www.nature.com/scientificreports

scientific reports

‘ W) Check for updates

On the mixed Kibria—Lukman
estimator for the linear regression
model

Hongmei Chen? & Jibo Wu?**

This paper considers a linear regression model with stochastic restrictions,we propose a new mixed
Kibria—Lukman estimator by combining the mixed estimator and the Kibria-Lukman estimator.This
new estimator is a general estimation, including OLS estimator, mixed estimator and Kibria-Lukman
estimator as special cases. In addition, we discuss the advantages of the new estimator based on
MSEM criterion, and illustrate the theoretical results through examples and simulation analysis.

Consider the following linear regression model:
y=XB+e, (1)

where y is the response variable vector of n x 1, X is the column full rank independent variables matrix of
n x (p + 1), Bis the unknown coefficient vector of p x 1, ¢ is the random error vector of n dimension such that
E(e) = 0and Cov(e) = o*I, where 6> > 0 is mean squared error.

In the estimation of unknown coeflicient vector §, the OLS estimator is the most commonly used:

Bors = (X'X)7'Xy )

It is easy to know from formula (2), E ,3 = B, and the OLS estimator has been widely used because of its unbiased
nature and concise form. However, the ill condition of the design matrix X caused by the increasing number of
dependent predictors often makes the OLS estimates unstable.

Massy'! proposed principal component estimator. Hoerl and Kennard? obtained the ridge estimation by
introducing a ridge parameter k into the design X’X matrix calculation. Swindel® proposed a modified ridge
estimator with prior information while Lukman et al.* proposed the two-parameter form of the ridge estimator
called the modified ridge estimator (MRT). Liu’ obtained a linearized form of the ridge estimator called the Liu
estimator. Akdeniz and Kaciranlara® proposed the generalized Liu estimator. Liu” obtained a two-parameter
form of the Liu estimator.

Many scholars have found that a new estimator can be obtained by combining the two estimators, which gen-
erally have good statistical properties. Baye and Parker® proposed r-k estimator by combining ridge estimator and
principal component estimator. Kaciranlar and Sakallioglu® proposed r-d estimator by combining Liu estimator
and principal component estimator. Ozkale and Kaciranlar'® proposed two parameter estimator by combining the
James-Stein Shrinkage estimator and the modified ridge estimator proposed by Swindel. Batah et al.'* proposed
a modified r-k estimator combining unbiased ridge estimator and principal component estimator. Yang and
Chang'? proposed another two parameter estimator based on ridge estimator and Liu estimator. Lukman et al."?
proposed a new estimator by combining modified ridge estimator (MRT) and principal component estimator.
Kibria and Lukman'* proposed Kibria-Lukman estimator by combining ridge estimator and Liu estimator.

In practice, in addition to the sample information given by model (1), additional information about param-
eters in the sample information, such as certain deterministic or stochastic restrictions on unknown parameters,
can also be considered. This method can also overcome the complex collinearity problem. Theil and Goldberger!®
and Theil'® proposed mixed estimator by comprehensively considering sample information and constraints.
Schiffrin and Toutenburg'’ proposed weighted mixed estimator for the different importance of sample informa-
tion and prior information.

In recent years, biased estimation and estimation methods with prior information are often combined to form
a broader biased estimation. Hubert and Wijekoon'® proposed a stochastic restricted Liu estimator by combining
Liu estimator and mixed estimator. Yang and Xu' obtained another stochastic mixed Liu estimator. In the same
year, Yang and Chang further studied the stochastic mixed Liu estimator and obtained the weighted mixed Liu
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estimator. Yang and Li'? proposed another stochastic mixed ridge estimator. Ozbay and Kaciranlar® integrated
two parameter estimator and mixed estimator and proposed a two parameter mixed estimator.

In this paper, a new mixed KL estimator under stochastic restrictions is proposed, and its excellent proper-
ties under certain conditions are proved theoretically. The above theoretical results are verified and analyzed by
examples and data simulation.

