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Learned end‑to‑end 
high‑resolution lensless fiber 
imaging towards real‑time cancer 
diagnosis
Jiachen Wu1,2*, Tijue Wang1, Ortrud Uckermann3,4,9, Roberta Galli5, Gabriele Schackert3,9, 
Liangcai Cao2, Juergen Czarske1,6,7,8,9* & Robert Kuschmierz1,6,9*

Recent advances in label-free histology promise a new era for real-time diagnosis in neurosurgery. 
Deep learning using autofluorescence is promising for tumor classification without histochemical 
staining process. The high image resolution and minimally invasive diagnostics with negligible tissue 
damage is of great importance. The state of the art is raster scanning endoscopes, but the distal 
lens optics limits the size. Lensless fiber bundle endoscopy offers both small diameters of a few 100 
microns and the suitability as single-use probes, which is beneficial in sterilization. The problem is the 
inherent honeycomb artifacts of coherent fiber bundles (CFB). For the first time, we demonstrate an 
end-to-end lensless fiber imaging with exploiting the near-field. The framework includes resolution 
enhancement and classification networks that use single-shot CFB images to provide both high-
resolution imaging and tumor diagnosis. The well-trained resolution enhancement network not only 
recovers high-resolution features beyond the physical limitations of CFB, but also helps improving 
tumor recognition rate. Especially for glioblastoma, the resolution enhancement network helps 
increasing the classification accuracy from 90.8 to 95.6%. The novel technique enables histological 
real-time imaging with lensless fiber endoscopy and is promising for a quick and minimally invasive 
intraoperative treatment and cancer diagnosis in neurosurgery.

Early diagnosis of cancer is the key to improve the survival rate and cure rate of patients. Endoscopy plays an 
important role in the early stage of cancer diagnosis because there is great benefit in guiding biopsy extraction 
by histopathological examination. The procedure of biopsy requires sectioning tissues from organs, staining 
and observation, where pathologists exercise judgment with microscopic images of stained tissue based on 
their knowledge and experience (Fig. 1a). However, this takes conventionally several hours to a few days, which 
means, two surgeries are required, the first one for biopsy and the second for tumor resection. This prevents 
improvement in survival rates, especially for highly aggressive tumors. Moreover, multiple surgical resections 
lead to increased risk of internal bleeding. To reduce this risk and shorten time for diagnosis, a new approach 
providing real-time diagnosis is urgently needed. As a key element for implementing multimodal imaging under 
in vivo conditions, the optical fiber allows endomicroscopy to work at depth in living organisms and give live 
diagnostic information with minimal invasion.

Label-free nonlinear optical imaging techniques, providing a non-invasive approach for visualization of 
biomolecules, has proven to be a powerful tool for cancer research1–6. With the help of deep learning, these 
approaches can create virtual stained image, such as in coherent anti-Stokes Raman scattering (CARS), sec-
ond harmonic generation (SHG), and two-photon excited auto-fluorescence (TPEF) modality7–10, bypassing 

OPEN

1Laboratory of Measurement and Sensor System Technique, TU Dresden, 01069  Dresden, Germany. 2State 
Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, 
Tsinghua University, Beijing 100084, China. 3Department of Neurosurgery, University Hospital Carl Gustav Carus, 
TU Dresden, Dresden, Germany. 4Division of Medical Biology, Department of Psychiatry, Faculty of Medicine, 
University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany. 5Department of Medical Physics and 
Biomedical Engineering, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany. 6Competence 
Center BIOLAS, TU Dresden, Dresden, Germany. 7Excellence Cluster Physics of Life, TU Dresden, Dresden, 
Germany. 8Faculty of Physics, School of Science, TU Dresden, Dresden, Germany. 9Else Kröner Fresenius Center for 
Digital Health, TU Dresden, Dresden, Germany. *email: jiachen.wu@mailbox.tu-dresden.de; juergen.czarske@
tu-dresden.de; robert.kuschmierz@tu-dresden.de

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-23490-5&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18846  | https://doi.org/10.1038/s41598-022-23490-5

www.nature.com/scientificreports/

the standard histochemical staining process11–14. To realize label-free imaging, the current microscopes either 
are coupled with standard-sized optical elements into a rigid needle endoscope with gradient index (GRIN) 
lenses15–17, or use fiber miniaturized resonant device to achieve fiber-scanning18–20. Both approaches increase 
equipment complexity and consequently manufacturing cost, and significantly enlarge the endoscope diameter 
and increase risk of tissue damage during diagnosis, limiting their clinical applications.

