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A machine learning algorithm 
for electrocardiographic 
fQRS quantification validated 
on multi‑center data
Amalia Villa1*, Bert Vandenberk2,3, Tuomas Kenttä4, Sebastian Ingelaere2, Heikki V Huikuri4, 
Markus Zabel5, Tim Friede6,7, Christian Sticherling8, Anton Tuinenburg9, Marek Malik10,11, 
Sabine Van Huffel1, Rik Willems2 & Carolina Varon1,12

Fragmented QRS (fQRS) is an electrocardiographic (ECG) marker of myocardial conduction 
abnormality, characterized by additional notches in the QRS complex. The presence of fQRS has been 
associated with an increased risk of all‑cause mortality and arrhythmia in patients with cardiovascular 
disease. However, current binary visual analysis is prone to intra‑ and inter‑observer variability and 
different definitions are problematic in clinical practice. Therefore, objective quantification of fQRS 
is needed and could further improve risk stratification of these patients. We present an automated 
method for fQRS detection and quantification. First, a novel robust QRS complex segmentation 
strategy is proposed, which combines multi‑lead information and excludes abnormal heartbeats 
automatically. Afterwards extracted features, based on variational mode decomposition (VMD), 
phase‑rectified signal averaging (PRSA) and the number of baseline‑crossings of the ECG, were used 
to train a machine learning classifier (Support Vector Machine) to discriminate fragmented from non‑
fragmented ECG‑traces using multi‑center data and combining different fQRS criteria used in clinical 
settings. The best model was trained on the combination of two independent previously annotated 
datasets and, compared to these visual fQRS annotations, achieved Kappa scores of 0.68 and 0.44, 
respectively. We also show that the algorithm might be used in both regular sinus rhythm and irregular 
beats during atrial fibrillation. These results demonstrate that the proposed approach could be 
relevant for clinical practice by objectively assessing and quantifying fQRS. The study sets the path for 
further clinical application of the developed automated fQRS algorithm.

The presence of fragmentation in the QRS complex (fQRS) on a 12-lead electrocardiogram (ECG) has been 
reported to be an indicator of myocardial scarring or  fibrosis1. fQRS has been shown to be related to arrhythmic 
and mortality risk in patients who received an implantable cardioverter-defibrillator (ICD) in primary preven-
tion of sudden cardiac  death2. Therefore, fQRS is a biomarker of interest in risk stratification of cardiac patients. 
Currently, the presence of fQRS is diagnosed by visual interpretation of the 12-lead ECG to identify irregularities 
within the QRS complex. This requires specific training to distinguish fragmentation from other patterns, such 
as early repolarization or non-specific conduction delays. Different definitions of fragmentation, which vary 
slightly in some of the morphologies considered, have been described. The most frequently used criteria are these 

OPEN

1Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and 
Data Analytics, KU Leuven, Leuven, Belgium. 2Department of Cardiovascular Diseases, Experimental Cardiology, 
KU Leuven, Leuven, Belgium. 3Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of 
Medicine, University of Calgary, Calgary, Alberta, Canada. 4Research Unit of Internal Medicine, Medical Research 
Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland. 5Department of Cardiology and 
Pneumology, Heart Center, University of Göttingen Medical Center, Göttingen, Germany. 6Department of Medical 
Statistics, University Medical Center Göttingen, Göttingen, Germany. 7DZHK (German Center of Cardiovascular 
Research), partner site Göttingen, Göttingen, Germany. 8Division of Cardiology, University of Basel Hospital, Basel, 
Switzerland. 9Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands. 10National 
Heart and Lung Institute, Imperial College, London, UK. 11Department of Internal Medicine and Cardiology, 
Masaryk University, Brno, Czech Republic. 12Microgravity Research Center, Université Libre de Bruxelles, Brussels, 
Belgium. *email: amalia.villagomez@kuleuven.be

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-10452-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6783  | https://doi.org/10.1038/s41598-022-10452-0

www.nature.com/scientificreports/

proposed by Das et al.1,3, which define morphologies which should be identified as fQRS, both for narrow ( ≤120 
ms) and broad (>120 ms) QRS complexes. However, the application of these criteria might be ambiguous and 
might lead to intra- and inter-observer  variability4. Therefore, other criteria have been proposed to overcome 
these uncertainties, such as those described by Torigoe et al., 2012, where risk stratification was based on the 
number of fragmented  leads5, or by Maheshwari et al., 2013, where an automatic approach is proposed to detect 
different patterns of  fQRS6. However, these methods have neither been validated nor do they express the severity 
of fQRS. More recently, Haukilahti et al. defined benign and malignant fQRS variants in an attempt to improve 
the specificity of fQRS as a  biomarker7.

As the application of different fQRS criteria and inter-observer variability limit the reproducibility of clini-
cal studies in different  centers8, the detection of fQRS may benefit from an automatic signal-based, algorithmic 
approach, to provide decision support. However, there is no true “golden standard” and automatic algorithms 
trained using predefined fQRS criteria might reproduce the same ambiguities as human annotations. Some 
automatic fQRS detection algorithms have previously been described most of which are based on signal decom-
position methods, such as wavelet transform or intrinsic time-scale decomposition for the delineation of the 
QRS complex and detection of  fragmentation6,9,10. However, all these algorithms were trained based on their own 
fQRS criteria in single-center data. The most recent automatic algorithm published by our group (Goovaerts 
et al.11), was based on the Das criteria for fQRS  detection11. This model, developed in a single-center cohort of 
sinus rhythm ECGs including narrow and broad QRS complexes, offers a continuous scoring output between 0 
and 1 for fQRS quantification and is based on Variational Mode Decomposition (VMD)12 and Phase-Rectified 
Signal Averaging (PRSA)13. Although this algorithm does not distinguish different fQRS patterns, the output 
was associated with agreement between observers and the risk of all-cause  mortality14.

