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Normal product form of two‑mode 
Wigner operator
Rui He1*, Xiangyuan Liu1,2, Xiangfei Wei1, Congbing Wu1, Gang Zhang1 & Min Kong1

In the context of normal product, we use the method of the integration within an ordered product 
(IWOP) of operators to derive three representations of the two-mode Wigner operator: SU(2) 
symmetric description, SU(1,1) symmetric description and polar coordinate form. We find that two-
mode Wigner operator has multiple potential degrees of freedom. As the physical meaning of the 
selected integral variable changes, Wigner operator shows different symmetries. In particular, in the 
case of polar coordinates, we reveal the natural connection between the two-mode Wigner operator 
and the entangled state representation.

In quantum theory, according to the Heisenberg uncertainty principle, one cannot accurately measure the posi-
tion and momentum of a particle at the same time, that is, one cannot determine a phase point in the phase 
space. Therefore, people naturally think of defining the quasi-distribution function in phase space to study the 
quantum state and motion of microscopic particles. In 1932, Wigner introduced a quasi-classical distribution 
function W(q, p) corresponding to the density operator ρ1, the marginal distributions of which corresponds to 
the particle probability measured in the coordinate q space and momentum p space, respectively. This gave the 
phase space a new meaning and opened the front page of phase space quantum mechanics.

In order to calculate the Wigner function of different quantum states, it is necessary to introduce the Wigner 
operator. Generally, if we know the density matrix ρ of a system’s quantum state, we can calculate the Wigner 
function W(q, p) of the system by tracing the product of the density operator ρ and the Wigner operator (Wigner 
kernel) �(q, p)

That is, for any state, the Wigner function of the system is the expected value of its Wigner operator. For any 
pure state ρ = |ψ��ψ | , the Wigner function of the system is W(q, p) = �ψ |�(q, p)|ψ�.For any mixed state 
ρ =

∑

ψ

pψ |ψ��ψ | , the Wigner function of the system is W(q, p) =
∑

ψ

pψ �ψ |�(q, p)|ψ�.

In classical optics, two orthogonal harmonic oscillators generate an elliptical motion, which is the simplest 
Lissajous figure. In the phase space of quantum optics, two orthogonal harmonic oscillators can be properly 
described as the product of the corresponding Wigner operators

�(α) and �(β) are the Wigner operators of single-mode harmonic oscillator in the x and y directions, respec-
tively. �(α,β) is actually a two mode displaced parity operator, and its general form is

where a† , a are creation and annihilation operators respectively, D(α) is the standard displacement operator and 
D(α) = exp(αa† − α∗a) . In Ref.2, through observing the correlations described by the Wigner function of the 
Einstein-Podolsky-Rosen state in the joint measurement of the operator �(α,β) , they demonstrated the Wigner 
function provided direct evidence of the nonlocal character of this state.

In Ref.3–5, the normal product form of two-mode Wigner operator was given as

(1)W(q, p) = Tr[ρ�(q, p)].

(2)�(α,β) = �(α)�(β),

(3)�(α,β) = D(α)(−1)a
†aD†(α)D(β)(−1)b

†bD†(β),
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where :: represents the normal product symbol. The focus of this article is to explore the characteristics of the nor-
mal product form of the two-mode Wigner operator. Our main purpose is to integrate over the trivial parameters 
in the two mode Wigner operator by using the method of the integration within an ordered product (IWOP) of 
operators6,7, and then discuss the integrated Wigner operator and its Wigner function. There are several previous 
works8–10 that have performed integration on the two-mode Wigner operator, but they are not integration within 
the normal order of the operators and the calculations are more complicated. Generally speaking, people have 
not noticed the superiority and potential application value of the normally ordered form of two-mode Wigner 
operator. However, as far as our research is concerned, the normal product form of the Wigner operator has at 
least two advantages in applications. On the one hand, the operator can be regarded as a c-number in the normal 
product. Therefore, one can freely integrate without considering the noncommutability of the operator, which 
greatly simplifies the complexity of the problem. On the other hand, by using the property of normal product 
�z| : f (a, a†) : |z′� = f (z∗, z′)�z|z′� , the expected value of Wigner operator in the coherent state, i.e., its Wigner 
function, can be easily obtained. Furthermore, in principle, by inserting the completeness of the coherent state, 
the Wigner function in any pure state can be calculated.