The proposed estimator
Hoerl and Kennard? proposed the ridge estimator (RE):

Bre = (X'X + k) 7'X'y 3)
where k > 0is the parameter. In fact, ridge estimator is obtained by solving the following extreme value problem:
¥ —XB)(y —XB) +k(B'B —c)

where c is constant, k is the Lagrange constant.
Kibria and Lukman'* proposed the Kibria Lukman (KL) estimator:

Brr = (X'X+ kI)71 (X/y — kﬁ) (4)
where k > 0is the parameter.KL estimator is obtained by solving the following extreme value problem:
@—xﬂﬂy—xm+«kﬂ+3ﬂﬂ+ﬁyw} 5)

where c is constant, k is the Lagrange constant.
Consider the following stochastic restrictions:

r=RB+ee~ (0,021//), (6)

where r is the known random vector of j x 1, R is the row full rank sample data matrix of j x p,letebethe j x 1
random error vector and independent of each other, and v be the known positive definite matrix.

Theil and Goldberger'® and Theil'® proposed the mixed estimator by integrating sample information and
constraints. The derivation idea is to rewrite models (1) and (6) into a new linear model:

y\ _ (X e
()= (%) (2)
Ify = Y X = X JE = & , above model is transformed into
r R e
y=Xp+¢ (7)

By applying the least square estimator to the new linear model (7), the mixed estimator (ME)of parameter 8 is
obtained:

Bue = (XX + Ry 'R) ™ (X'y + Ry ') 8)
Combined mixed estimator and ridge estimator and proposed stochastic mixed ridge estimation (RME):
Bure = (X'X + kI + Ry 'R) ™ (X'y + Ry~ 'r) (9)
The estimator proposed in this paper is obtained by solving the following extreme value problem:
" = (y = XB)(y = XB) + k[ (B — dB)' (B — dP) — c| + (r — RBYY (- — R) (10)

where c is constant, k is Lagrange constant.
Regular equations can be obtained:

XXB—Xy+k(B—dB)+Ry'R—Ry 'r=0 (11)

(B—dB)(B—dp) =c (12)
from Egs. (11) and (12), we can get the mixed KL estimator:

Byt = (X/X + kI +R/¢_1R)71 <X/y — kB +R/w_1r>,k >0 (13)

It can be seen from Eq. (13) that mixed estimator, KL estimator and OLS estimator can be regarded as special
cases of mixed KL estimator.Namely

When k = 0, Bue = Buxr = (X”X + R/w_lR)_1 (Xiy + R’w_lr) is mixed estimator;

When R = 0, Bk, = Buxr = (X X + kI)"1(X'y — kB) is KL estimator;
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Whenk =0,R =0, BOLS = BMKL = (X/X)_IX/y is OLS estimator.

The performance of the new estimator R
If B is the estimation of B, then the mean square error matrix (MSEM) of B is given as:

MSEM(B) = E(B — B)(B — B)’ = Cov(B) + Bias(B)Bias(f)’

where va(;é) is the covariance matrix of ,3, and Bias(,é) =E (,3) — B is the deviation vector. Two estimates 31
and B,, B, are better than $; under MSEM criterion if and only if:

A(ﬁl,ﬁz) - MSEM(,%) - MSEM(ﬁz) >0

Lemma 3.1 Suppose twon x nmatrix M > 0,N > 0, then M > N < /) (NM_I) < 1, where A1 (NM_I) is the
maximum eigenvalue of matrix NM ™",

The mean square error matrix of mixed KL estimator ﬁMKL is calculated as follows:
() ~e[( - 4107 (1)
=AE(Xy — kB + Ry 'r)
=AkE(X’y+kﬁ —Zk,é—l-R/l/f_lr) (14)
= (45" - 2k)p
=p — 2kArB

, —1
where Ay = <x X 4K+ R’x//_1R> .