An alternative solution is utilizing coherent fiber bundle (CFB). CFB typically consists of thousands of cores, 
arranged in a honeycomb structure, with a common cladding. Each core acts as a pixel that individually transmits 
intensity imaged in near-field from the distal fiber end to the observer at the proximal fiber end. Various opti-
cal techniques have been successfully integrated with CFB, such as light-field imaging21, and holography22–24, 
micro manipulation25,26 and two-photon imaging27,28. The main challenge of application of CFB in clinics is that 
the honeycomb structure of CFB results in artifacts and limits the spatial resolution, which interfere with the 
identification of pathological tissue and hinders diagnosis. Therefore, elimination of honeycomb artifacts and 
improving resolution of CFB image is an urgent demand for label-free imaging using fiber-based endoscopy.

Conventional depixelation methods like Fourier domain filtering29 and interpolation30 can remove the 
honeycomb artifacts, but cannot improve resolution. Optimization methods, such as maximum a posteriori 
estimation31 and compressive sensing32,33, could improve the imaging quality by introducing prior information, 
but involve a time-consuming iterative procedure. With the multi-frame method, a sequence of images is cap-
tured with displacement or rotation of the fiber to add information34–36, however, the extra image registration 
increase complexity to the imaging system. Recently, deep learning has been shown to offer nonlinear fitting 
abilities in image regression problems37–42. Thus, learning-based methods were applied to CFB imaging for 
depixelation and resolution enhancement43–46. These works have limited sample types and numbers, however, 
which constrains the generalization capability to medical diagnosis.

In this paper two questions are to be solved: (1) the possibility of real-time reconstruction and resolution 
enhancement for fiber endoscopic images, and (2) whether the enhanced resolution helps the discrimination 
of tumor from healthy tissue.

For the first question, a display-CFB-sensor imaging system is set up to collect labeled CFB images. Then, 
they are put into a customized reconstruction network, which consists of a U-Net and an enhanced deep super-
resolution (EDSR), first. The resolution enhancement network enables removing the honeycomb artifacts and 
EDSR reconstructs high-resolution features beyond the physical limitations of the CFB. In the second part, 
enhanced CFB images are fed into a classification neural network based on Visual Geometry Group-19 (VGG-
19), which gives a prediction of tissue, whether it is a tumor or not. The binary classification is implemented on 
9 kinds of brain tumor, most of which achieve excellent results. For glioblastoma, one kind of highly aggressive 
brain tumor, the reconstructed high-frequency features help increase its classification accuracy (prediction cor-
rect rate of all tissues) from 90.8 to 95.6%.

Based on the two points above, we proposed an end-to-end tumor diagnosis scheme using artificial intel-
ligence (AI) technology to provide both high-resolution endoscopic imaging and tumor prediction results 

Figure 1.   Workflow of biopsy diagnosis and end-to-end diagnosis. (a) A biopsy is the main way doctors 
diagnose most types of cancer diagnosis. It requires specialized surgical skills, histology laboratory and trained 
personnel. The whole procedure is cumbersome and time-consuming. (b) The learning-based end-to-end 
diagnosis directly obtains the tissue image via minimally invasive fiber-optic endoscope. Deep neural network 
(DNN) improves resolution for reliable prediction of whether the tissue is a tumor. It is promising for real-time 
and in situ tumor diagnosis.
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(Fig. 1b). Our approach adopts single-shot manner so that no scanning parts and post-processing algorithms 
are required, which is an advantage to realize real-time diagnosis. Another unique selling point is that, due to the 
simple and compact structure, the low cost of our endoscope makes a single-use-probe in clinics very promising, 
and the risk of post-surgical cross infection is minimized, therefore. The novel fiber-based diagnosis scheme 
dispenses the cumbersome process of biopsy and mitigates discomfort caused by invasion, and is thus low-cost 
and friendly to both of patients and physicians. A paradigm shift from the conventional diagnosis based on 
histochemical staining to a real-time and in situ diagnosis using label-free endomicroscopic imaging is achieved.

