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Semianalytical solution 
for the transient temperature 
in a scattering and absorbing slab 
consisting of three layers heated 
by a light source
Dominik Reitzle*, Simeon Geiger, André Liemert & Alwin Kienle

We derived a semianalytical solution for the time-dependent temperature distribution in a three-
layered laterally infinite scattering and absorbing slab illuminated by an obliquely incident collimated 
beam of light. The light propagation was modeled by the low-order P

1
 and P

3
 approximations to 

the radiative transfer equation with closed form expressions for eigenvalues and eigenvectors, 
yielding a quickly computable solution, while the heat conduction was modeled by the Fourier 
equation. The solution was compared to a numerical solution using a Monte Carlo simulation for 
the light propagation and an FEM method for the heat conduction. The results showed that using 
the P

3
 solution for the light propagation offers a large advantage in accuracy with only a moderate 

increase in calculation time compared to the P
1
 solution. Also, while the P

3
 solution is not a very good 

approximation for the spatially resolved absorbance itself, its application as a source term for the heat 
conduction equation does yield a very good approximation for the time-dependent temperature.

Non-contact thermal property measurement methods are widely used because they avoid contact resistances and 
require little to no sample preparation1. While there is a large variety of detection principles, most techniques 
use optical heating in the visual and near-infrared range. Specifically in photothermal radiometry (PTR), the 
detection is based on recording the thermal emission using an IR sensor. In the recent past, PTR has e.g. been 
used to retrieve microhardness profiles in case hardened steel2, detect partial curing in dental resins3 or study 
drug diffusion in human skin4. For semi-transparent, non-scattering media, Ravi et al. studied the reconstruc-
tion of absorption profiles using modulated PTR5, while Salazar et al. used the same method to simultaneously 
retrieve the absorption and thermal diffusivity profiles in semi-infinite media6 and multi-layered slabs7, utilizing 
analytical solutions of the heat conduction equation. Recently, Ren et al. extended this to temperature-dependent 
medium parameters for a 1D planar symmetric medium with coupled radiation and conduction using numeri-
cal solutions8, but also specifically excluded scattering. Apart from parameter retrieval with PTR, the required 
forward solutions can also be used to predict temperature distributions and, especially in biomedical applica-
tions, thermal damage after laser irradiation9. Here, as in many other media, light scattering is a large effect and 
therefore must be accounted for in a model for optical heating. The radiative transfer equation (RTE) is generally 
considered a very accurate model for light propagation on mesoscopic and macroscopic scales for scattering and 
absorbing media10. But due to its complexity, the RTE is often replaced by the diffusion equation (DE)11,12, which 
may be derived as an approximation to the RTE. Solutions to the DE are usually simple and can be computed 
quickly, but they are known to be inaccurate in many cases13. The PN approximations to the RTE14 on the other 
hand offer a much higher accuracy, but the computation time increases rapidly with the approximation order 
N. For low approximation orders N however, quickly computable closed form expressions can still be found15. 
While these low approximation order solutions can still exhibit large errors for the spatially resolved fluence or 
absorbance rate, their low spatial frequency components are already quite accurate. Using them as a source term 
for the heat conduction equation should therefore already produce highly accurate solutions for the medium tem-
perature. The aim of this work therefore is to derive a semianalytical solution for the time-dependent temperature 
distribution in a three-layered scattering and absorbing medium heated by an incident beam of light, where the 
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light propagation is modeled using low order PN approximation to the RTE. Specifically, we use the expansion 
orders N = 1 , which leads to a diffusion-like approximation, and N = 3 , for which closed form expressions are 
available for the homogeneous solution, resulting in short computation times.

In “Solution of the RTE” section, we present our light propagation model using the PN approximation to the 
RTE, including the used source and the optical boundary conditions for the three-layered medium. From this, 
we derive the source term for the heat conduction model, which is described in “Solution of the heat equation” 
section. Finally, in “Results and discussion” section, we compare the results of our solution to a purely numerical 
solution for a simple model of human skin.