Deviation vector: Bias (/BMKL) . E(BMKL> — _2kAB.
Cov(Buxe) = Cov| (X'X + kI + Ry~™'R) ™" (Xy = kB + Ry "7 )]
= Cov[Ai(Xy = kB + Ry ~'7)]
=AkCov(X'y—kB +R’¢*%)Ak (15)
=Ac(0?X'X — ka®S™! + o* Ry R) Ay
=0?Ar(X'X —kS™' + Ry 'R) Ay
Therefore,

MSEM(Buz) = Cov(Buxr) + Bias(Buxr)Bias(Buxr)
=0?Ar(X'X — kS™' + Ry 7'R)Ap + 4> A BB’ Ak (16)
=02 Ap(X'X = kST' + Ry R)Ag + bi b}
where by = —2kAipB.

By substituting k = 0 into Eq. (16), the mean square error matrix of the mixed estimator can be obtained:

MSEM(Bue) =0 (X'X + Ry 'R) " (X'X + Ry 'R) (XX + Ry 'R) ™

=o?(X'X + Ry 'R)” (17)
=oM™!
where M = X'X + Ry 'R,

By substituting R = 0 into Eq. (16), the mean square error matrix of the KL estimator can be obtained:
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MSEM (ﬁKL> =2 (X'X +KI) (XX — kSN (X'X +KI)

4k (XX +KI) T BB (XX KT
=o2S  (X'X —kSTV) S + 4k BB'S !
=S (X'X — kST St + bob)
where Sy = X'X + kI, b, = —2kS; ' B.
By substitutingk = 0, R = 0 into Eq. (16), the mean square error matrix of the OLS estimator can be obtained:
MSEM (fois ) = oS~ (19)
Mean square error matrix of mixed ridge estimator:
E</§MRE) —E [(X’X + K+ Ry~R) ™ (X’y + Rﬂp—lrﬂ
=AE(X'y + Ry 'r)
=AkE(X’y+k,§ —k,é+R/w_1r> (20)
= A (A,;l - kI)ﬁ
=B — kAP
Deviation vector: Bias (ﬁMRE> = E</§MRE) — B = —kAiB.
Cov(Bume) = Cov[ (XX + k1 + Ry ~'R) ™ (X'y + Rv~'7)]
Cov {Ak (X’y n RH/ﬁlr)]

- Achv(X’y + RH/rlr)Ak

= Ax(0?X'X + o*R'y 'R) Ay
= o?Ak(X'X + Ry 'R) Ay
Therefore,

MSEM (Buire ) = 02 Ax(X'X + R'Y " 1R) Ax + K AcBB A (21)

Comparison between mixed KL estimator and mixed estimator. From Egs. (16) and (17), we make
A, = MSEM </§M5) — MSEM (ﬁzmq)
=0’M ' — 02 A (X'X — kST' + Ry 'R) Ay — bib}
=0’M ™" — oA (M — kST")Ar — bib]
=0 M~ — A (M — kST1) Ax] — bib]

(22)

Because
M7 — A (M — kSTh) Ay
= AkAL M AL A — A (M — kST Ag
= Aar MTAL - (M- ksT)] Ak
= A[(M + kDM ™' (M + kI) — (M — kS™") | Ax
= Ap(M +2kI +K*M™" — M +kS™1) Ax
= Ag(2kI + M + kST1) A,

fromk > 0,50 M~ — A (M — kS™') Ax > 0, Theorem 3.2 is obtained.

Theorem 3.2 The necessary and sufficient conditions for mixed KL estimator Bukr to be superior to mixed estimator
BmE under MSEM criterion are as follows:
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o2, [MTY — A (M — kST AL by < 1 (23)