Our work is arranged as follows: In “Two-mode Wigner operator for SU(2)” section we start from the view-
point of the polarization of light. We consider the superposition of two mode light in two orthogonal directions, 
say x and y, and introduce the specific parametrization of α and β with certain physical meanings. After getting 
rid of the variables not related to the polarization, we derive the normal product form of the Wigner operator. 
Through some subtle transformations, we obtain the SU(2) symmetry description of Wigner operator, which is 
the same results in Refs.8,9. Then, we immediately give its Wigner function at the coherent state. In “Two-mode 
Wigner operator for SU(1,1)” section, firstly, we re-parameterize α and β with different physical meanings. Then, 
similar to “Two-mode Wigner operator for SU(2)” section, we obtain the normally ordered form of the Wigner 
operator in this case by integrating over the unphysical parameters. Next, by applying the properties of Weyl 
ordering under similar transformation, we get the SU(1,1) symmetry description of Wigner operator, which is 
consistent with the result in the Ref.10. In “Two-mode Wigner operator in polar coordinates” section, we param-
eterize α and β in the case of polar coordinates and integrate over the radius and angle variables respectively. 
Then, we obtain the marginal distribution of the two-mode Wigner operator, which proves that the result is 
exactly the pure state density matrix of the entangled state representation.

Two‑mode Wigner operator for SU(2)
In classical optics, a Lissajous figure needs only three independent quantities to be fully characterized: the 
amplitudes of each oscillator and relative phase between them. Without loss of generality, we introduce the 
parametrization

where χ is a global phase, the radial variable

represents the total intensity, and the parameters θ and ϕ can be interpreted as the polar and azimuthal angles, 
respectively, on the Poincare sphere: θ describes the relative amount of intensity carried by each mode and ϕ is 
the relative phase between them9.

Substituting Eq. (5) into Eq. (4), �(α,β) can be recast as

(4)

�(α,β) =
1

π2
: e−2(α∗−a†)(α−a)e−2(β∗−b†)(β−b) :

=
1

π2
: exp[−2(a†a+ b†b)+ 2αa† + 2βb† + 2α∗a+ 2β∗b

− 2(|α|2 + |β|2)] :,

(5)α = reiχ cos
θ

2
,β = reiχ e−iϕ sin

θ

2
,

(6)r2 = |α|2 + |β|2
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After writing �(r,χ , θ ,ϕ) as the normal product form of Eq. (7), we can use the IWOP method 6,7 to perform 
the integral operation of the operator. Since all Bose operators are in  :   :  internally, they can be treated as 
integration parameters, so that the integration can proceed smoothly. In order to eliminate the variables unre-
lated to the idea of polarization (i.e., total intensity r and global phase χ ), we try to integrate over the two vari-
ables r and χ in �(r,χ , θ ,ϕ) . Considering the integral measure d2αd2β ≡ 1

4 r
3 sin θdrdχdθdϕ , the integration 

must be carried out in two steps. In the first step, we remove the physically irrelevant global phase χ by using 
δ(k − k′) =

∫ 2π
0 dχeiχ(k−k′) and have

Next, we integrate over the radial variable r to get

By using the integral formula 
∫∞
0 dxx2k+3e−ax2 = (k+1)!

2ak+2 (a > 0, k > 0) , we have

Thus, we have derived polarization related Wigner operator �(θ ,ϕ) via suitable marginals of distributions for 
the field quadratures by removing the degrees of freedom irrelevant for the specification of polarization, which 

(7)

�(r,χ , θ ,ϕ)

≡�(α,β)

=
1

π2
e−2r2 : exp[2reiχ (cos

θ

2
a† + e−iϕ sin

θ

2
b†)

+ 2re−iχ (cos
θ

2
a+ eiϕ sin

θ

2
b)] exp[−2(a†a+ b†b)] :

=
1

π2
e−2r2 :

∞
∑

k=0

[2reiχ (cos θ
2 a

† + e−iϕ sin θ
2 b

†)]k

k!

