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Bus queue time estimation model 
for a curbside bus stop considering 
the blocking effect
Tian Luo, Xiaobin Liu* & Hui Jin

Bus queue time estimation of a curbside bus stop is essential to evaluate the operation, reliability and 
performance of a bus system. Arriving buses and served buses on upstream berths form an overflow 
queue considering the no overtaking principle and limited overtaking principle. The bus dwelling time 
at the downstream berth may directly influence the capacity at bus stop. This study aims to estimate 
the queue time attributed to downstream berth blocking effect. The queue delay is modeled as a 
function of dwell time which is fitting by normal and lognormal distributions. Hence, the queue time 
should be evaluated by bus dwell time and joint probability density to quantify the negative influence 
on queue delay. The result indicate that probability distribution versus the queue time in the blocking 
effect. An illustrative example is presented to reflect the effectiveness of the estimation method. The 
fitting results further support our theoretical analyses.

Bus stops are a major access point for transit  systems1. Long bus queues can form at busy bus stops where mul-
tiple routes converge. One way to stop the bus complex interweaving at curbside bus stop is to find the optimal 
dwell time and overtaking rules and provide control methods for buses. It is an effective way to reduce urban 
traffic congestion, fossil fuel depletion, and greenhouse gas emissions, and to promote the use of public transit.

It is commonly observed that a bus is blocked at a curbside bus stop by another bus in front that is serving 
passengers. Consequently, passenger and bus delays are increased. The optimization of bus dwelling sequences 
is a possible  solution2. Added berths produced diminishing returns in capacity and the returns in capacity are 
influenced by failure rate, and variation coefficients of bus arrival headway and service  time3.

A bus queue system is characterized by the capacity of the bus stop, arrival and service process, behavior of 
the bus and service discipline. Buses arrival process followed to Poisson distribution, in other words, the inter-
arrival time are assumed to exponential distribution. The arrival data are used to justify the Poisson process 
 assumption4. Moreover, the inter-arrival times series follows an exponential distribution.

The Poisson distribution assumption has been widely  employed5,6. However, the Poisson process is mostly 
applied to traffic flow during off-peak hours. During rush hours, the arrival of buses at bus stops is disordered 
and random. Therefore, the queue time, service time, and even entire dwell time are random.

Delays at every berth have a negative impact on bus stop capacity and service level, even if exclusive bus lanes 
or bus ways are  provided7. The quantified significant dwell and queue delays suffered by users and operators 
due to consecutive bus arrival at stops are analyzed. The model can be applied to multi-berth curbside bus stop 
following overtaking  discipline8.

A delay at the first berth upstream (e.g., the C-th berth) affects subsequent berths (e.g., berth No. 2 to berth 
No. C-1 berth) that are occupied, as shown in Fig. 1. Only buses ahead of dwelling buses are capable of proceed-
ing. When the bus at the last berth is delayed, upstream buses must wait in line to enter a berth, which will cause 
a decrease in the berth utilization rate of the stop. Therefore, several dwelling principles are introduced. The 
relationship is explained between bus-stop upstream average waiting time and loading area utilization  ratio9. 
The optimized dwell time is to improve the flexibility and operational efficiency of bus systems. The passenger 
waiting times and dwell time cost are  minimized10. The improved cellular automata models is proposed to study 
the dynamics of bus dwell time and passenger loading  rate11.

Two queue disciplines are discussed; they are defined as “no overtaking” and “limited overtaking”12.

• No overtaking (NO) At urban curbside stops, a bus has any priority to overtake buses dwelling at every berth. 
NO include two scenarios: a bus in the queue area attempts to enter an empty berth; or a bus has finished 
serving passengers attempts to exit the stop.
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• Limited overtaking (LO) Overtaking lane or bus priority lane are allowed for dwelling buses when serviced 
buses attempt to departure the stop. However, a queue bus cannot overtake a downstream bus to enter an 
empty berth. Buses have chance to overtake other buses at downstream berths to departure the stop. This 
scenario occurs when buses can use the adjacent lane or bus priority lane of curbside stop.

The impact of the no overtaking principle is different from that of the limited overtaking principle. Figure 1 
illustrates the stages of bus stop operations:

• The blue bus has a queueing status, and the gray bus is dwelling at a berth. The blue bus has a queueing status 
in queue area, the gray bus is dwelling at berths, and the dark blue cars represent the traffic flow at the adjacent 
lane of bus stop.