Comparison between mixed KL estimator and KL estimator. From Egs. (16) and (18), we make
A, = MSEM (3;&) — MSEM (BMKL)
=028 (S — kS!St + bobh — 02 Ak (S — kST! + Ry T'R) Ag — by b} (24)
= o2 [S71(S = kST)Sgt = Ak(S = KST! + Ry TIR) Ak + bty — b}
Because
S(S— kST — Ap(S— kST' + Ry TIR) Ay
= AcA ST (S = kTS AT = (S kST RYTIR) | A
- Ak[ Sk + Ry R)STINS (S + Ry~ 'R) — (N + R’WIR)}A
= Ak Sc+ QSN S+ Q — (N + Q)]
:Ak[(1+osk ) (I+sk ) - (N+Q)]Ak
= Ag[N + NS;'Q+ QS{'N + Q5 INS; ' - (N + Q)4
= A (Ns,; Q+ QSN + Qg NS 'Q — Q)Ak
= AcBAy,

whereN = § — k$™1,Q = Ry 'R, B = NS 'Q+ QS; 'N + QS;. 1Nsk Q-Q
According to the Lemma 3.1, it can be obtained that if k < min’_, 42, then N > 0. So B > 0 if and only if

~1
k < min?_, / l,A1Q<NSk Q+Qs'N+QspINsQ) <1

-1
As long as k < min 1 1 1,)1Q<NSk Q+Qs; IN + Qs 1NSk Q) < 1, following conclusions can be
obtained:

A, > 0if and only if b} (0*AxBAk + bzb'z)_lbl < 1. Therefore, there is Theorem 3.2.

-1
Theorem 3.3 When k < ml{n il ,A1Q<NSk Q+QS, IN + QS lNSk Q) < 1, the necessary and sufficient
conditions for mixed KL estimator Bpyxr to be superior to KL estimator ,BKL under MSEM criterion are as follows:

by (0% ALBAL + boby) by < 1 (25)

Comparison between mixed KL estimator and OLS estimator. From Egs. (16) and (19), we make
Ay =MSEM (fors ) — MSEM (Burct )
=0287" — 2 Ap(X'X — kST' + R'Y'R) Ay — by b] (26)
=02 [S7! — Ak(X'X —kST' + Ry T'R)Ar] — bib]

Because
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SN — Ap(X'X — kST' + Ry T'R) Ag

= kA STIAT A — Ap(X'X — kSTH+ R'yTIR) Ay
= AfArs AT - (XX - kSTHH RYTIR) Ak
= Ak[(S+K+ QS ' (S+K +Q — (S—kS™! + Q)] Ak
=AJ(I+EST"+QST)(S+K+ Q) — (S—kS™' + Q)| A
=Ac[S+HK+Q+ (I+kST' + QS (kI +Q) — (S— kS~ + Q)] Ak
= Ap[kI +kS™ 4+ (I +kS™1 4+ Q8™ (KT + Q)] A
= Ac(2kI + kST'+ kST + Q+ kST'Q+ QST + QST Q) Ak
= A2k + kST 2SI+ Q4+ A(STTQ+ QST + QsT1QJ Ak
= Ap[2kI + kST +I2STH + Q + kC + QST' Q) Ax

whereC = S71Q + QS L

Because C=C, and }Li(S_lQ)zlf SéQS§2>O, we can get C>0, so

2kI +kS™' + k2SS + Q4+ kC + QS™'Q > 0, thatis S™! — Ax (X'X — kS™! + R'y "'R)Ag > 0, Theorem 3.4
is obtained.

Theorem 3.4 The necessary and sufficient conditions for mixed KL estimator BMKL to be superior to I§OLS under
MSEM criterion are as follows:

o [STN — AR(X'X —kSTH+ Ry TIR)Ar] by < 1 (27)
Comparison between mixed KL estimator and mixed ridge estimator. From Egs. (16) and (22),
we make
Ay =MSEM(Bmre) — MSEM(BumkL)

=02 Ak(S + QAk + K*AxBB Ak — 02 A (S — kST + Q) A — 42 A BB Ax

=02 AMAg — 02 A (M — kS™1) A — 3k A BB Ay

=02 Ac[M — (M — kS™") | Ay — 3K* Ak BB’ Ak

=ko?ArST'Ax — 3K2 AL BB Ay

=kAy(02S™! — 3kpp’) Ak

(28)

Theorem 3.5 The necessary and sufficient conditions for mixed KL estimator Bukz to be superior to the mixed ridge
estimator Bpyrg under MSEM criterion are as follows:

3k 2B'SB < 1 (29)

Numerical example and simulation study
In order to further explain the theoretical results, this section will verify and analyze the above theoretical results
through examples.