×
∞
∑

k′=0

[2re−iχ (cos θ
2 a+ eiϕ sin θ

2 b)]
k′

k′!
exp[−2(a†a+ b†b)] :

=
1

π2
e−2r2 :

∞
∑

k,k′=0

[2r(cos θ
2 a

† + e−iϕ sin θ
2 b

†)]k[2r(cos θ
2 a+ eiϕ sin θ

2 b)]
k′

k!k′!

× eiχ(k−k′) exp[−2(a†a+ b†b)] : .

(8)

�(r, θ ,ϕ)

=
∫ 2π

0
dχ�(r,χ , θ ,ϕ)

=
1

π2
e−2r2 :

∞
∑

k=0

r2k[4(cos θ
2 a

† + e−iϕ sin θ
2 b

†)(cos θ
2 a+ eiϕ sin θ

2 b)]
k

(k!)2

× exp[−2(a†a+ b†b)] : .

(9)

�(θ ,ϕ)

=4

∫ ∞

0

drr3�(r, θ ,ϕ)

=
4

π2
:
∫ ∞

0

drr2k+3e−2r2

×
∞
∑

k=0

22k[(cos θ
2 a

† + e−iϕ sin θ
2 b

†)(cos θ
2 a+ eiϕ sin θ

2 b)]
k

(k!)2

× exp[−2(a†a+ b†b)] : .

(10)

�(θ ,ϕ)

=
1

2π2
:

∞
∑

k=0

(k + 1)
[(cos θ

2 a
† + e−iϕ sin θ

2 b
†)(cos θ

2 a+ eiϕ sin θ
2 b)]

k

k!

× exp[−2(a†a+ b†b)] :

=
1

2π2
: [2(cos

θ

2
a† + e−iϕ sin

θ

2
b†)(cos

θ

2
a+ eiϕ sin

θ

2
b)+ 1]

× exp[2(cos
θ

2
a† + e−iϕ sin

θ

2
b†)(cos

θ

2
a+ eiϕ sin

θ

2
b)]

× exp[−2(a†a+ b†b)] : .

=
1

2π2
: [2(cos

θ

2
a† + e−iϕ sin

θ

2
b†)(cos

θ

2
a+ eiϕ sin

θ

2
b)+ 1]

× exp[cos θ(a†a− b†b)+ sin θ(e−iϕa†b+ eiϕb†a)− (a†a+ b†b)] :
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has at least two significant meanings according to Ref.8. On the one hand, �(θ ,ϕ) have an exact correspondence 
with polarization in classical optics. On the other hand, polarization related Wigner functions provide a feasible 
approach to examine and measure diverse polarization properties by using diverse experimental procedures, 
such as homodyne and heterodyne detection, tomography, and atom-field interactions.

When θ = 0 , from the Eq. (10), we get

Now, we introduce the operator

which is defined in terms of the two mode realization of the SU(2) algebra

with commutation relations

U(ζ ) is the unitary operator representing SU(2) transformation and its normally ordered form is

with

so that

Our purpose is to prove that

In fact, according to Eq. (10), we only need to show that

The parity operator (−1)b
†b can be written as

Utilizing the bosonic operator realization of normally ordered product form of SUn group11,12, we have

(11)�(0,ϕ) =
1

2π2
: (2a†a+ 1)e−2b†b := (2a†a+ 1)(−1)b

†b.

(12)U(ζ ) = exp(ζ J+ − ζ ∗J−), ζ =
θ

2
e−iϕ ,

(13)J+ = a†b, J− = b†a, J0 =
1

2
(a†a− b†b),

(14)[J0, J±] = ±J±, [J+, J−] = 2J0.

(15)
U(ζ ) =

∫ ∫

dz21dz
2
2

π2

∣

∣

∣

∣

M

(

z1
z2

)〉〈(

z1
z2

)∣

∣

∣

∣

= : exp[(a†, b†)(M− 1)

(

a
b

)

] :,

(16)M =
(

cos θ
2 − e−iϕ sin θ

2

eiϕ sin θ
2 cos θ

2

)

,

(17)U(ζ )

(

a†

b†

)

U†(ζ ) = M
−1

(

a†

b†

)

,M−1=
(

cos θ
2 e−iϕ sin θ

2

−eiϕ sin θ
2 cos θ

2

)

.

(18)�(θ ,ϕ) = U(ζ )�(0,ϕ)U†(ζ ).