Solution of the RTE
General solution.  The steady-state radiative transport equation (RTE) governing the radiance I(r, ŝ) at 
position r and direction ŝ for a point source at r = 0 radiating in direction ŝ0 is given by

with the phase function

where µa is the absorption coefficient, µs is the scattering coefficient, µt = µa + µs is the attenuation coefficient, 
fl are the phase function moments and Pl the Legendre polynomials. In order to improve the accuracy of low 
order PN approximations, we first approximate the phase function using the delta-M method16,17 of order N as

Next, we split a ballistic part off the radiance as I = I0 + Id . The ballistic part I0 is then given by18

where the modified extinction coefficient becomes µ̃t = µa + (1− fN+1)µs . The diffuse radiance Id then satis-
fies the modified RTE

with the new source term

This new source corresponds to a line source in direction ŝ0 with exponentially decreasing fluence, radiating 
with the modified phase function rotated in beam direction. In the PN method, the diffuse radiance is expanded 
in spherical harmonics Ylm with expansion coefficients �lm as

Using the transformed quantity

the PN equations are then given by15

for 0 ≤ m ≤ N and m ≤ l ≤ N with the condition

where the right hand side Elm must be determined from the source term (see Eq. (15)). The coefficients are given 
by15

(1)ŝ · ∇I(r, ŝ)+ µt I(r, ŝ)− µs

∫

S2
I(r, ŝ’)f (ŝ · ŝ’)d2s’ = δ(r)δ(ŝ− ŝ0)

(2)f (ŝ · ŝ′) =
∞
∑

l=0

2l + 1

4π
flPl(ŝ · ŝ′),

(3)f (ŝ · ŝ′) ≈ fN+1

2π
δ(1− ŝ · ŝ′)+

N
∑

l=0

2l + 1

4π
(fl − fN+1)Pl(ŝ · ŝ′).

(4)I0(r, ŝ) =
e−µ̃t r

r2
δ(r̂ − ŝ0)δ(ŝ− ŝ0),

(5)ŝ · ∇Id + µ̃t Id − µs

∫

S2
Id

N
∑

l=0

2l + 1

4π
(fl − fN+1)Pl(ŝ · ŝ’)d2s’ = S(r, ŝ, ŝ0),

(6)S(r, ŝ, ŝ0) = µs
e−µ̃t r

r2
δ(r̂ − ŝ0)

N
∑

l=0

2l + 1

4π
(fl − fN+1)Pl(ŝ · ŝ0).

(7)Id(r, ŝ) =
N
∑

l=0

l
∑

m=−l

�lm(r)Ylm(ŝ).

(8)�̃lm(q,φq, z)e
−imφq =

∫ ∞

0

∫ 2π

0
�lm(ρ,ϕ, z)e

−iρq cos(ϕ−φq)ρdρdϕ,

(9)
aml−1

∂�̃l−1,m

∂z
+ bml+1

∂�̃l+1,m

∂z
+ σ̃l�̃l,m − iq

2

(

cm−1
l−1 �̃l−1,m−1 − dm−1

l+1 �̃l+1,m−1

)

+ iq

2

(

c−m−1
l−1 �̃l−1,m+1 − d−m−1

l+1 �̃l+1,m+1

)

= Elm(q,φq, z),

(10)�̃l,−m = (−1)m�̃l,m,
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and

Note that the rotation e−imφq in Eq. (8) makes the left hand side of the system (9) independent of φq , allowing a 
much more efficient numerical evaluation. The σl in Eq. (11) are the coefficients that follow directly from applying 
the PN method to Eq. (1) without the delta-M method and the ballistic part separation14. It is therefore evident 
that the homogeneous solutions of Eqs. (1) and (5) are identical. These solutions can for example be found using 
the method of rotated reference frames, which was studied intensively over the last few years. The solution for 
the diffuse radiance then has the form14

Here, Ci and C′
i are unknown coefficients determined by the boundary conditions, 

√

q2 + 1
ξ2i

=: ζi(q) are the 
positive eigenvalues and �i

lm(q) the corresponding eigenvector components. We refer the reader to previous 
publications14,15,19–21 for details on this method.