This work proposes a fully automated algorithm for fQRS detection and quantification in order to avoid 
subjective interpretation. In line with this objective, three main contributions are proposed. First, we present a 
novel and robust QRS complex segmentation strategy which combines multi-lead information and automatically 
excludes abnormal heartbeats. Valid segmentation of the QRS complex plays a major role in further analysis 
since too restrictive segmentation might ignore fQRS patterns in the Q or S waves and the inclusion of artefacts 
or small oscillations might be confused with fragmentation. In previous work, this process has often been based 
on a single ECG lead, ignoring the complementary information available in multi-lead recordings. Second, the 
proposed machine learning algorithm for fQRS quantification is trained and evaluated in multi-center data, 
using different fQRS criteria comprising narrow and broad QRS complexes. Finally, to the best of our knowl-
edge, this is the first evaluation of such an approach on non-sinus rhythm data, extending the applicability also 
to atrial fibrillation signals (AF). These models were tested and their performance is presented in comparison 
with visual fQRS detection.

Methods
The block diagram in Fig. 1 illustrates the methodology proposed. The algorithm uses all leads for segmentation, 
but feature extraction and classification are applied to each lead independently. As in the Das criteria for region 
specific fQRS analysis, all leads, except aVR, were used in the  analysis2,3. Hence, the output presents 11 fQRS 
scores per patient’s recording. In the remainder of this paper, each lead will be referred to as signal, and the set 
of 11-lead ECG will be referred to as recording.

Data. Two independent datasets were used in this study. The first dataset includes 723 digital ECG recordings 
(10 seconds 12-lead ECG, 250 Hz sampling rate) of patients before ICD implantation in prevention of sudden 
cardiac death at the University Hospitals Leuven (UZL) in Leuven, Belgium. For this analysis, only recordings in 
sinus rhythm and AF were included, corresponding to 673 recordings (616 sinus rhythm and 57 AF). The details 
of these patients are summarized in Table 1.

The presence of fQRS was annotated independently by 5  clinicians4 (referred here as observers), who assigned 
a binary label to each of the 11 signals as fragmented (i.e. 1) or non-fragmented (i.e. 0) by using the fQRS criteria 
for narrow and wide QRS complexes defined by Das et al.1,3. Each signal in the database was assigned the sum of 
the independent labels given by the 5 observers, resulting in a joint label per lead with values ranging between 0 
and 5 (Table 2). While labels 0 and 5 represent full agreement of the clinicians in the absence or presence of fQRS, 
respectively, the labels in-between represent inter-observer variability. The signals with full agreement were used 
as ground truth to train the algorithm, as these signals represent the highest level of certainty.

The second dataset was provided by the multi-center EUropean Comparative Effectiveness Research to Assess 
the Use of Primary ProphylacTic Implantable Cardioverter Defibrillators (EU-CERT-ICD)  project15. This project 
included a retrospective registry of 5111 patients who received a primary prevention ICD between 2002 and 2014 
in one of the 14 participating  centers16. The cohort presented is based on the detailed ECG analysis reported by 
Pelli et al.17. After further exclusion of rhythms other than sinus and AF, a total of 1560 ECGs were included in 

Figure 1.  Block diagram of the fQRS scoring algorithm per lead.
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the current analysis. This selection contains 402 12-lead recordings from University Hospital Basel, Switzerland 
(10 seconds, 500Hz, least significant bit resolution of 4µV provided by C.S); 29 from Oulu University Hospital, 
Finland (8 seconds, 1000Hz, 2.5µV , by T.K, H.V.H); 551 from University Medical Center Utrecht, Netherlands 
(10 seconds, 500Hz, 4.88µV , by A.T); 277 from University Medical Center Goettingen, Germany (10 seconds, 
500Hz, 4µV by T.F, M.Z); and 301 from the UZ Leuven, Belgium (10 seconds, 500Hz, 4.88µV , by B.V, R.W). 
Since the ECGs from UZ Leuven are also part of the UZL data, these were excluded from the EU-CERT-ICD 
database, reducing it to 1259 ECGs. The details of this dataset are described in Table 1.

As described by Pelli et al.17, the presence of fQRS was annotated independently by two clinicians, who later 
discussed a final binary label for leads at which they previously disagreed. The narrow QRS complexes were 
annotated using the criteria defined by Haukilahti et al.7, while wide QRS complexes were annotated following 
Das et al.3. The binary label 1 of EU-CERT-ICD indicates agreement on the presence of fQRS, and 0 agreement 
on the absence of fQRS (Table 2). Since this dataset does not contain uncertain labels, the complete set of labels 
are considered ground truth.

The inter-observer variability between UZL and EU-CERT-ICD labels was assessed by comparing the anno-
tations of the 301 recordings shared by both datasets. This comparison was performed by binarizing the UZL 
labels for different thresholds from 1 to 5, and deriving the Kappa score κ , for each of these scenarios. The high-
est agreement ( κ = 0.46) was obtained when all observers agreed on the presence of fQRS. The relaxation of 
this threshold by including cases in which fewer observers agreed on fQRS in the positive class implied a linear 
decrease of κ . Overall, there was only moderate agreement when using the different clinical criteria to assess 
fQRS. The criteria for fQRS scoring used in the EU-CERT-project were stricter than the Das-criteria used in the 
UZL-dataset. This could be expected since all signs of fragmentation were scored in UZL, while in EU-CERT-
ICD some notches in the QRS complex were not considered as fQRS unless they represented one of the specific 
patterns described by Haukilahti et al.7.

Pre‑processing. A two-step pre-processing was applied. First, the signals were band-pass filtered using But-
terworth filters of orders 4 and 6, respectively from 0.5 to 70 Hz, to remove baseline wander and high-frequency 

Table 1.  Patient characterization for UZL and EU-CERT datasets. Expressed as number of ECG recordings 
and percentage between brackets, or mean ± standard deviation.