(19)

U(ζ )(−1)b
†bU†(ζ )

=
1

2π2
: exp[cos θ(a†a− b†b)+ sin θ(e−iϕa†b+ eiϕb†a)

− (a†a+ b†b)] : .

(20)

(−1)b
†b

=
∫ ∫

dz21dz
2
2

π2
|z1,−z2��z1, z2|

=
∫ ∫

dz21dz
2
2

π2

∣

∣

∣

∣

(

1 0
0 − 1

)(

z1
z2

)〉〈(

z1
z2

)∣

∣

∣

∣

=
∫ ∫

dz21dz
2
2

π2

∣

∣

∣

∣

σz

(

z1
z2

)〉〈(

z1
z2

)∣

∣

∣

∣

= : exp[(a†, b†)(σz − 1)

(

a
b

)

] : .
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Thus, combining Eqs. (15), (20) and (21), we can get

So, Eq. (19) is proved, which also shows that the two-mode Wigner operator that integrates over the variables r 
and χ is indeed SU(2) symmetric.

For the coherent state |z1, z2� , we can get its Wigner function immediately

For other pure states, as long as the inner product of them and the coherent state can be given, in principle, the 
Wigner function can be calculated by inserting the completeness relations of the coherent states.  Furthermore, 
for any mixed state, as long as we calculate the expected value of the pure state of its subsystem, we can imme-
diately get its Wigner function.

Two‑mode Wigner operator for SU(1,1)
Next, we use the parametrization

where the radial variable r2 = |α|2 − |β|2 represents the difference in intensities between the two modes, and the 
parameters χ and τ can be interpreted as azimuthal and polar angles on a two-sheeted hyperboloid10.

Substituting Eq. (24) into Eq. (4), �(α,β) can be rewritten as

We proceed to integrate over the physically irrelevant phase ϕ to get

(21)
: exp[(a†, b†)(u′ − 1)

(

a
b

)

] :: exp[(a†, b†)(u − 1)

(

a
b

)

] :

= : exp[(a†, b†)(u′u − 1)

(

a
b

)

] : .

(22)

U(ζ )(−1)b
†bU†(ζ )

= : exp[(a†, b†)(Mσ zM
−1 − 1)

(

a
b

)

] :

= : exp[(a†, b†)
(

cos θ − 1 e−iϕ sin θ
eiϕ sin θ − cos θ − 1

)(

a
b

)

] :

= : exp[cos θ(a†a− b†b)+ sin θ(e−iϕa†b+ eiϕb†a)

− (a†a+ b†b)] : .

(23)

W|z1,z2�(θ ,ϕ)

=Tr[|z1, z2��z1, z2|�(θ ,ϕ)]
=�z1, z2|�(θ ,ϕ)|z1, z2�

=
1

2π2
�z1, z2| : [2(cos

θ

2
a† + e−iϕ sin

θ

2
b†)(cos

θ

2
a+ eiϕ sin

θ

2
b)+ 1]

× exp[cos θ(a†a− b†b)+ sin θ(e−iϕa†b+ eiϕb†a)− (a†a+ b†b)] : |z1, z2�

=[2(cos
θ

2
z∗1 + e−iϕ sin

θ

2
z∗2 )(cos

θ

2
z1 + eiϕ sin

θ

2
z2)+ 1]

× exp[cos θ(|z1|2 − |z2|2)+ sin θ(e−iϕz∗1 z2 + eiϕz∗2 z1)

− (|z1|2 + |z2|2)]

(24)α = rei(χ+ϕ)/2 cosh
τ

2
,β = rei(χ−ϕ)/2 sinh

τ

2
,

(25)

�(r,χ ,ϕ, τ)

≡�(α,β)

=
1

π2
e−2 cosh τ r2 : exp[2reiϕ/2(eiχ/2 cosh

τ

2
a† + e−iχ/2 sinh

τ

2
b†)

+ 2re−iϕ/2(e−iχ/2 cosh
τ

2
a+ eiχ/2 sinh

τ

2
b)] exp[−2(a†a+ b†b)] :

=
1

π2
e−2 cosh τ r2

× :
∞
∑

k,k′=0

(2r)k+k′ [(eiχ/2 cosh τ
2 a

† + e−iχ/2 sinh τ
2 b

†)]k[(e−iχ/2 cosh τ
2 a+ eiχ/2 sinh τ

2 b)]
k′

k!k′!