For the particular solution �̃(p)
lm (q,φq, z) with the source term (6), we first calculate its spherical harmonics 

decomposition

Applying a 2D Fourier transform, setting ŝ0 = (θ0, 0) in spherical coordinates and making use of condition (10), 
we obtain the desired moments

with µ0 = cos(θ0) . Introducing the abbreviation22

the similarity ansatz �̃(p)
lm = χlme

−µcz can be used to solve the system (9) with the source moments (15), resulting 
in the system of equations for z ≥ 0 and 1 ≥ µ0 > 0

In many cases, only the fluence rate �(q,φq, z) =
∫

S2
I(q,φq, z, ŝ)d

2s is required instead of the radiance from 
Eqs. (4) and (13). Using the same set of polar coordinates for the ballistic part, the fluence rate is found to be

RTE boundary conditions for a three‑layered slab.  Our goal here is to construct a solution for a stack 
of three laterally infinite layers, where for simplicity all layers share the same refractive index. The refractive 
index outside the stack may, however, be different from the one inside so that Fresnel reflection at the top and 
bottom surfaces must be accounted for in the boundary conditions. Figure 1 illustrates this problem geometry 
schematically.

(11)σ̃l = µ̃t − (fl − fN+1)µs = µt − flµs = σl

(12)

aml =
√

(l −m+ 1)(l +m+ 1)
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√
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.
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


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�
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,
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√
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To that end, we first rescale the coefficients Ci and C′
i from equation (13) for each layer n ∈ {1, 2, 3} with thick-

ness L(n) and take the extinction and shift D(n) of the incident light by the layers above into account, resulting in

where we defined

and

Using µ = cos(θ) and µ > 0 , the boundary conditions are given by13

where R(µ) is the Fresnel reflection coefficient for the top and bottom surfaces23. Multiplying all conditions 
with Y∗

l′m′(µ,ϕ) and integrating over the half-space µ > 0 then yields the generalized Marshak boundary 
conditions14,22,24. Suppressing the arguments from Eq. (20), we get from Eq. (23) for the top surface

from Eq. (24) for the bottom surface

and from Eqs. (25) and (26) with n = {1, 2} for the interfaces between the layers

(20)

I
(n)
d (q,φq, z, θ ,ϕ) =

N
∑

l=0

l
∑

m=−l

[

∑

i

C
(n)
i (q,φq)e
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(n)
i (q)(z−�

(n))�
i,(n)
lm (q)

+
∑

i

C
′(n)
i (q,φq)e

ζ
(n)
i (q)(z−�

(n)−L(n))(−1)l�
i,(n)
lm (q)

+χ
(n)
lm (q,φq, z)e

−µ
(n)
c (z−�

(n))D(n)
]

Ylm(θ ,ϕ − φq),

(21)�
(n) =

n−1
∑

k=1

L(k),

(22)D(n) =
n−1
∏

k=1

e−µ
(k)
c L(k) .

(23)I(1)(z = 0,µ,ϕ) = R(µ)I(1)(z = 0,−µ,ϕ),

(24)I(3)(z = �
(4),−µ,ϕ) = R(µ)I(3)(z = �

(4),µ,ϕ),

(25)I(n)(z = �
(n+1),µ,ϕ) = I(n+1)(z = �

(n+1),µ,ϕ), n = {1, 2},

(26)I(n)(z = �
(n+1),−µ,ϕ) = I(n+1)(z = �

(n+1),−µ,ϕ), n = {1, 2},

(27)
∑

l

Rm′
l′l
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C
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i �
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∑

i

C
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i e−ζ
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∑
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∑

l

Rm′
l′l

(
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i �
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∑
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n
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Figure 1.   Schematic of the problem geometry. A stack of three laterally infinite layers is illuminated by a 
collimated beam with angle cosines of µ1 and µ0 outside and inside of the stack, respectively. On the top 
and bottom surface, Fresnel reflections must be accounted for, while the radiance is continuous at the layer 
interfaces.
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and