The example analysis data adopts the percentage data of research and development expenses in GNP of several
countries from 1972 to 1986 used by Gruber?', Akdeniz and Erol??, in which x; represents France, x; represents
West Germany, x3 represents Japan, x4 represents the former Soviet Union and y represents the United States.
See Table 1 for specific data.

The data in Table 1 are processed as follows
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Year X1 X2 | x3 X4 |y

1972 19 (22 |19 |37 |23

1975 1.8 (22 |2 38 |22

1979 1.8 |24 |21 |36 |22

1980 1.8 |24 |22 |38 |23

1981 2 25 |23 |38 |24

1982 21 |26 |24 |37 |25

1983 21 |26 |26 |38 |26

1984 22 |26 |26 |4 2.6

1985 23 |28 |28 |37 |27

1986 23 |27 |28 |38 |27

Table 1. 1972-1986 research and development expenditure as a percentage of GNP.

ﬁME ﬁKL BOLS éMRE ﬁMKI
oy 0.6455 | 0.6102 | 0.6455 | 0.6452 | 0.6449
a 0.0896 | 0.0988 | 0.0896 | 0.0894 | 0.0892
a3 0.1436 | 0.1577 |0.1436 | 0.1434 |0.1433
oy 0.1526 | 0.1566 |0.1526 |0.1530 |0.1534
MSE 0.0431 |0.0235 | 0.0561 | 0.0390 |0.0180

Table 2. Estimated MSE.

7 26 6 60 78.5
1 29 15 52 74.3
11 56 8 20 104.3
11 31 8 47 87.6
7 52 6 33 95.9
11 55 9 22 109.2
X=| 37117 6 |,y=| 102.7
1 3122 44 72.5
2 54 18 22 93.1
21 47 4 26 115.9
1 40 23 34 83.8
11 66 9 12 113.3
10 68 12 12 109.4

Firstly, it is easy to calculate that the eigenvalue of X'X is A; = 302.9626, Ay = 0.7283, A3 = 0.0446, 14 = 0.0345
,the OLS estimator of o2 is 62 = 0.0015, and OLS estimator of Bis BoLs = (0.6455,0.0896,0.1436,0.1526)’.

We can use the method proposey by Kibria and Lukman' to choose the biasing parameter k, and we can
also use the generalized cross validation (GCV) criterion and the cross validation (CV) to choose the biasing
parameter, the reference can refer to Arashi et al.?’, Roozbeh?*, and Roozbeh et al.?>. In this paper we use the
method propose by Kibria and Lukman' to choose the biasing parameter k, which is given as follows:

A 62

ki= ———5—~ 30
' 20?1'2 + (62/A1) (30)
we take k = lAcmin.
Consider the following stochastic restrictions, this can refer to Roozbeh et al.?® and Roozbeh and Hamzah?":

r=RB+eR= (1 -2 =2 —2),r=1,e~ (0,82)

For the mixed estimator, KL estimator, OLS estimator, mixed ridge estimator and mixed KL estimator proposed
in this paper. The MSE is presented in Table 2.

As can be seen from Table 2: R

When k takes kpmin = 0.018, the MSE value of mixed KL estimator 8k is better than that of mixed estimator,
KL estimator,OLS estimator and mixed ridge estimator. Consistent with the theoretical results of this paper, it
can be concluded that adding stochastic restrictions may have better estimation effect under certain conditions.
So in practice we can use the stochastic restrictions to address the multicollinearity.

Next, we consider Monte Carlo simulation analysis.