× eiϕ(k−k′)/2 exp[−2(a†a+ b†b)] : .



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2451  | https://doi.org/10.1038/s41598-022-06124-8

www.nature.com/scientificreports/

Finally, we integrate over r

Now, we introduce the two-mode squeezed operator

which is defined in terms of the two mode realization of the SU(1,1) algebra

with commutation relations

Now, we try to show that the two-mode Wigner operator �(χ , τ) has SU(1,1) symmetric form, that is

Here, it should be pointed out that the form given by Eq. (24) in the Ref.10 is wrong. The SU(1,1) parity (−1)K0 
there should be replaced by the single mode parity operator (−1)b

†b here.
According to the Baker-Campell-Hausdorff (BCH) formula

which is a similar transformation. The parity operator (−1)b
†b is written in the Weyl ordering13 as

where ::
:
: represents the Weyl ordering. Since in Ref.14,15, the authors have proved that a similar transformation 

S does not disturb the Weyl ordering or we can say that it keeps the Weyl ordering invariant, this means that

Because of this property, we have

(26)

�(r,χ , τ)

=
1

π2
:

∞
∑

k=0

r2ke−2 cosh τ r2

×
22k[(eiχ/2 cosh τ

2 a
† + e−iχ/2 sinh τ

2 b
†)(e−iχ/2 cosh τ

2 a+ eiχ/2 sinh τ
2 b)]

k

(k!)2

× exp[−2(a†a+ b†b)] : .

(27)

�(χ , τ)

=
2

π2
:

∞
∑

k=0

∫ ∞

0
drr2k+1e−2 cosh τ r2

×
22k[(eiχ/2 cosh τ

2 a
† + e−iχ/2 sinh τ

2 b
†)(e−iχ/2 cosh τ

2 a+ eiχ/2 sinh τ
2 b)]

k

(k!)2

× exp[−2(a†a+ b†b)] :

=
1

2π2 cosh τ
: exp[

2

cosh τ
(eiχ/2 cosh

τ

2
a† + e−iχ/2 sinh

τ

2
b†)

× (e−iχ/2 cosh
τ

2
a+ eiχ/2 sinh

τ

2
b)− 2(a†a+ b†b)] :

=
1

2π2 cosh τ
: exp[sec hθ(a†a− b†b)+ tanh θ(eiχa†b† + e−iχab)

− (a†a+ b†b)] :

(28)S(η) = exp(ηK+ − η∗K−), η =
τ

2
eiχ ,

(29)K+ = a†b†, K− = ab, K0 =
1

2
(a†a+ b†b+ 1),

(30)[K0,K±] = ±K±, [K−,K+] = 2K0.

(31)�(χ , τ) = S(η)(−1)b
†bS†(η).

(32)
S(η)b†S†(η) =b† cosh

τ

2
− ae−iχ sinh

τ

2
,

S(η)bS†(η) =b cosh
τ

2
− a†eiχ sinh

τ

2
,

(33)(−1)b
†b = :

: δ(b
†)δ(b)

:
: ,

(34)S
:
: (· · · )

:
: S

−1 = :
: S(· · · )S

−1 :
: .

(35)

S(η)(−1)b
†bS†(η)

=S(η)
:
: δ(b

†)δ(b)
:
: S

†(η)

= :
: δ(b

† cosh
τ

2
− ae−iχ sinh

τ

2
)δ(b cosh

τ

2
− a†eiχ sinh

τ

2
)
:
: .
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By using the formula as follows14,15

Eq. (35) can be transformed into

where we used the integral formula 
∫

d2α
π2 exp[−h|α|2 + sα + ηα∗] = 1

h exp(
sη
h ), (Re h < 0) . Eq. (37) is exactly 

the same as Eq. (27), so Eq. (31) is proved.