Here, the coefficients Rm′
ll′  for the Fresnel reflection at the top and bottom surfaces are given by14,21

while the transmission coefficients Tm′
ll′  for the boundaries between layers are

Following the standard prescription for the generalized Marshak boundary conditions14 by picking for each 
l′ = 1, . . . ,N the Eqs. (27)–(30) with m′ = l′ − 1, l′ − 3, . . . results in a system of equations that determines all 
unknown coefficients C(n)

i  and C′(n)
i  , completing the solution for the PN approximation to the RTE. In all of the 

above, a single source with unit strength just below the upper boundary was assumed. To model an incident 
collimated beam from outside the medium, we have to take the Fresnel reflection outside the medium as well 
as internal reflections of the unscattered light into account. If Rd(µ1) is the reflection coefficient outside the 
medium and R0 = R(µ0) the reflection coefficient inside the medium, where µ1 and µ0 are connected by Snell’s 
law, the sources due to multiple internal reflections can be reduced to two sources with strengths So and Su for 
the top and bottom surface, respectively, with

In many cases, R0D(4) is very small and the lower source may be neglected. If however the medium is optically 
thin enough for the lower source to matter, the coefficients C(n)

i  and C′(n)
i  must be recalculated with reversed 

layer order for a complete solution.

Solution of the heat equation
We assume that the heat transport inside the medium is governed by the differential equation

for the temperature T(r, t) , where ρ is the density, cp the heat capacity and k the isotropic thermal conductiv-
ity. n is the layer number and m the layer containing a source sheet at depth z0 with spatial profile Qs(x, y) and 
time dependence Qt(t)�(t) . For the heat equation (35) to be valid, the spectral components of Qt(t) must be 
restricted to frequencies well below 1 GHz25. This allows using the steady-state RTE absorbance for the spatial 
source profile. Also, the layers should be at least several micrometers thick. Applying the same 2D-Fourier 
transform we used for the RTE and a Laplace transform with respect to time to (35) using T = 0 everywhere as 
initial condition, we get with the Laplace variable s

with

(29)

∑

l

Tm′
l′l

(

∑
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C
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i e−ζ

(n)
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∑
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i �
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=
∑
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(
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∑
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C
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∑
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C
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−
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=
∑

l
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l′l (−1)lD(n+ 1)

(

χ
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(n)
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.

(31)Rm′
ll′ =

√

(2l + 1)(2l′ + 1)(l −m′)!(l′ −m′)!
(l +m′)!(l′ +m′)! ×

∫ 1

0
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1− (−1)l+m′
R(µ)

]
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′

l (µ)Pm
′

l′ (µ)dµ,
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√

(2l + 1)(2l′ + 1)(l −m′)!(l′ −m′)!
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Pm

′
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′
l′ (µ)dµ.

(33)So =(1− Rd)

∞
∑

n=0

(
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0D(4)

2
)n = 1− Rd

1− R2
0D(4)

2
,

(34)Su =R0D(4)So.

(35)ρ(n)c
(n)
p

∂T(r, t)

∂t
− k(n)�T(r, t) = δnmQs(x, y)δ(z − z0)Qt(t)�(t)

(36)
(

∂2

∂z2
− (α(n))2

)

T̃(n)(s, q,φq, z) = −δnm
1

k(n)
Q̃s(q,φq)Q̃t(s)δ(z − z0),

(37)α(n) =

√

ρ(n)c
(n)
p

k(n)
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where the tilde marks transformed quantities. We note that in our previous work26, we derived a more general 
solution of the heat conduction equation for N layers with anisotropic thermal conductivities. The solution we 
require here, therefore, arises as a special case and is given by