Firstly, the generation of relevant parameters and data in the process of simulation analysis is briefly described.
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14 I§ME ﬁKL ﬁOLs I§MRE 3MKL

0.85 0.0024 | 0.0028 | 0.0028 |0.0023 |0.0023
0.9 0.0032 | 0.0042 | 0.0043 |0.0032 |0.0032
0.99 0.0197 |0.0214 | 0.0282 |0.0185 |0.0160

Table 3. Estimated MSE when o2 = 0.1, n = 30.

14 éME éKL ﬁOLs ﬁMRE ﬁMKL

0.85 0.0012 | 0.0013 | 0.0013 |0.0012 |0.0012
0.9 0.0027 | 0.0031 | 0.0031 |0.0027 |0.0027
0.99 0.0146 | 0.0221 | 0.0245 |0.0158 |0.0152

Table 4. Estimated MSE when o2 = 0.1, n = 50.

14 I§ME ﬁKL ﬁOLS I§MRE BMKL
0.85 0.0011 |0.0011 |0.0011 |0.0011 |0.0011
0.9 0.0016 | 0.0019 | 0.0020 |0.0016 |0.0016
0.99 0.0126 |0.0179 | 0.0205 |0.0119 |0.0015

Table 5. Estimated MSE when o2 = 0.1, n = 70.

P éME ﬁKL ﬁOLs ﬁMRE ﬁMKL

0.85 0.0009 | 0.0009 | 0.0009 |0.0009 |0.0009
0.9 0.0015 | 0.0018 | 0.0018 |0.0015 | 0.0015
0.99 0.0104 |0.0137 |0.0142 |0.0102 |0.0101

Table 6. Estimated MSE when o2 = 0.1, n = 100.

14 ﬁME ﬁKL ﬁ OLS ﬁMRE BMKL

0.85 0.2375 |0.1963 | 0.2710 |0.1752 | 0.1697
0.9 0.3463 | 0.2594 | 0.4260 |0.2354 |0.2231
0.99 3.5782 |2.7915 |4.2485 |1.8076 | 1.3056

Table 7. Estimated MSE when o = 1, n = 30.

The data generation of explanatory variables adopts the same method as McDonald and Galarneau®,
Gibbons?), that is, it is generated by the following equation:

1/2 . .
Xij = (1—,02) / zij + pZip, i=12,...,n, j=12,...,p

where z;; is the random number generated by the standard normal random variable, p is the given constant, and
0? theoretically represents the correlation between two different variables, so p? reflects the degree of complex
collinearity of the model to some extent. In this simulation analysis, we consider three cases p = 0.85,0.9,0.99,
setp=3,r=1LR=(1-2-2),e~ (0,0%),n = 30,50,70, 100.

For a given design matrix X, we take the orthogonalized eigenvector corresponding to the maximum eigen-
value of X'X as the real value of parameter vector j.

The data corresponding to the response variable is generated by the following equation:

yi=PBixi + Boxio+ ...+ Bpxip+eii=1,2,...,n

where ¢, is the mean of zero, and random vector with variance of 62 = 0.1, 1, 5, 10.
See Tables 3, 4, 5, 6,7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17 and 18 for simulation analysis and calculation results.
Based on Tables 3, 4, 5, 6,7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17 and 18, the following conclusions are drawn:
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0.85 0.1908 | 0.1775 | 0.2012 | 0.1673 | 0.1675
0.9 0.1932 | 0.1968 | 0.2340 | 0.1662 | 0.1660
0.99 1.9234 | 1.3309 |2.9377 |1.3809 |0.7301

Table 8. Estimated MSE when o2 = 1,1 = 50.

0.85 0.0984 | 0.0868 | 0.1033 |0.0835 |0.0828
0.9 0.1524 | 0.1533 | 0.1906 |0.1277 |0.1270
0.99 1.7543 | 1.1738 | 2.0825 |1.0379 |0.9163

Table 9. Estimated MSE when o2 = 1,1 = 70.

0.85 0.0751 | 0.0737 | 0.0823 | 0.0680 |0.0678
0.9 0.1424 | 0.1314 | 0.1548 |0.1218 |0.1215
0.99 1.0463 | 0.4883 | 1.3303 |0.5769 | 0.3634

Table 10. Estimated MSE when o2 = 1,1 = 100.