Two‑mode Wigner operator in polar coordinates
Two‑dimensional isotropic harmonic oscillator.  The Hamiltonian of a two-dimensional isotropic har-
monic oscillator system can be written as

The corresponding creation and annihilation operators are

and the total number operator

Then, the eigenstate of the Hamiltonian H = N + 1 is

Choosing a Cartesian coordinate frame is not the only way to describe the problem. Since the energy in the 
rotating plane x − y is conserved, we can also choose other rotating reference frames. The angular momentum 
operator L is defined as

It should be noted that {N , L} are a set of commutated observables. Setting

(36)

:
: g(a, a

†)
:
:

=
∫ ∞

−∞
d2αg(α,α∗)�(α,α∗)

=
1

π

∫ ∞

−∞
d2αg(α,α∗) : e−2(α∗−a†)(α−a) :,

(37)

S(η)(−1)b
†bS†(η)

=
1

π2

∫ ∫

d2αd2βδ
(

β∗ cosh
τ

2
− αe−iχ sinh

τ

2

)

δ

(

β cosh
τ

2
− α∗eiχ sinh

τ

2

)

× : e−2(α∗−a†)(α−a)e−2(β∗−b†)(β−b) :

=
1

π2 cosh2 τ
2

:
∫

d2α exp
[

−2(α∗ − a†)(α − a)− 2
(

αe−iχ tanh
τ

2
− b†

)(

α∗eiχ tanh
τ

2
− b

)]

:

=
1

π2 cosh2 τ
2

:
∫

d2α exp
[

−2|α|2
(

1+ tanh2
τ

2

)

+2α
(

a† + e−iχ tanh
τ

2
b
)

+ 2α∗
(

a+ eiχ tanh
τ

2
b†
)

− 2(a†a+ b†b)
]

:

=
1

2π2 cosh τ
: exp

[

2(a† + e−iχ tanh τ
2 b)(a+ eiχ tanh τ

2 b
†)

1+ tanh2 τ
2

− 2(a†a+ b†b)

]

:

=
1

2π2 cosh τ
: exp[sec hθ(a†a− b†b)+ tanh θ(eiχa†b† + e−iχab)− (a†a+ b†b)] :,

(38)H =
1

2
(X2 + P2x + Y2 + P2y ).

(39)a† =
1
√
2
(X − iPx), a =

1
√
2
(X + iPx),

(40)b† =
1
√
2
(Y − iPy), a =

1
√
2
(Y + iPy)

(41)N = N1 + N2.

(42)|nx , ny� = (nx !ny!)−
1
2 a†nx b†ny |0, 0�.

(43)L = XPy − YPx = i(ab† − a†b).

(44)a± =
1
√
2
(a∓ ib),

(45)a†± =
1
√
2
(a† ± ib†),
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we also treat a± and a†± as creation and annihilation operators, whose corresponding number operators are 
N± = a†±a± . The two commutated observables N+ and N− form a set of complete basis. For each group of 
eigenvalues (n+, n−) , there exists an eigenvector, which is marked with |n+, n−� and

which constitutes a complete set of orthogonal eigenvectors. One can find

and

which shows that the two commutated observables N and L form a set of complete basis.

Two‑dimensional coordinate eigenstates in polar coordinates.  We know that in the Cartesian 
coordinates, the two-dimensional coordinate eigenstate is descriped as

Now we write the Eq. (49) as a form in polar coordinates16. Setting

Substituting Eqs. (44), (45) and (50) into Eq. (49), we have

Eq. (51) is a very important result, because |ξ� is actually the entangled state representation created by Fan17,18. 
|ξ� is the continuous variable version of the EPR entangled state, which is introduced in the following way.

Since [X+ + X−, P+ − P−] = 0 , where X± and P± are the position and momentum operators of the rotating 
reference frame, respectively, we can give the common eigenstate |ξ� of X+ + X− and P+ − P− , that is

By using the method of IWOP, we can prove its orthogonality and completeness

and

In Ref.16, we have shown that

where we have set

The RHS of Eq. (55) is a standard Laguerre–Gaussian mode in quantum optics.

(46)|n+, n−� = (n+!n−!)−
1
2 a

†n+
+ a

†n−
− |0, 0�,

(47)N = N+ + N−

(48)L = N+ − N−,

(49)|x, y� = π− 1
2 exp

[

−
1

2
(x2 + y2)+

√
2(xa† + yb†)−

a†2 + b†2

2

]

|0, 0�.

(50)

x =r cosφ,

y =r sin φ,

x ± iy =re±iφ .

