitions of MHO and MUHNW, the 
prevalence of these phenotypes heavily depends of the definition that is being used for the characterisation of 
metabolic health. According to a study conducted using National Health and Nutrition Examination Surveys 
in the US, 31.7% of obese individuals were metabolically healthy, and 23.5% of normal weight individuals were 
metabolically unhealthy9. In Korea, an estimated 33%–48% of the population with obesity is reported to be MHO, 
and 12%–21% of individuals with normal weight are reported to be MUHNW10,11.
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Although the mechanisms that determine why some individuals with obesity remain free from metabolic 
complications while others with normal weight are susceptible to metabolic complications are not fully under-
stood, previous studies have shown the biological mechanisms possibly associated with the MHO and MUHNW 
phenotypes, apart from demographic factors (e.g., age, sex, and ethnicity) and environmental factors (e.g., physi-
cal activity, smoking, and alcohol intake). These studies indicated that reduced abdominal fat mass and increased 
gluteofemoral fat mass are associated with the metabolically healthy phenotype, whereas elevated abdominal fat 
mass and lower gluteofemoral fat mass contribute to the metabolically unhealthy phenotype12–14. In addition to 
fat accumulation and distribution, lipodystrophy, adipogenesis, inflammation, and mitochondrial function are 
reported to be key contributors to the MHO and MUHNW phenotypes13–17.

Over the past decade, genome-wide association studies (GWASs) have been used to identify genetic variants 
associated with a wide range of diseases and traits. GWASs have identified various genetic loci associated with 
adiposity, fat distribution, insulin resistance, and metabolic diseases, including hypertension, dyslipidemia, and 
type 2 diabetes18–22. Elucidating such genetic variations can provide insights into the proteins and pathways 
involved in the development of the MHO and MUHNW phenotypes. Indeed, several GWASs on body fat per-
centage showed that the genetic variants of certain genes, such as IRS1, could be associated with the MUHNW 
and MHO phenotypes23–25. However, few studies have specifically investigated the genetic variants associated 
with the MUHNW or MHO phenotypes in Asian populations. Here, we conducted GWASs to identify candidate 
genes harbouring single-nucleotide polymorphisms (SNPs) associated with the MHO and MUHNW phenotypes 
in a large Korean population-based cohort.

Results
Clinical characteristics of the study participants.  The clinical characteristics of the participants 
are described in Table 1. The percentages of individuals with metabolically healthy normal weight (MHNW), 
MUHNW, MHO, and metabolically unhealthy obese (MUHO) phenotypes among the study population were 
47.0% (23 466 individuals), 20.8% (10 358 individuals), 14.0% (7 008 individuals), and 18.2% (9 083 individuals), 
respectively. The cardiometabolic variables differed significantly among the four groups. We observed a clear 
elevation in cardiometabolic variables in metabolically unhealthy individuals (MUHNW and MUHO). The 
prevalence of hypertension and diabetes was also significantly higher among participants with the MUHNW or 
MUHO phenotypes than among those with the MHNW or MHO phenotypes.

Table 1.   Clinical characteristics of the study participants categorised into the four obesity phenotypes. Data 
are presented as the mean ± standard deviation or percentage. We obtained p-values by one-way analysis of 
variance or independent two-sample t-tests for continuous variables or by χ2 tests for categorical variables. 
p-values represent the difference in each variable among the MHNW, MUHNW, MHO and MUHO 
phenotypes. MHNW, metabolically healthy normal weight; MUHNW, metabolically unhealthy normal weight; 
MHO, metabolically healthy obese; MUHO, metabolically unhealthy obese; BMI, body mass index; SBP, 
systolic blood pressure; DBP, diastolic blood pressure; FPG, fasting plasma glucose; TG, triglyceride; HDL-C, 
high-density lipoprotein cholesterol. p-values1 represent the difference in each variable between the MHNW 
and MUHNW phenotypes. p-values2 represent the difference in each variable between the MHO and MUHO 
phenotypes. p-values3 represent the difference in each variable between the MUHNW and MHO phenotypes.