The coefficients A(n)
m  and B(n)m  are determined by the boundary conditions for the heat equation, where we used 

Robin-type convective boundary conditions for the upper and lower boundaries and the perfect thermal contact 
between layers, resulting in a system of equations for each m. For the special case of three layers, we arrive at

with

The matrix M is given in26 and in Appendix A. In26, we gave closed form expressions for the 6 coefficients A(n)
1  and 

B
(n)
1  for a three-layered system and sources in the first layer. Since in our case there are sources in all layers, we 

also need the expressions for the remaining 12 coefficients. For sources in the third layer, they follow immediately 
from the coefficients for sources in the first layer with reversed layer properties. The coefficients A(n)

2  and B(n)2  
for sources in the second layer, however, must be calculated separately and are given in Appendix A. The spatial 
source distribution Q̃s(q,φq) at depth z0 is now given by the corresponding RTE absorbance

with the fluence

With the contributions from all depths known, we can then calculate the complete solution as

Looking at Eqs. (38) and (39), the integral in Eq. (45) for a fixed m only acts on the coefficients f (m)
1  and f (m−1)

2  
and on the particular solution. We can, therefore, solve the integrals and obtain a closed form solution by replac-
ing f (m)

1  and f (m−1)
2  in the solution of (40) with f̄ (m)

1  and f̄ (m−1)
2  as

and

(38)T̃(n)
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m eα
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















=






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










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(2)
2

δm3
1

k(3)
f
(3)
1 (1− h2

k(3)α(3)
)





















,

(41)f
(m)
1 = Q̃s(q,φq)Q̃t(s)

2
e−α(m)(�(m+1)−z0),
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and replacing the particular solution (39) with P̄(m)(s, q,φq, z) for �(m) ≤ z ≤ �
(m+1) as

Results and discussion
In this section, the obtained solution is tested and validated against a purely numerical solution. As an exemplary 
system, we choose a three-layered generic model of human tissue in the near-infrared range27,28. The three layers 
represent skin, subcutaneous fat and muscle tissue, respectively. The thermal parameters of the model are listed in 
Table 1 and the optical parameters in Table 2. For all layers, we assume a refractive index of ni = 1.4 with no = 1.0 
outside the medium and the Henyey–Greenstein phase function with g = 0.8 using the moments fl = gl . For 
the upper boundary, we use a heat transfer coefficient of h1 = 100Wm−2 K−1 with an ambient temperature of 
Ta = 0 equal to the initial medium temperature and assume an adiabatic lower boundary with h2 = 0.

As an input beam, we use a Gaussian beam with beam radius rw = 1mm hitting the top surface with an angle 
outside the medium of µ1 = cos(θ1) , centered at the origin. We use θ1 = 0◦ and θ1 = 60◦ as incidence angles. 
Taking the distortion of the beam profile due to the oblique incidence into account, the input beam profile is 
then given by22

Applying a 2D Fourier transform to (49) again yields

(47)
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,
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(49)f (x, y) = 2µ1
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exp
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.

(50)F̃(q,φq) = exp

{
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8
r2wq

2

(

sin2(φq)+
1

µ2
1
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)}

.

Table 1.   Thermal parameters of the considered medium.

ρ(kgm−3) cp(J kg
−1 K−1) k(Wm−1 K−1) l (mm)

1 1100 3000 0.25 1

2 900 3000 0.2 2

3 1100 3500 0.5 10

Table 2.   Optical parameters of the considered medium. For the phase function, the Henyey–Greenstein 
function is used. The refractive index ni must be identical for all layers, while the refractive index outside the 
medium is set to 1.0.