(51)

|r,φ�
≡|x, y�

=π− 1
2 exp

�

−
1

2
r2 +

√
2r cosφ

�

a†+ + a†−√
2

�

+
√
2r sin φ

�

a†+ − a†−√
2i

�

−
1

2





�

a†+ + a†−√
2

�2

+

�

a†+ − a†−√
2i

�2










|0, 0�

=π− 1
2 exp

�

−
1

2
r2 + re−iφa†+ + reiφa†− − a†+a

†
−

�

|0, 0�

≡|ξ�, ξ = re−iφ .

(52)
(X+ + X−)|ξ� =

√
2Re (ξ)|ξ�,

(P+ − P−)|ξ� =
√
2Im (ξ)|ξ�.

(53)�ξ ′|ξ� = πδ(2)(ξ ′ − ξ)

(54)
1

π

∫

d2ξ |ξ��ξ | = 1.

(55)�r,φ|n+, n−� =

√

n−!
n+!

e−
r2

2 rlLln−l
2

(r2)eilφ ,

(56)
N |n+, n−� =(n+ + n−)|n+, n−� = n|n+, n−�,
L|n+, n−� =(n+ − n−)|n+, n−� = l|n+, n−�.
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Two‑dimensional momentum eigenstates in polar coordinates.  Let’s explore another entangled 
state representation17,18

Then, one can immediately check the following relations

|η� is the common eigenstate of X+ − X− and P+ + P− , where X± and P± are the quadrature operators. We can 
also find

Then, we have

According to Eqs. (39), (40), (44) and (45), we get

and

From Eqs. (61) and (62), We can conjecture |η� ≡ |px , py� , where |px , py� is two-dimensional momentum eigen-
state. Now we set p =

√

p2x + p2y ≡ |η| and have

The result given by Eq. (63) shows that the entangled state representation |η� is exactly the form of the two-
dimensional momentum eigenstate |px , py� in polar coordinates.

Two‑mode Wigner operator in polar coordinates.  In Ref.16, we have demonstrated that two-mode 
Wigner operator

(57)|η� = exp(−
1

2
|η|2 + ηa†+ − η∗a†− + a†+a

†
−)|0, 0�, η = peiθ ,

(58)
(X+ − X−)|η� =

√
2Re (η)|η�,

(P+ + P−)|η� =
√
2Im (η)|η�.

(59)
(a+ − a†−)|η� =η|η�,
(a†+ − a−)|η� =η∗|η�.

(60)

√

a+ − a†−
a†+ − a−

|η� =
√

η

η∗
|η� = eiθ |η�.

(61)

√

a+ − a†−
a†+ − a−

=

√

(a− a†)+ i(b† − b)

(a† − a)+ i(b† − b)

=
Py + iPx
√

P2x + P2y

(62)

Py + iPx
√

P2x + P2y

|px , py�

=
py + ipx
√

p2x + p2y

|px , py�

=eiθ |η�, θ = arctan
py

px
.

(63)

|px , py�

=π− 1
2 exp

[

−
1

2
(p2x + p2y)+

√
2i(pxa

† + pyb
†)+

a†2 + b†2

2

]

|0, 0�

=π− 1
2 exp

[

−
1

2
p2 +

√
2ip sin θ

(

a†+ + a†−√
2

)

+
√
2ip cos θ

(

a†+ − a†−√
2i

)

+a†+a
†
−
]

|0, 0�

=π− 1
2 exp

(

−
1

2
p2 + peiθa†+ − pe−iθa†− + a†+a

†
−

)

|0, 0�.

(64)�(α,β) = �(α+,α−),
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which is a meaningful result. However, as mentioned above, two-mode Wigner operator can be converted into 
multiple forms by setting parameters with different physical meanings. In this section, we still start from the 
normally ordered form of two-mode Wigner operator to discuss a more meaningful result.