• A bus approaches the C-th berth.
• The bus at the C-th berth waits the of passengers’ boarding and alighting.
• The bus checks if the downstream berths are clear; if not, the bus remains at the C-berth and waits to depart.
• For the NO, the serviced bus waits to depart from the exit.
• For the LO, the serviced bus leaves the berth because a gap is open in the traffic stream. The gap allows the 

bus of subsequent queueing to enter the C-th berth.

In NO and LO, a queueing bus is blocked to enter stopping area, it will enter berth before the bus stop until 
the C-th berth is vacant. The queue length and delay indicate the extent to which the stop is lacking in capacity.

The remainder of this paper is arranged as follows. In “Literature review” section, we discuss the relevant 
literature on delay, queue time and service time. In “Model” section, the proposed model is used to estimate the 
bus queue delay by considering the overtaking principle, dwell time at the C-th berth and variation in the dwell 
time. In “Analysis” section, the models are analyzed in scenarios with multiple berths. In “Case studies” section, 
the effectiveness of the proposed methods are verified by a curbside bus stop in Xi’an, China. Finally, “Conclu-
sion” section makes conclusions and describes the future research on the topic.

Literature review
Bus delays have a variety of categories. Bus delays can be defined as service and non-service delays; single berth, 
double berth and triple berth delays; fixed and non-fixed delays; and delays inside and outside the  stop13.

Four time periods can be defined to analyze how the service level might be affected by changes to bus stops: 
queue time, internal delay, external delay and dwell time.

• Queue time The time spent in a queue prior to entering a bus stop.
• Internal delay The time waiting to leave a bus stop when a serviced bus of berth is ready to leave but is blocked 

by other buses of downstream berth in the stop  area14.
• External delay The time waiting to leave stopping area when a serviced bus is ready to leave but is blocked 

by other traffic outside the stop area.
• Dwell time The total time spent a bus at a bus stop.

Queue time is a key factor through which the design of a bus stop can affect how a bus service  operates15.
These queues and the delays that they impart to buses are often aggravated by blocking the next bus. Queue 

time is estimated via queueing theory in many studies. Queueing theory is the mathematical study of queues 
using models to predict queue length and waiting  time4. The total queue time is the sum of occupied-based 
delay, transfer block-based delay and block-based  delay13. The M/D/c/SRL and M/G/2/SRL queue systems were 
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Figure 1.  The bus blocking effect.
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 developed12. Both the bus delay of the entry queue and any extra dwell time should be considered after having 
served bus for the average bus delay.

Bus on-stop dwell time is a significant way of the performance of the bus stop service level and, in general, has 
two main components: the waiting time and service time at a bus  stop16. The dwell time is the total time spent by 
a bus at a bus stop and is the sum of the internal delay, external delay and berth occupancy  time14.

Model
Notation. To facilitate the model presentation, the notation used hereafter is summarized.

C—C-th berth (the last berth upstream).
dq—the random waiting queue delay, s.
w′—the dwell time at each berth, s.
w—the dwell time at the C-th berth, s.
µ—the mean dwell time at the C-th berth, s.
µ′—the mean dwell time at each berth, s.
f—truncated value of dwell time, s.
Ts—the maximum service time at each berth, s.
f1—the mean dwell time at the C-th berth, which is much longer than µ , s.
f2—the maximum dwell time at the C-th berth, s.

Assumptions. The proposed model of a curbside bus stop is used to estimate the bus queueing delay by con-
sidering the dwelling principle and service time at the C-th berth. In this section, the impacts of no overtaking 
and limited overtaking are examined. The following assumptions are:

• Bus movement might be disrupted.
• Buses arrive randomly.
• The dwelling principle is subject to NO and LO.
• The last berth (C-th berth) is busy, and the dwell times are subject to a normal distribution or lognormal 

distribution.