MHNW
(n = 23 466)

MUHNW
(n = 10 358)

MHO
(n = 7 008)

MUHO
(n = 9 083) p-value p-value1 p-value2 p-value3

Age (years) 51.4 ± 7.0 56 ± 7.6 52.9 ± 7.9 55.3 ± 7.8  < 0.001  < 0.001  < 0.001  < 0.001

Sex  < 0.001  < 0.001  < 0.001  < 0.001

Male (%) 27.8 39.5 38.5 47.3

Female (%) 72.1 60.5 61.5 52.7

BMI (kg/m2) 22.1 ± 1.8 22.9 ± 1.5 26.8 ± 1.7 27.4 ± 2.1  < 0.001  < 0.001  < 0.001  < 0.001

SBP (mmHg) 116.7 ± 12.9 128.1 ± 14.3 122.2 ± 13.3 131.1 ± 14.2  < 0.001  < 0.001  < 0.001  < 0.001

DBP (mmHg) 72.5 ± 8.9 78.7 ± 9.4 76.0 ± 9.2 80.8 ± 9.5  < 0.001  < 0.001  < 0.001  < 0.001

FPG (mg/dL) 89.0 ± 11.1 102.6 ± 25.4 90.9 ± 11.7 105.1 ± 25.7  < 0.001  < 0.001  < 0.001  < 0.001

Total cholesterol (mg/dL) 195.8 ± 33.3 200.3 ± 38.1 201.6 ± 34 201.3 ± 37.5  < 0.001  < 0.001 0.020  < 0.001

TG (mg/dL) 89.9 ± 43.6 167.7 ± 104.7 105.1 ± 50.1 186.4 ± 113  < 0.001  < 0.001  < 0.001  < 0.001

HDL-C (mg/dL) 59.1 ± 12.7 48.2 ± 12.0 55 ± 11.1 46.1 ± 10.6  < 0.001  < 0.001  < 0.001  < 0.001

Hypertension (%) 1 516 (6.4) 3 313 (32.0) 911 (13.0) 3 765 (41.4)  < 0.001  < 0.001  < 0.001  < 0.001

Diabetes (%) 351 (1.5) 1 430 (13.8) 110 (1.6) 1 320 (14.5)  < 0.001  < 0.001  < 0.001  < 0.001

Regular exerciser (%) 9 071 (39.4) 4 120 (40.6) 2 726 (39.8) 3 453 (38.7) 0.401 0.039 0.179 0.265

Smoker (%)  < 0.001  < 0.001  < 0.001  < 0.001

Current smoker (%) 2 215 (9.4) 1 415 (13.7) 776 (11.1) 1 386 (15.3)

Former smoker (%) 2 749 (11.7) 1 791 (17.3) 1 244 (17.8) 2 011 (22.1)

Drinker (%) 3 777 (14.4) 1 928 (18.6) 1 341 (19.1) 2 017 (22.2)  < 0.001  < 0.001  < 0.001 0.388
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Genetic regions associated with metabolically unhealthy phenotypes in model 1 (MHNW ver‑
sus MUHNW) and model 2 (MHO versus MUHO).  We conducted a GWAS for model 1 to identify the 
genetic factors associated with the metabolically unhealthy phenotype among the normal weight groups and for 
model 2 to identify the genetic factors associated with the metabolically unhealthy phenotype among the obese 
groups.

The lead SNPs and clusters of SNPs in the regions associated with the metabolically unhealthy phenotype in 
models 1 and 2 are shown in Tables 2-1 and 2-2, respectively. Odds ratios (ORs) and 95% confidence intervals 
(CIs) were calculated using logistic regression analysis after adjusting for age, sex, exercise status, smoking sta-
tus, alcohol intake, body mass index (BMI), and principle component (PC) 1 and PC2. SNPs in LPL, APOA5, 
and CETP exhibited significant association with the risk of metabolically unhealthy phenotypes in both normal 
weight and obese individuals (in models 1 and 2). SNPs in GCKR, ABCB11, CDKAL1, CDKN2B, NT5C2, and 
APOC1 were significantly associated with the risk of metabolically unhealthy phenotypes only in normal weight 
individuals (in model 1 only).