Substituting α = x+ipx√
2

 and β = y+ipy√
2

 into Eq. (4), we can recast the Wigner operator �(α,β) as the following 
version

Now we try to integrate over p and θ . Noticing that the integral measure d2η ∼ 2pdpdθ , we obtain

In the derivation of Eq. (66), we have used the formula eix sin t =
∞
∑

m=−∞
Jm(x)e

imt , where Jm(x) is Bessel function. 
By using δ(m−m′) =

∫ 2π
0 ei(m−m′)θdθ , we transform Eq. (66) into

By employing the integral formula

where Iν(α) = i−ν Jν(iα) , we have

(65)

�(r,φ, p, θ)

≡�(α,β)

=
1

π2
: exp{−(r2 + p2)+

√
2r[(a† + a) cosφ + (b† + b) sin φ]

+
√
2ip[(a† − a) sin θ + (b† − b) cos θ ] − 2(a†a+ b†b)} : .

(66)

�(r,φ)

=
∫

d2η�(r,φ, p, θ)

=
1

π2
: exp{−r2 +

√
2r[(a† + a) cosφ + (b† + b) sin φ] − 2(a†a+ b†b)}

×
∫ ∞

0
2pdp

∫ 2π

0
dθ exp{−p2 +

√
2ip[(a† − a) sin θ + (b† − b) cos θ]} :

=
1

π2
: exp{−r2 +

√
2r[(a† + a) cosφ + (b† + b) sin φ] − 2(a†a+ b†b)}

×
∫ ∞

0
2pe−p2dp

∞
∑

m=−∞
Jm[

√
2ip(a† − a)]

∞
∑

m′=−∞
Jm′ [

√
2ip(b† − b)]eim

′π/2

×
∫ 2π

0
ei(m−m′)θdθ : .

(67)

�(r,φ)

=
1

π2
: exp{−r2 +

√
2r[(a† + a) cosφ + (b† + b) sin φ] − 2(a†a+ b†b)}

×
∞
∑

m=−∞

∫ ∞

0
pe−p2 Jm[

√
2ip(a† − a)]Jm[

√
2ip(b† − b)]dpeimπ/2 : .

(68)

∫ ∞

0
te−p2t2 Jν(at)Jν(bt)dt

=
1

2p2
exp(−

a2 + b2

4p2
)Iν(

ab

2p2
), Re ν > −1, Re (p2) > 0,

(69)

�(r,φ)

=
1

π2
: exp{−r2 +

√
2r[(a† + a) cosφ + (b† + b) sin φ] − 2(a†a+ b†b)}

×
∞
∑

m=−∞

1

2
exp

[

−
(a† − a)2 + (b† − b)2

2

]

i−mJm

[

−
i(a† − a)(b† − b)

2

]

im :

=
1

π2
: exp{−r2 +

√
2r[(a† + a) cosφ + (b† + b) sin φ]

−
a†2 + a2 + b†2 + b2

2
− (a†a+ b†b)} : .

=
1

π2
exp

(

−
r2

2
+

√
2r cosφa† +

√
2r sin φb† −

a†2 + b†2

2

)

|0, 0�

× �0, 0| exp
(

−
r2

2
+

√
2r cosφa+

√
2r sin φb−

a2 + b2

2

)

,
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where we have used the property of normal ordering |0, 0��0, 0| =: exp[−(a†a+ b†b)] : . Comparing Eq. (69) 
with Eqs. (49) and (51), we get

By using a similar derivation to Eq. (69), we can obtain

Eqs. (70) and (71) demonstrate that the marginal distribution of the two mode Wigner operator is exactly the 
pure state density matrix of the entangled state representation. This conclusion first appeared in the Ref.19, which 
tells us that the marginal distributions of the Wigner function for entangled system should be understood in 
the sense of entanglement.

In Ref.20, the authors first separated φ from the Wigner operator, and then tried to use the integration method 
to integrate over the radial momentum pr in the Wigner operator. They wanted to use the above method to 
obtain the operator kernel function with the radius r and the orbital angular momentum l as variables, that is, 
�(r, pr ,φ, l) → �(r, l) , but their efforts were not successful. We notice that

and

Since pr and l are not two independent variables, their scheme must not work.

Concluding remarks
Using the IWOP method, we give three approaches to analyze the normal product form of the two-mode Wigner 
operator, which are SU(2) symmetric representation, SU(1,1) symmetric representation, and polar coordinate 
form. The two-mode Wigner operator has a variety of intrinsic degrees of freedom, and the IWOP method is 
more conducive to explaining the intrinsic relationship of these potential degrees of freedom. Our next work 
may be to use this approach to study the phase or angular momentum properties of the two-mode quantum 
state in phase space.
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