Model of queue time based on dwell time distributions. The dwell time faced by a bus at the last 
berth (C-th berth) is also a random variable that depends on whether the bus at the C-th berth can depart under 
two conditions (1) making no impact on the subsequent arrival bus or (2) delaying the arrival bus. We denote 
the random waiting queue delay as dq . The truncated value f  takes values of f1 or f2 . Therefore, the value is deter-
mined based on whether the bus at the C-th berth will delay subsequent waiting buses. The model is expressed 
by the following equations:

where, Ts , the maximum service time at each berth, s.
The bus at each berth is described with an uni-variate distribution. The model of queue delay was presented 

in the previous section under the condition that the dwell time follows a normal or lognormal distribution. As 
stated earlier, queue delay time should be modeled using truncated  distributions3.

Different bus stops may subject to different distributions of dwell times. Therefore, the corresponding dwell 
times constitute a random variable of a distribution closely related to the queue delay distribution.

Determining the bus queue dwell time for truncated normal distribution. The one-dimensional 
normal distribution can be used to model bus dwell time.

The probability density function (PDF) of random variable w is:

where the mean is E(w) = µ and the variance Var(w) = σ 2.
We assume that the dwell time falls within (0,Ts ]. Hence, we assume that 

∫ 0
−∞ y(w)dw = 0 and 

∫ +∞
TS

y(w)dw = 0 and that y(w) is the probability density function of dwell time at the C-th berth. According to 
Eq. (1), dq follows a truncated normal distribution, meaning that a bus can be serviced within the range (0,Ts ], 
and the truncated value is f  . This value depends on the dwell time at the C-the berth and every other berth.

If a continuous random variable w has PDF y(w) and a is a constant, density of a truncated random variable 
 is17.
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{
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So, the truncated value respectively is 0 and f  within the range (0,Ts ], the conditional probability can be 
expressed as:

Therefore,

where F(w) is the cumulative distribution function (CDF) of w , y1(f − dq1) = y(dq1) , y1(Ts − dq1) = y(dq) . 
Note that F(0) = 0 means the bus cannot leave before being serviced.

The joint probability density of the bus queue delay considering the dwell time at the C-th berth is as follows:

which is a mixture distribution, where �(β) and 1−�(β) are mixture weights.
Thus, the mean µdq and variance σ 2

dq
 of the bus queuing delay for the truncated normal distribution are:

Determining the bus queuing delay for the truncated lognormal distribution. Suppose that a 
random variable w is subject to a lognormal distribution with the following PDF:

The mean and variance of dwell time w are

for a one-dimensional lognormal distribution. Thus, the mean and variance of the bus queue delay are:

Analysis
Performance of the normal distribution. Figure 2 shows the probability density versus the dwell time 
at the C-th berth for NO and LO to further illustrate the blocking effect of the dwell time. The variables mu and 
sigma represent the mean dwell time µ and the variance σ . The differences in µ and σ 2 with respect to the normal 
distribution dwell time at C-the berth are illustrated. Figure 3 shows the probability density versus the queue 
time in the blocking effect. A smaller σ means the probability is concentrated near μ, whereas a larger σ indicates 
greater dispersion, as shown in Fig. 2. Moreover, the distributions of queue time in Fig. 3 are similar.

(4)y(w|w > a ) =
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.
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∣
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(15)Var(w) = exp[2µ+ σ 2] · [exp(σ 2)− 1],
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Figure 4 shows the cumulative probability versus queue time. When the queue time dq < f  , the cumulative 
probability decreases considerably. As mu and sigma decrease, the change in the cumulative probability tends 
to be gentle. When the queue time dq ≥ f  , the cumulative probability decreases. As mu and sigma decrease, and 
the change in the cumulative probability tends to be gentle.

Performance of the lognormal distribution. The dwell time at the C-th berth is now modeled with a 
lognormal distribution. Figure 5 shows the probability density versus the dwell time at the C-th berth for NO 
and LO. Figure 6 shows the probability distribution versus the queue time in the blocking effect. The dwell time 
subject to a lognormal distribution is shown in Fig. 5. The queue time modeled as a truncated lognormal distri-
bution is shown in Fig. 6. When the queue time is less than the truncated time f  , the probability increases with 
increasing queue time. Then, the trend sharply decreases. When the queue time is more than the truncated time 
f  , the probability increases slowly with increasing queue time.

Figure 7 shows the cumulative probability function versus the queue time in the blocking effect. When the 
queue time dq < f  , the cumulative probability decreases considerably with increasing queue time. When the 
queue time dq ≥ f  , the cumulative probability decreases with increasing queue time.