The results of the model 1 and model 2 GWASs are illustrated in a Miami plot (Fig. 1), a format recently devel-
oped at Michigan University to describe two comparable GWAS results. We observed genome-wide significant 
association clusters of GCKR, ABCB11, CDKAL1, LPL, CDKN2B, NT5C2, APOA5, CETP, and APOC1 in model 
1 (upper plot) and LPL, APOA5, and CETP in model 2 (lower plot).

Discussion
Our study aimed to identify the genetic variations that differentiated the MHO phenotype from the MUHNW 
phenotype. Determining the genetic characteristics associated with the MHO and MUHNW phenotypes will ena-
ble us to pinpoint the biological mechanisms driving these two paradoxical conditions and develop approaches 
to prevent cardiometabolic diseases. Over the past decade, several genomic studies have identified numerous 
genetic variants associated with adiposity in the context of a favourable cardiometabolic profile; many of these 
loci are located in or near genes involved in adipogenesis, fat distribution, and insulin signalling18,19. However, 
few studies have fully utilised genome-wide genetic variants to characterise the MHO and MUHNW phenotypes. 
Furthermore, the majority of genetic studies have analysed populations of European ancestry, and limited data 
are available from Asian populations.

We found that LPL, APOA5, and CETP were associated with metabolically unhealthy phenotypes among both 
normal weight and obese individuals. These three genes are related to lipid metabolism. LPL, located on 8p21.3, 
encodes a key lipolysis regulator. In addition, LPL may link insulin resistance to atherosclerosis because it controls 

Table 2.   Representative SNPs identified by GWAS among the significant loci for model 1 (MHNW versus 
MUHNW) and model 2 (MHO versus MUHO). Logistic regression models were adjusted for age, sex, exercise 
status, smoking status, alcohol intake, body mass index, and PC1 and PC2. GWAS, genome-wide association 
study; MHNW, metabolically healthy normal weight; MUHNW, metabolically unhealthy normal weight; 
MHO, metabolically healthy obese; MUHO, metabolically unhealthy obese; Chr, chromosome; SNP, single-
nucleotide polymorphism; MAF, minor allele frequency; OR, odds radio; CI, confidence interval.

Gene Region Chr Position (bp) SNP SNP cluster Minor allele MAF OR (95% CIs) p-value

2–1. MHNW (control) versus MUHNW (case)

GCKR Intron variant 2 27 734 972 rs6547692 rs780096, 
rs1260326 A 0.46 0.90 

(0.87–0.94) 1.27E-08

ABCB11 Intron variant 2 169 803 568 rs16856261 rs3755157, 
rs58512362 T 0.37 1.12 

(1.08–1.16) 2.07E-09

CDKAL1 Intron variant 6 20 693 697 rs138420022 rs34499031, 
rs35261542 A 0.47 1.15 

(1.11–1.19) 1.09E-14

LPL Downstream 
gene variant 8 19 865 455 rs77237194 rs10096633, 

rs17482753 T 0.12 0.83 
(0.78–0.87) 2.56E-12

CDKN2B Downstream 
gene variant 9 22 132 729 rs10965247 rs10811660, 

rs10965246 G 0.44 0.89 
(0.86–0.92) 1.27E-10

NT5C2 Downstream 
gene variant 10 104 960 464 rs113278154 rs79237883, 

rs34747231 T 0.27 0.90 
(0.86–0.92) 4.37E-08

APOA5 Upstream gene 
variant 11 116 662 579 rs651821 rs662799, 

rs2075291 C 0.30 1.47 
(1.42–1.53) 1.68E-90

CETP Intron variant 16 57 002 663 rs9926440 rs17231506, 
rs821840 C 0.31 1.16 

(1.11–1.20) 2.95E-14

APOC1 Intron variant 19 45 420 082 rs73052335 rs111789331, 
rs66626994 C 0.10 1.24 

(1.17–1.32) 1.24E-13

2–2. MHO (control) versus MUHO (case)

