Table 2 The objective indicators on IP dataset (using 3% training, 3% verification, 94% testing).
Class | Training | Test | ContextNet | SSRN | FDSSC | DBDA | PyResNet | DBMA | A2S2KResNet | Ours |
---|---|---|---|---|---|---|---|---|---|---|
1 | 3 | 43 | 48.57 ± 0.107 | 94.20 ± 0.08 | 95.49 ± 0.03 | 94.26 ± 0.04 | 37.61 ± 0.15 | 97.83 ± 0.03 | 86.35 ± 0.07 | 94.04 ± 0.03 |
2 | 42 | 1337 | 76.51 ± 0.04 | 91.17 ± 0.02 | 97.78 ± 0.01 | 94.91 ± 0.04 | 40.70 ± 0.10 | 95.12 ± 0.02 | 92.94 ± 0.03 | 95.61 ± 0.02 |
3 | 24 | 777 | 53.93 ± 0.11 | 90.05 ± 0.09 | 95.65 ± 0.02 | 92.00 ± 0.04 | 38.94 ± 0.03 | 97.31 ± 0.02 | 90.78 ± 0.03 | 95.65 ± 0.02 |
4 | 7 | 224 | 44.46 ± 0.30 | 91.81 ± 0.08 | 93.67 ± 0.04 | 89.22 ± 0.10 | 28.95 ± 0.18 | 90.74 ± 0.05 | 90.52 ± 0.09 | 94.83 ± 0.03 |
5 | 14 | 455 | 70.28 ± 0.12 | 96.96 ± 0.01 | 94.03 ± 0.08 | 96.93 ± 0.01 | 67.95 ± 0.10 | 96.50 ± 0.04 | 99.08 ± 0.01 | 99.15 ± 0.08 |
6 | 21 | 689 | 91.90 ± 0.03 | 98.13 ± 0.00 | 96.48 ± 0.01 | 97.49 ± 0.01 | 63.44 ± 0.11 | 97.26 ± 0.02 | 95.73 ± 0.03 | 97.06 ± 0.02 |
7 | 3 | 25 | 26.51 ± 0.05 | 66.67 ± 0.47 | 66.35 ± 0.09 | 70.90 ± 0.01 | 52.56 ± 0.41 | 86.48 ± 0.05 | 86.04 ± 0.20 | 65.64 ± 0.11 |
8 | 14 | 447 | 85.27 ± 0.13 | 96.95 ± 0.01 | 99.35 ± 0.01 | 100.0 ± 0.21 | 61.26 ± 0.43 | 100.0 ± 0.00 | 97.81 ± 0.01 | 100.0 ± 0.00 |
9 | 3 | 16 | 13.70 ± 0.08 | 23.81 ± 0.34 | 54.89 ± 0.15 | 69.21 ± 0.17 | 14.44 ± 0.14 | 62.89 ± 0.23 | 58.06 ± 0.13 | 66.18 ± 0.01 |
10 | 29 | 918 | 81.39 \(\pm\) 0.02 | 73.56 \(\pm\) 0.06 | 88.82 \(\pm\) 0.08 | 93.13 \(\pm\) 0.03 | 48.30 \(\pm\) 0.18 | 92.37 \(\pm\) 0.05 | 86.54 \(\pm\) 0.03 | 92.09 \(\pm\) 0.03 |
11 | 73 | 2313 | 79.20 \(\pm\) 0.03 | 95.35 \(\pm\) 0.03 | 97.69 \(\pm\) 0.01 | 96.03 \(\pm\) 0.00 | 53.19 \(\pm\) 0.12 | 92.37 \(\pm\) 0.06 | 91.19 \(\pm\) 0.02 | 96.75 \(\pm\) 0.01 |
12 | 17 | 563 | 51.12 \(\pm\) 0.07 | 89.64 \(\pm\) 0.03 | 98.12 \(\pm\) 0.01 | 96.63 \(\pm\) 0.01 | 52.86 \(\pm\) 0.05 | 94.43 \(\pm\) 0.03 | 94.30 \(\pm\) 0.04 | 95.57 \(\pm\) 0.02 |
13 | 6 | 193 | 68.89 \(\pm\) 0.06 | 94.43 \(\pm\) 0.04 | 92.94 \(\pm\) 0.02 | 98.90 \(\pm\) 0.01 | 44.91 \(\pm\) 0.32 | 99.66 \(\pm\) 0.00 | 97.01 \(\pm\) 0.01 | 97.77 \(\pm\) 0.01 |
14 | 37 | 1184 | 90.52 \(\pm\) 0.02 | 93.78 \(\pm\) 0.02 | 96.94 \(\pm\) 0.03 | 96.24 \(\pm\) 0.02 | 78.18 \(\pm\) 0.09 | 96.81 \(\pm\) 0.02 | 96.47 \(\pm\) 0.02 | 97.72 \(\pm\) 0.02 |
15 | 11 | 367 | 53.88 \(\pm\) 0.13 | 87.03 \(\pm\) 0.13 | 96.94 \(\pm\) 0.01 | 96.01 \(\pm\) 0.02 | 45.10 \(\pm\) 0.23 | 94.88 \(\pm\) 0.01 | 86.18 \(\pm\) 0.09 | 95.21 \(\pm\) 0.01 |
16 | 3 | 84 | 38.73 \(\pm\) 0.20 | 66.67 \(\pm\) 0.47 | 81.45 \(\pm\) 0.20 | 97.86 \(\pm\) 0.01 | 45.45 \(\pm\) 0.41 | 94.21 \(\pm\) 0.07 | 94.69 \(\pm\) 0.02 | 93.13 \(\pm\) 0.06 |
OA (%) | 307 | 9635 | 76.08 \(\pm\) 0.03 | 90.70 \(\pm\) 0.01 | 95.43 \(\pm\) 0.01 | 95.28 \(\pm\) 0.01 | 52.80 \(\pm\) 0.11 | 94.48 \(\pm\) 0.02 | 92.34 \(\pm\) 0.00 | 96.02 \(\pm\) 0.00 |
AA (%) | Â | Â | 60.93 \(\pm\) 0.06 | 84.38 \(\pm\) 0.08 | 90.41 \(\pm\) 0.02 | 92.48 \(\pm\) 0.02 | 48.37 \(\pm\) 0.17 | 93.05 \(\pm\) 0.01 | 90.23 \(\pm\) 0.03 | 92.28 \(\pm\) 0.01 |
Kappa | Â | Â | 0.7241 \(\pm\) 0.04 | 0.8941 \(\pm\) 0.02 | 0.9479 \(\pm\) 0.01 | 0.9461 \(\pm\) 0.01 | 0.4427 \(\pm\) 0.14 | 0.9368 \(\pm\) 0.02 | 0.9125 \(\pm\) 0.00 | 0.9546 \(\pm\) 0.01 |
Training time | Â | Â | 166.24 | 236.73 | 578.67 | 338.06 | 507.81 | 252.64 | 233.65 | 99.40 |
Test time | Â | Â | 49.29 | 37.21 | 23.93 | 26.77 | 103.94 | 22.34 | 24.25 | 20.45 |