0.85 8.7289 3.3534 13.8404 3.7486 3.3308
0.9 10.7412 | 4.5196 13.4709 4.4088 3.7785
0.99 84.6872 | 115.8703 | 143.0686 | 45.0361 | 31.8312

Table 11. Estimated MSE when o2 = 5, n = 30.

0.85 6.3491 2.8390 7.8722 2.7472 2.5652
0.9 4.3795 2.1116 4.8651 1.8364 1.7838
0.99 51.4274 | 44.6585 | 75.3850 |30.2169 |24.9511

Table 12. Estimated MSE when o2 = 5, n = 50.

0.85 3.2597 1.7710 3.4194 1.3309 1.5452
0.9 3.9034 1.7501 4.3951 1.6719 1.5983
0.99 27.7983 | 32.8762 | 38.5172 | 21.0908 | 19.3660

Table 13. Estimated MSE when o2 = 5,1 = 70.

0.85 0.8875 1.7599 0.9286 1.9500 0.8946
0.9 1.4590 2.9916 1.5563 3.5008 1.4880
0.99 10.8178 | 22.8642 | 19.2461 |31.9632 | 11.7280

Table 14. Estimated MSE when o2 = 5, n = 100.
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14 I§ME ﬁKL ﬁOLs I§MRE ﬁMKL

0.85 23.4609 8.7136 27.9864 8.4935 8.0303
0.9 28.7442 13.2491 31.8223 12.4392 11.8325
0.99 343.6973 | 450.0098 | 539.6959 |250.2456 | 106.987

Table 15. Estimated MSE when o2 = 10, n = 30.

P éME I§KL ﬁOLs ﬁMRE ﬁMKL
0.85 19.1189 7.0762 23.1833 | 6.7891 6.8042
0.9 30.4727 10.6969 32.8809 | 10.1258 9.0393
0.99 226.4676 | 335.4425 |390.911 |130.0564 |97.6481

Table 16. Estimated MSE when o2 = 10, n = 50.

14 I§ME ﬁKL ﬁOLS I§MRE BMKL
0.85 11.7984 3.8394 13.2484 | 3.9206 3.7376
0.9 18.0514 5.6690 19.9073 | 5.7731 5.4011
0.99 197.0861 | 114.1176 | 237.743 |91.9548 | 54.3546

Table 17. Estimated MSE when o2 = 10,1 = 70.

P éME ﬁKL ﬁOLs ﬁMRE ﬁMKL
0.85 8.6620 3.0434 8.9405 3.1080 2.9602
0.9 16.3215 5.6973 17.6756 5.6112 5.4424
0.99 120.1565 | 67.5786 | 168.6498 | 62.5914 | 47.1027

Table 18. Estimated MSE when o2 = 10, n = 100.

(1)

(2) The new estimator mixed KL estimator always has the minimum MSE when all given n and o2 ,and k
takes kiin. Consistent with the results of Theorems 3.2-3.5 in this paper, under certain conditions, mixed
KL estimator Bxy is better than mixed estimator By, KL estimator By, least square estimator fors and
mixed ridge estimator Syrp under MSE criterion; .

Under the same conditions, mixed estimator Bjg,mixed ridge estimator 8yrg and mixed KL estimator
Bumxr are better than unconstrained least squares estimator Bors under MSE criterion, mixed KL estimator
Bk is better than unconstrained KL estimator Bg; under MSE criterion.

(©)

Conclusions

In this paper, a new mixed KL estimator considering the prior information about parameters in sample infor-
mation in linear model is proposed, and the properties of the new estimator are discussed. The necessary and
sufficient conditions for KL estimator to be better than mixed estimator, KL estimator, OLS estimator and mixed
ridge estimator under the criterion of mean square error matrix are given, and the proofs are given respectively.
Then the theoretical results are verified by examples and simulation analysis.

The mean square error of all estimates increases with the increase of p and decreases with the increase of

n;
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