LPL Downstream 
gene variant 8 19 827 848 rs10105606 rs1441766, 

rs4464984 A 0.12 0.83 
(0.78–0.87) 1.68E-11

APOA5 Upstream gene 
variant 11 116 662 579 rs651821 rs662799 C 0.30 1.43 

(1.36–1.51) 8.55E-44

CETP Upstream gene 
variant 16 56 993 886 rs821840 rs36229491, 

rs17231506 G 0.17 0.83 
(0.78–0.88) 2.02E-10
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the delivery of free fatty acids to muscles, adipose tissues, and vascular wall macrophages26. APOA5, a member of 
the APOA4/APOC3/APOA1 gene cluster, is located on chromosome 11q23.3 and plays important roles in lipid 
metabolism, particularly for triglycerides (TGs) and TG-rich lipoproteins. There is considerable evidence sup-
porting the association between APOA5 SNPs, such as rs662799 and rs651821, and an increased risk of obesity 
and metabolic syndrome27. Consistent with previous results, we found that rs662799 and rs651821 in APOA5 
were associated with metabolically unhealthy phenotypes. CETP, located on chromosome 16q13, encodes the 
CETP protein that shuttles TGs and cholesteryl ester between lipoproteins28. The expression of CETP genetic vari-
ants has been associated with variations in high-density lipoprotein cholesterol (HDL-C) levels in various ethnic 
groups29. Our results support the link between certain genetic variants and metabolically unhealthy phenotypes.

We also found distinct genetic variants that were associated with metabolically unhealthy phenotypes among 
normal weight and obese individuals. GCKR, ABCB11, CDKAL1, CDKN2B, NT5C2, and APOC1 were associ-
ated with metabolically unhealthy phenotypes in individuals with normal weight but not in those with obesity. 
Of these, GCKR, CDKAL1, and CDKN2B are related to insulin or glucose metabolism. GCKR, which maps to 
chromosome 2p23.3, encodes a protein involved in the regulation of glucokinase activity; the protein modulates 
glucose balance and glucose-stimulated insulin secretion30. Some variants of GCKR are associated with insulin, 
fasting glucose, and TG levels and with susceptibility to type 2 diabetes mellitus31,32. Genetic variants of CDKAL1, 
which maps to chromosome 6p22.3, are strongly linked to an increased risk of developing type 2 diabetes and 
obesity33. CDKAL1 is associated with proinsulin conversion and insulin response upon glucose stimulation34 
and is necessary for normal mitochondrial morphology and adipose tissue function33. In recent studies, the 
CDKAL1 rs7754840 variant was shown to be associated with increased waist circumference and waist-to-hip 
ratio in Chinese Han patients35, and the CDKAL1 rs2206734 polymorphism was shown to be an independent 
predictor of the MUHNW phenotype in Chinese children36. Similarly, our study suggested that CDKAL1 SNPs 
are important predictors of the MUHNW phenotype. CDKN2B, which is located in chromosome 9p21, plays a 
role in the deterioration of insulin secretion by participating in the regulation of pancreatic β-cell proliferation 
and function37,38. Studies across varied ethnicities and geographical locations showed that polymorphisms at 
the CDKN2A locus are related to type 2 diabetes mellitus development39–41. ACBC11 located in chromosome 
2q24 encodes an ATB-binding cassette transporter. Previous studies have shown that variations in ABCB11 are 
associated with increased fasting glucose levels42–44. NT5C2 encodes a hydrolase that plays a key role in cellular 
purine metabolism and uric acid regulation45,46. SNPs in NT5C2 have been associated with hypertension47–49. 
APOC1 encodes a member of the apolipoprotein C1 family that plays an important role in HDL-C and very low 
density lipoprotein metabolism. Previous studies have indicated that some variants of APOC1 are associated with 
metabolic abnormalities50,51. Our findings suggested that strategies for protecting against complications related 
to metabolically unhealthy phenotypes might differ for individuals with normal weight and those with obesity. 
Further studies to identify the potential interactions of these candidate genes using biological and mechanical 
analyses are required.