UZL EU-CERT

Demographics

Age at implant (y) 62.4 ± 11.6 63.8 ± 10.9

Male gender (%) 570 (84.7) 1006 (79.8)

Ischemic cardiomyopathy (%) 446 (66.3) 869 (68.9)

Left ventricular ejection fraction (%) 32.3 ± 12.3 24.9 ± 6.2

Primary prevention (%) 381 (56.6) 1261 (100)

Sinus rhythm (%) 616 (91.5) 1102 (87.4)

Atrial fibrillation (%) 57 (8.5) 159 (12.6)

Comorbidity

Diabetes mellitus (%) 119 (17.7) 342 (27.1)

Stroke (%) 67 (10.0) 132 (10.5)

ECG

Wide QRS (%) 370 (55.0) 496 (39.3)

Heart rate (bpm) 64 ± 13 72 ± 15

Follow-up

Duration (y) 3.7 ± 3.4 3 ± 2.3

Appropriate Shock (%) 222 (33.0) 165 (13.1)

Death (%) 186 (27.6) 230 (18.2)

Table 2.  Percentage of leads per label in the UZL and EU-CERT datasets, both for sinus and AF files.

Percentage files per label in UZL

0 1 2 3 4 5

UZL
sinus 40.95 13.19 7.23 5.76 8.16 24.70

AF 41.15 13.56 10.85 5.90 6.06 22.49

EU-CERT
sinus 76.60 23.40

AF 77.70 22.30



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6783  | https://doi.org/10.1038/s41598-022-10452-0

www.nature.com/scientificreports/

noise while maintaining the potential fQRS information. Second, each signal was normalized by removing the 
mean and dividing by the standard deviation of all voltage values.

QRS segmentation. Segmentation is crucial to properly estimate the level of fragmentation within a QRS 
complex. While it must be wide enough to capture the information in the Q and S waves, it needs to be robust 
enough not to confuse these waves with oscillations and noise around the QRS complex.

The first step of a robust QRS segmentation is detecting the R-peaks in the ECG signal, which is followed by 
identification of the surrounding Q and S waves. In this work, R-peak detection was performed using the algo-
rithm included in the R-DECO  software18. Since this algorithm treats every lead independently, the multi-lead 
information is integrated in a consecutive post-processing stage. The starting point is the number of heartbeats nR 
in the recording, which should be equal in all signals from a same recording. The value nR is defined as the most 
commonly found number of automatically detected R-peaks in all signals of one recording. The aim is to have 
a set R of R-peaks with nR annotations per signal l. If more than nR R-peaks are detected in a signal, only those 
nR complexes closest to the average location of each Ri peak are kept. Conversely, in a given signal li in which 
less than nR R-peaks are automatically detected, a second search is performed to detect the missed heartbeats 
by performing a refined maximum search in a window of 40ms in the absolute values of the signal li around the 
average position of the missed R-peak. The pseudo-code for this step is summarized in Algorithm 1. 

After having identified the set R with the same number nR of R-peaks in all leads, the QRS complexes were 
segmented. In a review by Beraza et al.19, the segmentation method proposed by Martinez et al.,  200420, and used 
in the ECGkit software  tool21, was identified as the most accurate. This method is based on wavelets and was 
used to detect the onset and offset of the QRS complex for each lead independently. Next, similar as for R-peak 
detection, the multi-lead information is integrated in a post-processing stage presented in Algorithm 2. Once 
the QRS complexes are automatically delineated for each signal, the Q and S waves are reallocated per heartbeat 
to the median of all signals. Thereupon, these locations are adjusted using the information contained in the rest 
of the heartbeats of the same signal exploiting the periodicity of the signal. Hence, a set of rules is performed per 
signal. First, the QRS complexes are segmented and normalized to a maximum amplitude of 1. Next, a template 
is selected per signal, defined as the QRS complex with the highest cumulative correlation to the other QRS 
complexes within the lead. The rest of the QRS complexes are aligned to this template, and their Q and S loca-
tions are adjusted accordingly. Subsequently, a quality-check is performed to remove irregular and erroneously 
delineated heartbeats. A vector ρ = [ρ1, ρ2, . . . , ρnR ] is calculated per heartbeat, containing the normalized cor-
relations between it and the remaining heartbeats in the given signal. This vector has nR elements and compares 
the given QRS complex to each of the nR heartbeats in the signal. If more than half of the entries in vector ρ are 
lower than a quality limit q, where q ∈ [0, 1] , the given heartbeat is removed from further signal analysis. While 
q can be user selected, it was set here to 0.85 based on visual inspection by an experienced clinician. An example 
of the main steps of the segmentation strategy for a signal with irregular heartbeats is illustrated in Fig. 2. The 
QRS segmentation methodology is publicly available together with illustrating demos (https:// github. com/ avill 
ago/ multi LeadS egmen tation). 

https://github.com/avillago/multiLeadSegmentation
https://github.com/avillago/multiLeadSegmentation
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Feature extraction. The features included in this work are based on the proposal by Goovaerts et al.11. The 
features are extracted independently for each lead, and all the QRS complexes selected in the QRS segmentation 
stage are considered for feature extraction. The characterization of each signal is based on features extracted 
from variational mode decomposition (VMD), phase-rectified signal averaging (PRSA) and the number of 
peaks in the QRS.

VMD decomposes the signal into its main frequency components according to their level of contribution 
to the ECG waves. The number of modes was set to 5 based on previous ECG  studies11,22, and these were sorted 
from lower to higher frequency. Since fQRS manifests itself as high-frequency notches in the QRS complex, it 
was shown that the central frequencies and morphology of the higher-frequency modes were different when 
comparing fragmented and non-fragmented  signals11. An example of this decomposition for a fragmented and 
a non-fragmented signal can be seen in Fig. 3. To capture these differences, the central frequencies and number 
of zero-crossings of modes 3, 4 and 5 were used as features for classification, since these are the modes that show 
more differences between both classes.