µ′

s(mm−1) µa(mm−1) g ni

1 2.0 0.02 0.8 1.4

2 1.0 0.003 0.8 1.4

3 0.5 0.04 0.8 1.4
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The lower source strength from Eq. (34) depends on the approximation order and on the angle of incidence, 
but even for normal incidence with the P1 approximation, it is nine orders of magnitude weaker than the upper 
source. Therefore, we can safely neglect the lower source in all calculations. As approximation orders, we con-
sider only the P1 and P3 approximations, because for these, there are closed form expressions available for the 
eigenvalues and eigenvectors. For the P3 , we use the expressions given by Liemert et al.15, while the P1 expressions 
are given in Appendix B. Although theoretically possible up to P7 , no higher order closed form expressions are 
available to the authors’ knowledge. Computing the eigenvalues and eigenvectors numerically is possible for 
higher orders, but computationally quite expensive. Also, the solution would become more and more unstable 
for high values of q, which would render the numerical inverse Fourier transform extremely tricky. To obtain 
a numerical solution to compare to, we use a two step process. First, the light propagation is calculated using a 
custom GPU-accelerated Monte Carlo solver, recording the spatially resolved fluence rate inside the medium. 
Then, we use the COMSOL Multiphysics software29 to interpolate the resulting absorbance from the Monte Carlo 
simulation and calculate the time-dependent temperature rise.

Since we expect the PN approximation to be the main source of error in the final results, we first look at the 
predicted fluence rate. Figure 2 contains the depth-resolved total fluence rate calculated in P1 and P3 approxi-
mation, integrated over x and y. Here, we do not yet have to resort to Monte Carlo methods to obtain a correct 
reference, since for planar symmetry or q = 0 , the PN equations can be solved efficiently for high orders N. 
Integrating the depth resolved total fluence rate over a layer and multiplying by the respective µa yields the total 
absorbance inside that layer. As the dependence on z of the fluence rate is very simple (compare Eqs. (18) and 
(19)), this integration can be done analytically and these total absorbances per layer can, therefore, be calculated 
with little computational effort. Table 3 contains the errors of the total absorbances per layer for the P1 and P3 
approximations relative to the practically exact P201 . It can be seen that the P3 is clearly superior to the simpler 
P1 approximation. Especially in the vicinity of the light source near the upper boundary, the P1 introduces large 
errors. However, the P3 still underestimates the total fluence and therefore the total heat source strength per layer 
by 0.7− 0.9% . Being able to quickly quantify these errors, in addition, enables us to correct them. This results in a 
weighting factor for the heat source strength in each layer, making sure that the total source strength in each layer, 
and consequently also in the whole medium, is correct. The corresponding fluence rates are also shown in Fig. 2.

We implemented our solution in Python. The implementation includes the planar symmetric PN approxi-
mation solution, the 3D P1 and P3 approximation solutions, the solution of the heat equation with the P1 and 

Figure 2.   Depth-resolved fluence rate for the three-layered system, integrated over x and y. The P201 solution 
can be regarded as practically exact. For the corrected solutions, the total absorbance per layer was matched to 
the P201 solution.

Table 3.   Total absorbance error for each layer of the P1 and P3 approximations relative to a P201 approximation 
that may be regarded as an exact solution.