Figure 1.   Miami plot of the GWASs for model 1 (MHNW versus MUHNW) and model 2 (MHO versus 
MUHO). SNP locations are plotted on the x-axis according to their chromosomal position. The −log10(p-
values) derived from the logistic regression analysis are plotted on the y-axis. The p-values were adjusted for 
age, sex, exercise status, smoking status, alcohol intake, body mass index, and PC1 and PC2. The horizontal 
red line indicates the formal threshold for genome-wide significance at p = 5.00 × 10−8. GWASs, genome-wide 
association studies; MHNW, metabolically healthy normal weight; MUHNW, metabolically unhealthy normal 
weight; MHO, metabolically healthy obese; MUHO, metabolically unhealthy obese; PC, principle component; 
SNP, single-nucleotide polymorphism. The figure was generated using EasyStrata version 8.6 (http://www.genep​
i-regen​sburg​.de/easys​trata​).

http://www.genepi-regensburg.de/easystrata
http://www.genepi-regensburg.de/easystrata
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Previous GWASs have identified various genetic variants associated with diverse metabolic diseases such 
as metabolic syndrome52,53, dyslipidemia54,55, and obesity56,57. However, only a limited number of studies have 
specifically revealed the genetic loci associated with the MUHNW and MHO phenotypes. We performed GWASs 
for the metabolically unhealthy phenotypes divided into the normal weight and obesity groups to identify the 
genes and SNPs associated with the MUHNW and MHO phenotypes. The present findings contribute to our 
understanding of the genetic architecture of the MUHNW and MHO phenotypes.

There are several limitations to consider in the interpretation of our results. The findings were not replicated. 
Furthermore, since the current study was performed in a Korean population, the findings may not apply to non-
Asian populations. Replication studies and studies in other populations are necessary to confirm our findings and 
determine their applicability to ethnically diverse groups. In addition, there are no universally accepted standard 
definitions of MHO and MUHNW; we employed definitions that have been widely used in previous studies58,59. 
Despite these potential limitations, we believe our GWASs provide valuable data on the genetic characteristics 
associated with the MUHNW and MHO phenotypes in a large population-based cohort.

In summary, our GWASs provide several insights into the genetic architecture of metabolically unhealthy 
individuals. We found that LPL, APOA5, and CETP were associated with the metabolically unhealthy phenotypes 
in individuals with normal weight or obesity. GCKR, ABCB11, CDKAL1, CDKN2B, NT5C2, and APOC1 were 
associated with metabolically unhealthy in individuals with normal weight but not in those with obesity. Our 
study provides an understanding of the genetic architecture of the MUHNW and MHO phenotypes in a Korean 
population-based cohort. Although this study remains to be validated in a larger cohort and followed up with 
investigation on the pathophysiological pathways involved, our findings could help identify metabolically high-
risk individuals in normal weight and obese populations and provide potential novel targets for the management 
of metabolically unhealthy phenotypes.

Methods
Study overview and study participants.  The current study used Korean Genome and Epidemiol-
ogy Study (KoGES) Health Examination data. The cohort consisted of male and female community dwellers 
recruited from the national health examinee registry (aged 40–79 years at baseline). Eligible participants were 
asked to volunteer via on-site invitation, letters, telephone calls, media campaign, or community conferences. 
The responders were invited to visit the survey sites, including medical schools, hospitals, and health institu-
tions, for an interview in which they answered a questionnaire administered by trained staff and underwent 
physical examination. We collected information on their past medical history, smoking history, alcohol con-
sumption, and physical activity during a health interview. We defined a regular exerciser as an individual who 
participated in vigorous physical activity more than three times per week. Current smokers were individuals 
who smoked ≥ 100 cigarettes in their lifetime and were smoker at the time of the study, and former smokers 
were individuals who smoked ≥ 100 cigarettes in their lifetime but were non-smokers at the time of the study. A 
drinker was defined as an individual consuming alcoholic beverages at least twice a week. The KoGES partici-
pants were all of Korean ethnicity. The detailed history and profile of KoGES were previously published60.