Additionally, PRSA was used to detect and quantify oscillations in the QRS complex, as disturbances of its 
expected trajectory. Applying a sliding window of length 2L, consecutive overlapping segments of the QRS are 
averaged out to obtain an estimation of the global trend of the QRS complex, referred to as PRSA curve. This 
curve can be approximated by a linear fit. Non-fragmented signals present a clear slope in this approximation, 
characterizing the drastic amplitude change typical of a normal QRS complex. However, the QRS notches in 
fragmented signals flatten this line, since they disrupt the continuous trend of the QRS  complex11,23. Some 
examples of this PRSA methodology are shown in Fig. 4. The features extracted from PRSA analysis are the 
mean derivative of the averaged PRSA curve and the slope and y-axis crossing of its linear fit approximation. 
Finally, the number of peaks in the QRS complex are also used as feature to describe the signal. The complete 
list of features is provided in Table 3.

Figure 2.  Example QRS segmentation for multi-lead signal with irregular heartbeats, showing the segmentation 
steps for leads II, aVL and V3. From left to right, the columns show the ECG signal, the segmented heartbeats 
(step 4 of Algorithm 2), the aligned heartbeats (step 5), and the final segmented heartbeats after removing 
irregular heartbeats.
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Classifier. These 10 features extracted from each signal were used to train a Support Vector Machine (SVM)24, 
a machine learning classifier, to discriminate between fragmented and non-fragmented signals. Each signal was 
introduced as an independent input, with no context of other  leads2. The binary labels indicating the presence 
of fQRS, as described in Section 2.1, were used as an established baseline to train the classifier. To account for 
possible non-linearities in the data, SVM with three different kernels were used to transform the feature space, 
namely the linear, polynomial and radial basis function (RBF). The parameters required to use them were tuned 
using Bayesian optimization. The SVM classifiers provide a binary output, which corresponds to fragmented or 
non-fragmented signals. To quantify fQRS, Platt scaling was used to convert the binary output of the model into 
a continuous score by fitting a logistic regression to the  outputs25. By doing so, the model extracts the probability 
of a signal belonging to the fragmentation class.

Figure 3.  Examples of the VMD decomposition of non-fragmented (upper row) and fragmented (lower row) 
QRS complexes. Modes 1 to 5 are sorted in increasing frequency.

Figure 4.  Examples of the PRSA procedure for the analysis of a non-fragmented and a fragmented QRS 
complex. The first column shows the signal and some examples of the sliding window centers located along the 
QRS complex. The blue points correspond to samples in increasing segments of the signal, and the pink ones to 
descending points. The second column shows the PRSA curves extracted around each of these samples, with a 
length of 40ms. Those corresponding to descending points were inverted so they all follow an comparable trend. 
The last column shows in black the averaged PRSA curve on top of all the contributing curves.
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Experiments. The different challenges of this study required independent training strategies and experi-
ments to confirm their added value to the final algorithm. The first goal was to evaluate the impact of the new 
segmentation algorithm on the quantification of the fQRS. Secondly, we wanted to assess the effect of different 
fQRS definitions on the training and performance of the classifier. Finally, we evaluated the performance of the 
model in irregular signals form patients in atrial fibrillation (AF).

Experiment 1: The impact of the new segmentation algorithm. The impact of the proposed QRS segmentation 
algorithm was assessed by comparing its performance with the method proposed by Goovaerts et al.11, referred 
to as the reference. Both approaches were trained and tested on the same subset of the UZL dataset. First, training 
and evaluation was performed using only those signals in which all 5 observers agreed in the presence or absence 
of fQRS, i.e. labels 0 and 5. Patients were randomly split into training (80%) and test (20%), referred as test1. 
In order to reduce bias, this random division was performed 10 times, leading to training and evaluation with 
the reference and the proposed methodology in 10 different training-test sets. Next, the best model for each of 
these 10 repetitions was tested by adding the signals with labels from 1 to 4, both for the reference and proposed 
algorithm. This group of signals with annotations between 0 and 5 is referred to as test2. It allowed a comparison 
of the continuous score obtained from the algorithm with the certainty of fragmentation, represented by the 
agreement among the observers.

Experiment 2: The effect of different fQRS annotation criteria. The second experiment aimed at evaluating the 
effect of different fQRS annotation criteria in the multi-center data on the automated fQRS algorithm. By evalu-
ating the algorithm in both UZL and EU-CERT-ICD datasets, its performance could be assessed from two dif-
ferent perspectives, acknowledging the effect of the different fQRS definitions used. The final goal was to select a 
model that could be implemented in clinical practice by combining both approaches.

Three different training strategies were used: 

1. Training exclusively on UZL. Here, the model selected in Experiment 1 was used, testing it in the correspond-
ing UZL test signals and on the complete EU-CERT-ICD dataset.

2. Training exclusively on 80% of the data from EU-CERT-ICD. Given the lower percentage of fragmented leads 
in this dataset, a balanced set of signals was used for training the classifier. Therefore, only the same number 
of fragmented signals present in the training set were randomly selected from all the non-fragmented signals 
of the training patients. The other 20% of the EU-CERT-ICD patients were used for testing, as well as the 
complete UZL dataset.

3. The third strategy merged both datasets, using 80% of each dataset for training, while the remaining 20% of 
each was used as an independent test set. Similar to the previous strategies, out of these 80% of the patients, 
only the training leads labeled 0 or 5 were used in UZL, and a balanced set of leads was selected for EU-
CERT-ICD.

A summary of the data assignment is shown in Fig. 5. Given the random selections used to assign signals to the 
training set, each of these divisions was performed 10 times to reduce bias, and the set leading to the best results 
was kept in each case.