Figure 2.  Normal distribution of dwell time at the C-th Berth.

Figure 3.  Truncated normal distribution of queue time.
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Figure 4.  Cumulative probability of queue time.

Figure 5.  Lognormal distribution of dwell time at the C-th berth.

Figure 6.  Truncated lognormal distribution of queue time.
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Case studies
We consider a bus stop illustrated in Fig. 1. There are not more than 3 berth. The investigation time is the morn-
ing rush hour (7:30–9:00) during the week at the Xiaozhai East Road and Cuihua Road bus stop. To evaluate 
the effect of curbside bus stops, we consider different distributions of dwell time. First, we perform a frequency 
analysis of dwell time at the C-th berth.

The normal distribution, lognormal distribution, Weibull distribution and gamma distribution fit a sample 
of bus dwell times. The fitting results of the frequency distribution of the dwell time at the C-th berth are shown 
in Fig. 8. The mean and its standard deviation are summarized in Table 1. Additionally, dwell time at every berth 
is analyzed in terms of frequency in Fig. 9.

Figure 10 plots the joint probability density of the dwell time with respect to a normal distribution. According 
to Eq. (2) and Table 1, µ′ ≥ µ = 21.986 s and the truncated time is f = f1 = 26.5936 s. Note that the variance 
of the dwell time at the C-th berth is 1.4074422. The variance of the output queue time dq is greatly enlarged due 
to the mixture of two conditional distributions of input dwell time, and the variance of the queue time cannot 
be neglected in the assessment of the truncated dwell time f  , as illustrated in Fig. 10. Figure 11 plots the joint 
probability density of the dwell time with respect to a lognormal distribution. The relationship between the dwell 
time and queue time is shown in Fig. 11.

Figure 7.  Truncated lognormal distribution of queue time.

Figure 8.  Dwell time at the C-th berth.

Table 1.  Fitting data.

Distribution

Parameter

Dwell time at C-th berth, s Dwell time at every berth, s

Normal
Mean 21.9861 26.5936

Variance 1.40742 2.42752

Lognormal
Mean 3.0884 3.2766

Variance 0.0642 0.04922
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Conclusion
The literature on bus queuing delay has focused mainly on how the dwell time of buses located at the C-th berth 
affects subsequent buses. By characterizing bus dwell times at the C-th berth with various distributions, we show 
that the expected value of the maximum dwell time at every berth is affected by bus blocking at C-th berth. There-
fore, the variance (queue delay) can be miscalculated when the correlation of bus blocking effect is neglected.

Figure 9.  Dwell time at every berth.

Figure 10.  Joint normal probability density of dwell time and queue delay.

Figure 11.  Joint lognormal probability density of dwell time and queue delay.
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According to the results of the simulations, three major conclusions can be made. First, dwelled buses at 
C-th berth lead to larger additional bus queueing delays in NO and LO. Moreover, queue time can be estimated 
by bus dwell time and joint probability density to quantify the negative influence on queue delay. Finally, the 
stopping guidance strategy and stopping principle are more suitable than the bus self-organization behavior to 
significantly increase the bus stop capacity and reduce queue time.

An illustrative example is presented to reflect the effectiveness of the estimation method. The fitting results 
further support our theoretical analyses.

We evaluated queue delay via common distribution fitting, and our future work can be followed:

1. Although some common distributions are considered, we do not seek to determine the effect of a random 
distribution for curbside bus stops under NO and LO. The effective method would be applied to assess block-
ing effect.

2. It is generally assumed that the queue delay due to the bus blocking effect at the C-th berth may not be 
repeated. Nonetheless, the potential and random may be delay recovery measures of implemented (e.g., 
priority bus lanes or allowable overtaking in dwelling areas) to reduce the delay. This approach would add 
one further decision to the queue time optimization process.

3. The queue time is evaluated independently for each ready or waiting bus in the order of queue time, dwell 
time and discipline. However, in some cases where decisions must be made for more than two buses, the 
relationship between the dwell time at a downstream berth and the dwell time at the C-th berth must be 
considered.

4. Although truncated normal or lognormal distributions are considered in this study only for modeling the 
dwell time and queue time, random variables should be considered to the model.
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