In total, 58 701 participants, for whom genome-wide SNP genotype data were available, were included in the 
KoGES Health Examination dataset. Of these, we excluded the participants who had a history of cancer, thyroid 
disease, stroke, and/or myocardial infarction (n = 6 965). Participants aged 75 years or older (n = 23) and those 
with missing data for BMI, blood pressure, fasting plasma glucose, TG, and/or HDL-C levels, and/or exercise/
smoking/alcohol were excluded (n = 1 798). After these exclusions, 49 915 participants were included in the final 
analysis. Written informed consent was obtained from all participants. This research project was approved by 
the Institutional Review Board of Theragen Etex (approval number: 700062-20190819-GP-006-02). In addition, 
the study complied with the ethical principles of the Declaration of Helsinki.

Measurement of anthropometric and laboratory data.  Weight and height were measured to the 
nearest 0.1 kg and 0.1 cm, respectively, with participants wearing light indoor clothing and no shoes. We cal-
culated the BMI as body weight (kg) divided by the square of height (m2). Systolic and diastolic blood pressure 
(SBP and DBP, respectively) were measured twice with a standardised mercury sphygmomanometer (Bauma-
nometer Standby; W.A. Baum, New York, NY, USA). Blood samples were obtained in the morning after over-
night fasting. We measured fasting plasma glucose, total cholesterol, TG, and HDL-C levels with an automatic 
analyser (ADIVA 1650; Siemens, Tarrytown, NY, USA).

Definition of study phenotypes.  We defined a participant with obesity as an individual with BMI ≥ 25 kg/
m2 based on the Asia–Pacific regional guidelines of the World Health Organization and International Obesity 
Task Force61. Normal weight was defined as BMI < 25 kg/m2. A metabolically healthy individual was a partici-
pant with less than two of the following four metabolic traits: elevated blood pressure (SBP/DBP ≥ 130/85 mm 
Hg or taking antihypertensive medication); impaired fasting plasma glucose (≥ 100 mg/dL), diagnosis of diabe-
tes mellitus, and/or prescription for antidiabetic medication; high plasma TG (≥ 150 mg/dL); and low HDL-C 
(< 40 mg/dL in men or < 50 mg/dL in women). According to these criteria, study participants were categorised 
into one of four groups: (1) MHNW: BMI < 25 kg/m2 and less than two metabolic risk factors; (2) MUHNW: 
BMI < 25 kg/m2 and at least two metabolic risk factors; (3) MHO: BMI ≥ 25 kg/m2 and less than two metabolic 
risk factors; (4) MUHO: BMI ≥ 25 kg/m2 and at least two metabolic risk factors.

Genotyping and quality‑control.  The genotype data were graciously provided by the Centre for Genome 
Science, Korea National Institute of Health and were produced using a Korea Biobank Array (Affymetrix, Santa 
Clara, CA, USA)62. The experimental results of the Korea Biobank Array were filtered using the following qual-
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ity-control criteria: call rate, > 97%; minor allele frequency, > 1%; Hardy–Weinberg equilibrium, p < 1 × 10−5. 
After quality-control filtering, the experimental phenotypes were used to analyse the genotype datasets from 
the 1 000 Genome Phase 1 and 2 Asian panel. The GWASs identified 7 975 321 SNPs on chromosomes 1 to 22.

Statistical analysis.  We compared the clinical characteristics of the study participants with different phe-
notypes using one-way analysis of variance for continuous variables and χ2 tests for categorical variables.

This study included two GWASs. The first GWAS was conducted on metabolically unhealthy individuals from 
the normal weight groups (model 1: MHNW [control] and MUHNW [case]). The second GWAS was conducted 
on metabolically unhealthy individuals from the obesity groups (model 2: MHO [control] and MUHO [case]).

We performed PC analysis to reduce the bias of the genomic data according to regions where the samples 
were collected. Based on this analysis, we obtained PC1 and PC2, which were used as covariates for statistical 
analysis. All GWASs were conducted using logistic regression analysis after adjusting for age, sex, exercise status, 
smoking status, alcohol intake, BMI, and PC1 and PC2 as covariates, using PLINK version 1.90. We calculated 
the ORs and 95% CIs for the GWASs. The SNPs listed in the tables are representative SNPs of approximately 50 
kbp with significant p-values (p < 5.00 × 10–8). Significant associations were defined by genome-wide significance 
level p-values < 5.00 × 10–8.
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