Experiment 3: Using the fQRS algorithm in irregular AF recordings. All experiments previously described were 
trained and evaluated on ECGs with regular sinus rhythm. Due to the morphology similarities of QRS com-
plexes in sinus and AF signals, the introduced models should also apply to AF signals. In previous works, these 
signals were excluded from analysis due to their irregularities, since the short interval between heartbeats in AF 
might pose a problem to this type of algorithms. In the last experiment the best model selected from Experiment 

Table 3.  List of features extracted from each lead.

VMD features

Central frequencies

Mode 3

Mode 4

Mode 5

Mode 3

Number of zero crossings
Mode 4

Mode 5

PRSA features

Mean derivative PRSA curve

Slope linear fit

Y-crossing linear fit

ECG features

Number peaks QRS
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2 was applied to the AF recordings of UZL and EU-CERT-ICD to assess the performance of the algorithm in 
ECGs with an irregular rhythm.

Performance metrics. The models were evaluated in test sets with different characteristics. Due to the lack 
of a “gold standard” for fQRS annotation, the signals scored 0 or 5 from UZL and the binary labels from EU-
CERT-ICD based on 2 observers are considered as the established baseline. Therefore, the results were evaluated 
using sensitivity, specificity, positive predictive value (Sens, Spec and PPV, respectively) and area under the curve 
(AUC) both for the receiver operator characteristic (ROC) and precision-recall (PR) curves. The latter is particu-
larly relevant in the experiments that involve the EU-CERT-ICD dataset, given that its labels are highly imbal-
anced with fewer fragmented signals. In such a situation, the PR AUC provides more informative results than 
the ROC AUC 26. These metrics were derived by binarizing the algorithm fQRS score using a 0.5 threshold. In 
the cases in which 10 iterations for each of the 3 kernels proposed were performed, the results of these 6 metrics 
are provided as the mean and the standard deviation. Additionally, Kappa scores ( κ ), reflecting the agreement 
between the algorithm scores and the manual labelling, are presented. The κ scores were calculated several times 
for each experiment, exploring 100 different thresholds uniformly distributed between 0 and 1. The reported κ 
values correspond to the highest score obtained during these iterations. Lastly, the models were also evaluated on 
the UZL signals where observers did not agree. Since these signals involve uncertainty, the Pearson correlation 
coefficient between the labels and the continuous output of the models was calculated.

Analysis of feature importance. Once the best model from Experiment 2 was selected, the contribution 
of the features to the model output was explored performing a feature relevance analysis. This analysis was per-
formed using SHapley Additive exPLanations (SHAP), which is a methodology based on game theory to explain 
the outputs of machine learning models and improve their  interpretability27,28. For every feature, the SHAP value 
quantifies the contribution of the future to the final prediction of the signal as fragmented or not fragmented. 
Positive SHAP values indicate that the feature positions the signal towards the fragmented class, and negative 
values towards the non-fragmented class.

Ethical approval and informed consent. The study was conducted in accordance with the Declaration 
of Helsinki and Good Clinical Practice principles. The UZ Leuven study was approved by the ethical commit-
tee of the University Hospitals of Leuven with registration number S56074. The EU-CERT-ICD study was an 
international collaboration approved by all local ethics committees and was registered on ClinicalTrials.gov 
(NCT02064192). Given the retrospective design of both cohorts the need for informed consent was waived by 
the local ethics committees.

Results
Experiment 1: The impact of the new segmentation algorithm. The sensitivity, specificity, PPV, 
ROC AUC and κ score results for the first experiment are shown in Table 4 and Fig. 6. The first row of each block 
in Table 4 shows the average and standard deviation of 30 experiments: the 10 training-test combinations for 
each of the 3 kernels (linear, polynomial and RBF). The difference in results between the 3 kernels were minimal, 
as can be seen in Table S1 of Supplementary Material, indicating that the feature space allowed a linear separa-
tion between both classes. Table S1 presents the breakdown of the results for each of the kernels, as the mean and 
standard deviation of the 10 training-test combinations. Taking into account the similar results for all kernels, 
the models selected made use of the linear kernel for simplicity. The best training-test set was selected out of the 
10 combinations and the results of the classifier using the linear kernel are shown in the Selected model row of 
each block in Table 4.

Figure 5.  Block diagram describing the training strategies to evaluate the effect of multiple fQRS annotation 
criteria.



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6783  | https://doi.org/10.1038/s41598-022-10452-0

www.nature.com/scientificreports/

The newly proposed approach achieved better results than the reference for all metrics. The PR AUC values 
were 0.89 and 0.84 for the proposed and reference approaches, respectively. This small difference can be explained 
by the high percentage of fragmented signals in the UZL test set making it almost balanced.

Next, the continuous outputs were evaluated in the complete UZL-dataset with signals with labels ranging 
from 0 to 5. The boxplots in Fig. 7 show the scores assigned by the proposed (blue) and reference (pink) model to 
the signals labeled 0 to 5. For both approaches the continuous score increased with the higher labels, illustrating 
the relation between the automated scores and the inter-observer variability. Pearson correlation coefficients were 
0.50 for the proposed approach, and 0.45 for the reference (both p < 0.001). Additionally, in the proposed model, 
the scores assigned to the 0-labelled and 5-labelled signals were more skewed towards 0 and 1 values, respectively, 
which is reflected in the average scores for each of these labels presented in Table 5. The scores assigned by each 
of the approaches to these two labels were statistically significantly different both for 0-labelled and 5-labelled. 
Therefore, we can conclude that compared to the reference algorithm, the proposed approach provides more 
consistent scores for the signals with inter-observer agreement.