Layer 1 Layer 2 Layer 3

P1
0
◦

5.925% 0.7962% −1.035%

60
◦

7.428% 1.534% 0.0275%

P3
0
◦

0.7325% 0.7978% 0.8433%

60
◦

0.7000% 0.8089% 0.8538%
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P3 absorbance sources and the required numerical transform algorithms and is freely available together with 
the reference results of the numerical calculations30. The transform algorithms are basically the same that were 
used in a previous work26. For the comparison, we calculate the results along the line y = 0mm at two depths 
z = 0mm and z = 4mm , t = 1 s and t = 15 s after the source was switched on. Figures 3 and 4 show the results 
for normal incidence, while the results for an incident angle of θ1 = 60◦ are shown in Figs. 5 and 6. For each 
curve, 400 points were calculated. The performance depends, of course, on the efficiency of the numerical 
transforms and on the required accuracy. For the present calculations, we used 39 points for the inverse Laplace 
transform and 240× 80 points for the inverse 2D Fourier transform, which resulted in a computation time of 3.4 s 
for the P3 approximation and 2.7 s for the P1 approximation per curve on a standard desktop PC. For the numeri-
cal solution, the Monte Carlo simulation took 16min and the subsequent finite element solution took 44min to 
complete with reasonable accuracy. As can be seen, the P3 solution agrees quite well with the numerical result, 
while the P1 predictably shows larger errors up to 7% . For short times, the errors are slightly larger for all cases. 
This is to be expected, since the errors in the PN absorbance are mostly contained in the high spatial frequency 
components. These are most prominent in the temperature solution for short times and then decrease due to 
the effects of heat conduction. To confirm that the remaining error of the P3 approximation is indeed due to a 
slight misprediction of the heat source geometry instead of the interpolation or the finite element calculation, 
we repeated the numerical simulation with absorbance values computed from the P3 approximation instead of 
the Monte Carlo simulation. For this comparison, we observed a practically exact agreement of the solutions.

Figure 3.   Temperature after t = 15 s with normal incidence θ1 = 0
◦ along the line y = 0 for two different 

depths. The P3 approximation shows a good agreement with the numerical reference solution, while the P1 
exhibits a considerable error.

Figure 4.   Temperature after t = 1 s with normal incidence θ1 = 0
◦ along the line y = 0 for two different 

depths. The results are slightly less accurate for short times, but the P3 approximation still agrees well with the 
numerical reference solution.
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Conclusions
In conclusion, we derived a semianalytical solution for the heating of a scattering and absorbing three-layered 
medium by an incident beam of light, where the light transport is modeled using the P1 and P3 approximations 
to the RTE. We compared our solution to a purely numerical one and observed a good agreement in the case of 
the P3 approximation for the light transport. The simpler P1 approximation showed significantly larger errors 
and should not be used, given the modest advantage in calculation time compared to the P3 . For the comparison 
above, the semianalytical solution was several orders of magnitude faster than the numerical solution. An entirely 
fair comparison is of course difficult to perform, since the numerical simulation unavoidably also yields the 
absorbance for all positions inside the medium and the temperature for all positions and times. But in most situa-
tions, only a small subset of this data is actually required and this is where the semianalytical solution offers large 
improvements. Finally, some simple generalizations are possible for the heat conduction, since we only require 
the form of (36). For example, the equation for a moving heat source has the same form with a slightly different α

where ux and uy are the velocity components of the source in the x-y-plane.

A Coefficients A(n)

2

 and B(n)

2

 for sources in the second layer
Here, we give closed form expressions for the coefficients A(n)

2  and B(n)2  in Eq. (38). The coefficients A(n)
1  and B(n)1  

are contained in our previous work26 and A(n)
3  and B(n)3  follow immediately by reversing the layer order. Adopting 

the same notation, the required coefficients follow from the system of equations

(51)α(n)
u =

√

ρ(n)c
(n)
p

k(n)

(

s + iq(ux cosφq + uy sin φq)
)

+ q2,

Figure 5.   Temperature after t = 15 s with an incidence angle of θ1 = 60
◦ along the line y = 0 for two different 

depths. While the P3 is still clearly superior to the P1 approximation, neither of the approximations deteriorates 
much with oblique incidence.

Figure 6.   Temperature after t = 1 s with an incidence angle of θ1 = 60
◦ along the line y = 0 for two different 

depths. As for normal incidence, the accuracy is only slightly reduced for short times.



11

Vol.:(0123456789)

Scientific Reports |         (2021) 11:8424  | https://doi.org/10.1038/s41598-021-87030-3

www.nature.com/scientificreports/

with

Again using the variables

the coefficients are found to be

B P
1
 solution

For the P1 approximation, we get only a single eigenvalue

The corresponding eigenvector has three components and can be found via the method of rotated reference 
frames

(52)
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For the particular solution, the system (17) for the P1 approximation reads

This system can be solved analytically. Alternatively, the matrix can be LU-decomposed for an efficient numeri-
cal solution as
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