Experiment 2: The effect of different fQRS annotation criteria. The results of experiment 2 are 
shown in Table  6 and Fig. 8. For UZL test1 signals, the ROC and PR curves were very similar, whereas for EU-
CERT-ICD, the PR AUC was lower than the ROC AUC. As expected, the best performance was obtained when 
the test set belonged to the same center as the data that was used to train the model. The trade-off achieved by 
the combined model was of interest since the performance for UZL was only mildly reduced whereas the per-
formance in the EU-CERT-ICD test improved when compared to the EU-CERT-ICD trained approach. These 
variations might be attributed to the lower percentage of fragmented signals and stricter fQRS criteria in EU-
CERT-ICD. This was confirmed by the κ scores since the best results on the EU-CERT-ICD data were achieved 
for thresholds of 0.5 for the model trained on the same dataset, and for thresholds greater than 0.8 for the models 
that included UZL data in the training stage. On the other hand, the thresholds that led to the best results in UZL 
were lower than 0.5 (0.42, 0.31 and 0.47 for training strategies 1, 2 and 3, respectively).

Subsequently, the 3 training strategies were evaluated in UZL test2 signals. The continuous scores obtained 
for each of the 3 strategies were compared to the labels using Pearson correlation, obtaining coefficients of 0.5, 
0.56 and 0.48 (all p < 0.001) for the UZL, EU-CERT-ICD and the combined model, respectively. Table 7 breaks 

Table 4.  Results of the proposed and reference approach on test1 of UZL including only signals with agreed 
labels between annotators. The first row of each block shows the average and standard deviation of each metric 
for all the iterations performed (10 training-test combinations for each of the 3 kernels). The second one shows 
the results of the selected models, corresponding to the best training-test combination for the linear kernel.

Algorithm Sens Spec PPV ROC AUC κ

Proposed
Average + STD 0.72 ± 0.06 0.92 ± 0.01 0.86 ± 0.02 0.93 ± 0.02 0.68 ± 0.04

Selected model 0.76 0.92 0.86 0.93 0.71

Reference11
Average + STD 0.68 ± 0.02 0.89 ± 0.02 0.8 ± 0.02 0.88 ± 0.01 0.62 ± 0.03

Selected model 0.68 0.89 0.79 0.88 0.62

Figure 6.  ROC curves for the proposed and reference approaches applied to test1 signals of UZL dataset, 
exclusively including signals without inter-observer variability.
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down the results of the combined model by QRS duration both in test1 UZL and EU-CERT-ICD data. There was 
a lower sensitivity when the algorithm was applied to narrow QRS complexes.

Experiment 3: Using the fQRS algorithm in irregular AF recordings. Table 8 shows the results of 
applying the combined model proposed in experiment 2, to binary-labeled signals of UZL and EU-CERT-ICD 
with AF where the percentage of fQRS labelled signals is 22% and 33% respectively, compared to previously 
shown performance in regular sinus rhythm signals. As it can be seen, there was a sensitivity decrease in both 
datasets, accompanied by a slight increase in specificity and PPV. This indicates that while the detected signal 

Figure 7.  Relation between the output scores of the proposed and reference approaches (in blue and pink) with 
the labels of test2 UZL signals, ranging from 0 to 5. Friedman test was applied to compare the results of both 
approaches, obtaining p-values below 0.005. These statistically significant differences are described by the sign ** 
in groups 0 and 5.

Table 5.  Summary of the results of the proposed and reference approach in test2. The first two columns 
show the average ± standard deviation fQRS scores assigned to signals labelled as 0 and 5. The third and forth 
columns show the correlation coefficients between the fQRS scores and the ground truth labels from 0 to 5, 
both with p-values below .001.

0 5 Pearson Corr. p-value 95% CI

Proposed 0.16 ± 0.2 0.72 ± 0.29 0.50 ≪ .001 [0.48, 0.53]

Reference11 0.2 ± 0.21 0.65 ± 0.3 0.45 ≪ .001 [0.42, 0.47]

Table 6.  Results of the 3 training strategies to evaluate the effect of multiple fQRS annotation criteria. From 
top to bottom, each row shows the results for the approach trained on UZL, on EU-CERT, and in both. The left 
side of the table shows the results for test1 UZL data, and the one on the right for EU-CERT.

Training test = UZL test = EU-CERT

Strategy Sens Spec PPV ROC AUC PR AUC κ Sens Spec PPV ROC AUC PR AUC κ

UZL
0.76 0.92 0.86 0.93 0.89 0.71 0.90 0.56 0.37 0.82 0.53 0.41

0.74 ± 0.02 0.92 ± 0.01 0.84 ± 0.02 0.92 ± 0.01 0.86 ± 0.02 0.69 ± 0.02 0.90 ± 0.00 0.56 ± 0.01 0.37 ± 0.00 0.82 ± 0.00 0.53 ± 0.00 0.41 ± 0.00

EU-CERT
0.59 0.92 0.84 0.88 0.83 0.61 0.77 0.78 0.51 0.85 0.58 0.48

0.57 ± 0.02 0.92 ± 0.00 0.84 ± 0.01 0.87 ± 0.00 0.83 ± 0.00 0.59 ± 0.02 0.74 ± 0.03 0.77 ± 0.01 0.48 ± 0.02 0.83 ± 0.01 0.55± 0.02 0.46 ± 0.01

UZL + 0.75 0.90 0.83 0.91 0.85 0.68 0.88 0.64 0.42 0.84 0.57 0.44

EU-CERT 0.73 ± 0.02 0.90 ± 0.02 0.83 ± 0.01 0.90 ± 0.01 0.84 ± 0.02 0.66 ± 0.02 0.86 ± 0.02 0.64 ± 0.01 0.42 ± 0.01 0.83 ± 0.01 0.55 ± 0.03 0.44 ± 0.02
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fragmentation was generally correct, some AF signals, that were considered to be fragmented on visual inspec-
tion, were missed by the model.

Analysis of feature importance. Figure 9 shows the feature ranking according to their contribution to 
the final prediction of the combined model, and their influence in each of the test data. While SHAP values for a 
same feature may vary for different patients, in these figures the features are arranged according to their average 
SHAP value in order to classify their global importance. The color of the points corresponds to the actual class 
to which the signals belong: blue and purple points correspond to the fragmented and non-fragmented classes, 
respectively. As seen, the most important features are the number of peaks in the QRS complex, and the central 
frequencies of the highest VMD modes. However, this relevance ranking considers feature interaction, even 
though these interactions are not visible in Figure 9. While the three first most important features are common 
for both test data, there is a slight change of order from the 4th feature between both groups.

Figure 8.  ROC and PR curves for test1 UZL and EU-CERT for the 3 training strategies considered.

Table 7.  Results for the combined model in test1 UZL and EU-CERT broken down by QRS duration.

QRS duration

test = UZL test = EU-CERT

Sens Spec PPV ROC AUC PR AUC κ Sens Spec PPV ROC AUC PR AUC κ

Narrow 0.69 0.91 0.86 0.91 0.87 0.68 0.86 0.68 0.53 0.85 0.67 0.49

Broad 0.83 0.90 0.80 0.92 0.84 0.73 0.90 0.62 0.33 0.84 0.47 0.44

Table 8.  Results of the combined model obtained from Experiment 2 in AF signals of both UZL and 
EU-CERT.

Test rhythms

test = UZL test = EU-CERT

Sens Spec PPV ROC AUC PR AUC κ Sens Spec PPV ROC AUC PR AUC κ

AF 0.63 0.96 0.89 0.90 0.86 0.63 0.74 0.73 0.43 0.82 0.54 0.43

sinus 0.75 0.90 0.83 0.91 0.85 0.68 0.88 0.64 0.42 0.84 0.57 0.44



12

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6783  | https://doi.org/10.1038/s41598-022-10452-0

www.nature.com/scientificreports/

Discussion
We proposed and validated a new, fully automated machine learning approach for quantification of QRS frag-
mentation (fQRS) compared to the visual assessment of fQRS by clinical observers. The main contributions of 
our novel approach are:

• The definition of a new multi-lead algorithm for QRS segmentation, integrating information from different 
leads for a more robust QRS delineation. This method is publicly available at https:// github. com/ avill ago/ 
multi LeadS egmen tation.

• Automatic removal of irregular heartbeats from the fQRS analysis process. This new QRS segmentation 
strategy includes a method to align the heartbeats in each lead, which allows deriving fQRS results only from 
normal and atrial premature heartbeats.

• Training and evaluation on a multi-center dataset, including ECG signals from 5 different European hospitals, 
allowing to assess the impact of inter-observer variability and the use of different fQRS criteria.

• The new algorithm was proven to be usable in both sinus rhythm and atrial fibrillation, as well as in narrow 
and wide QRS complexes.

The results show that the new QRS segmentation method improved the performance to detect visually con-
firmed fQRS, when compared to the earlier described reference method. The PPV and specificity indicate that 
the modified approach reduced the number of false positives. The sensitivity did improve as well. Further, the 
results indicate a better discrimination of the most evident fQRS cases compared to the reference, since the scores 
of signals in the UZL-dataset where all observers agreed (i.e. labels 0, as non–fragmented, and 5 as fragmented) 
were more skewed to the extreme scores 0 and  111.

Currently, the only available comparator for our automated approach is the visual assessment of fQRS. This 
is not only prone to intra- and inter-observer  variability4, but different definitions of fragmentation have also 
been proposed for clinical practice. The impact of different fQRS criteria on the training and performance of our 
automated fQRS quantification method are of interest. Previous automated approaches were exclusively trained 
with a single definition of fQRS and involved fewer observers. In our study, the models trained exclusively on 
one dataset achieved low results when tested on the other one, due to their differences in fQRS criteria. The fQRS 
criteria used to score the EU-CERT-ICD dataset considered the magnitude and location of the fragmentation. 
Annotating only specific fQRS patterns and allowing some benign patterns to be labelled as non-fragmented, 
result in a more restrictive annotation and a lower prevalence of fQRS. The use of these criteria poses a challenge 
to the proposed algorithm, since the features used do not include information about the location of the notches 
detected. The VMD and PRSA features suggested by Goovaerts et al. exclusively inform about the presence of 
fQRS and are extracted for the entire QRS complex, with no information with regards to its location. This can 
be inferred from the results of the model trained and evaluated on EU-CERT-ICD data. This EU-CERT-oriented 
model detected several false positive classifications, as indicated by the lower specificity, PPV and the results of 
the PR-curves, when compared to the UZL-oriented model. The difference in fQRS criteria explains the oppos-
ing behavior in terms of sensitivity and specificity for both datasets. While the models in which UZL data was 
included in the training detect most of the fragmented signals of EU-CERT-ICD, this also resulted in a higher 
number of false positive classifications in the EU-CERT-ICD data. On the contrary, an exclusively EU-CERT-
ICD-oriented approach achieved low values of sensitivity in the UZL data, but the combined strategy did not 
compromise the performance on the UZL data while offering a trade-off when testing on the EU-CERT-ICD 
data. Hence, we propose that the combined model would be the most generally applicable approach to clini-
cal practice, combining the different views on fragmentation. While this approach combines different criteria 
presenting some strengths versus a single-database trained approach, its results are clearly influenced by the 
annotations used for the training. Therefore, this algorithm does not fully overcome the issue of inter-observer 
variability. However, in clinical practice the proposed approach could be used as a recommendation system for 
fQRS analysis. Those cases with more uncertain fragmentation scores, such as those ranging between 0.4 and 
0.6, could require additional experienced visual inspection, while scores closer to 0 and 1 might be considered 
as recommended scores.

Figure 9.  SHAP analysis of UZL and EU-CERT test signals for the combined model.

https://github.com/avillago/multiLeadSegmentation
https://github.com/avillago/multiLeadSegmentation
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Figure 9 shows the relevance of the features in the output of this combined model. The main challenge of 
this evaluation is the presence of two different fQRS definitions, both for the training and evaluation stages. It 
can be seen that the feature relevance for UZL and EU-CERT data is slightly different from the fourth relevant 
feature. One reason for these differences is the large overlap between the fragmented and non-fragmented classes 
for the EU-CERT signals. This confirms the need of additional features for a better learning of the EU-CERT 
annotations, which could include characteristics such as the location of the notches in the QRS, as well as the 
number of notches. However, even the results for UZL do not show large SHAP values for the features related 
to PRSA. A reason for this could be the relevance of the QRS duration, which might lead to different results for 
narrow and wide QRS complexes due to the number of samples available (Fig. 4).

The breakdown of results in terms of width of the QRS complex was not reported before for other automated 
approaches, despite its relevance in the fQRS analysis. Our results show a difference in performance depending 
on the QRS duration of the signals, especially in sensitivity and PPV in UZL data. The reduced sensitivity in 
narrow QRS complexes may indicate that the segmentation is more accurate in broad QRS complexes, but also 
that fragmentation is more evident in these signals. After observation of narrow QRS cases annotated as fQRS 
but receiving a low score from the algorithm, it was observed that many of these correspond to minimal frag-
mentation. The example in the upper row in Fig. 10 shows a minimal notch after the R-peak which is annotated 
as fQRS when applying the criteria by Das et al. However, the automated algorithm calculated a low score and 
considers this complex non-fragmented. These cases may be missed by the algorithm, particularly in narrow 
QRS complexes as there may not be enough samples capturing these abnormalities. These cases highlight the 
relevance of quantifying fQRS. Whether this minimal notching is clinically relevant is unknown and requires 
further investigation.

The second row of Fig. 10 shows another example of a fragmented signal which received a low fQRS score by 
the automated algorithm. This is a specially challenging case, since fragmentation is only present in the end of 
the QRS complex. Additionally, this signal containing narrow QRS complexes and sampled at 250Hz becomes 
even more arduous, since the segmentation error is reduced to less than 10 samples. These particular types of 
heartbeats with notches in the Q and S waves may benefit from specific machine learning-based delineation 
algorithms, trained on representative examples.

Lastly, previous work never evaluated automated fQRS detection and quantification in AF recordings and 
algorithms were applied exclusively to regular sinus rhythm signals. In our study, the results obtained for these 
signals are in line with those of narrow sinus signals in UZL data. For EU-CERT-ICD, these results vary more. It 
should be noted that these results are affected by the low number of AF signals and the low prevalence of fQRS 
in AF signals.

Limitations and future directions. In view of the known limitations of visual inspection of fQRS, the 
main limitation of our work is the training of our machine learning classifier using an imperfect standard. There 
is also no clinical consensus on the preferred fQRS definition. We tried to avoid this by using only the signals 
where all 5 observers agreed in the UZL-dataset thus avoiding inter-observer variability and by combining both 
criteria in the final model.

Since our goal was to technically validate the algorithm for signal analysis, we processed signals of separate 
ECG leads individually. In future work the obtained score per signal/lead needs to be summarized in a global 
score and a score per region/combination of leads (anterior (V1-5), lateral (I, aVL, V6) and inferior (II, III, aVF). 

Figure 10.  Example of two narrow QRS signals where the labels and the automatic score disagree (low 
algorithm score for fragmented signals). The top signal shows slight fQRS in the R-peaks, visible in the zoomed 
heartbeat and in the segmented heartbeats. The second presents fragmentation on the S wave, which lead to 
errors in QRS delineation and hence on scoring.
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We compared and validated the model to clinically used fQRS scoring. In the future, this continuous output of 
the fQRS algorithm could be used in clinical risk stratification by deriving a combined/regional score and cor-
relating it to the clinical endpoints, e.g., severe ventricular arrhythmia or mortality. These regional scores have 
been shown to capture relevant information related to outcome. Vandenberk et al. showed that the presence 
of fragmentation in the inferior leads is related to the manifestation of arrhythmia; while fragmentation in the 
anterior leads is related to  mortality2. However, both the regional and per-lead fQRS scores considered in that 
study are sensitive to inter-observer variability and would benefit from a standardized approach to identify 
fragmentation in order to derive relevant clinical conclusions. Machine learning applications could be useful to 
overcome the challenge of inter-observer variability and deriving an optimal combination of scores to optimize 
risk stratification using fQRS. To this end, future work should explore using representation and unsupervised 
learning techniques to unveil hidden patterns relevant for this task.

Conclusion
This work proposed an automated machine learning method for fQRS detection and quantification. A novel, 
publicly available multi-lead QRS segmentation method was presented, combining the information of the multi-
lead ECG and the different heartbeats in the signal. After segmentation QRS features were extracted, based on 
VMD and PRSA, they were used to train a machine learning classifier (Support Vector Machines) to discriminate 
between fragmented and non-fragmented ECG-traces. Data from 5 centers in which 2 different fQRS criteria 
were applied, were used in the training and evaluation of this new model. The combined model, which was 
trained using data from multiple centers and annotated with both fQRS criteria, showed to achieve comparable 
results to the specific models while making the model more flexible and more generally applicable to multi-center 
data, bringing it closer to clinical practice. The algorithm was shown to be applicable to narrow and wide QRS 
complexes and regular and irregular rhythms, such as AF. These findings are crucial for the next steps to apply 
these machine learning models in clinical practice and assist clinicians in their diagnosis.

Code availability
The codes for multi-lead QRS segmentation are available at https:// github. com/ avill ago/ multi LeadS egmen tation.
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