Results
Optimal working distance for lensless endoscope.  Lensless endoscopes collect light directly from 
the distal CFB facet, enabling tiny probes to minimize invasion. As a near-field imaging manner, it requires no 
modulation and scanning, which are common methods of far-field imaging22,23,47. Working distance is an impor-
tant parameter for CFB imaging in lensless mode. The optimal working distance is related to the core spacing 
and numerical aperture (NA) of the fiber. The NA of a fiber is defined as the sine of the largest acceptable angle 
θc that an incident ray can have for total internal reflectance in the fiber core (Fig. 2a). The NA can be calculated 
according to the refractive indices of core and cladding. It determines a cone space in which light can be coupled 
into fiber. For a CFB with NA = sin θc, and core spacing d, when a sample is very close to the fiber facet, that is 
z < d / (2tan θc), the regions which can be coupled into fiber cores does not completely cover the sample, which 
causes loss of information (Fig. 2b). When z = d / (2tan θc), the light from the sample just happens to be coupled 
into the fiber. This working distance is critical distance zc without information loss. When a sample is further 
away from the fiber facet, that is z ≫ d / (2tan θc), a blurred observation results (Fig. 2b). Therefore, an optimal 
working distance is necessary to high-resolution imaging.

Here we use the parameters of a commercial CFB (Sumita HDIG) to analyze the optimal working distance, 
where the core spacing d = 3.0 μm and the acceptable angle θc = 8°. The critical distance is zc = 10.7 μm. A mul-
tiphoton microscopic image of mouse cortical vasculature48 is chosen as true scene. We show the two ends of CFB 

Figure 2.   Optimal working distance for reconstruction. (a) Schematic of the transmission of an image by 
optical fiber as a single pixel. The working distance z and NA of fiber determine a cone space in which light can 
be coupled into fiber. (b) The situation that CFB gather light from sample under different working distance z. 
Areas that can be illuminated by and that can contribute to the intensity in each fiber core for different working 
distances. (c) The images at two ends of CFB and reconstructed images under different working distances. 
The reconstruction method is compressive sensing with TV regularization. Scale bar: 30 μm. Free space image 
propagation and deterioration by the CFB are realized numerically. (d) PSNR and SSIM distributions at varying 
working distances over 10 images of mouse cortical vasculature. Plotted are the mean (line) and 95% confidence 
interval (shading). The black dots indicate the critical distances.
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and reconstructed images at five different working distances: 1 μm, 10 μm, 20 μm, 40 μm and 80 μm (Fig. 2c). 
Reconstruction is performed using compressive sensing (CS) with total variation (TV) regularization. When the 
working distance is 1 μm, the true values of the region between the cores, called dead-space, cannot be recovered. 
As the working distance increases, the information that was originally in dead-space can be collected by the 
adjacent cores, so that the recovery become possible. However, as the distance increases, the image at distal facet 
is blurred; this in turn makes it more difficult to recovery details. To disclose the relationship between optimal 
working distance and core spacing, we calculate the reconstructed image quality under different working distance 
and different core spacing to find the optimal working distance. Peak signal to noise ratio (PSNR) and struc-
tural similarity index measure (SSIM) are adopted for quantitative evaluation of image quality. The results show 
reconstruction can achieve optimum quality when the working distance is about 3zc = 1.5d / tan θc (Fig. 2d). To 
attain the optimal working distance in practice, a layer of glass or polymer can be attached to the tip of the fiber. 
Then the object contacts with the cover layer so that the working distance can be fixed at the optimal distance.

Resolution enhancement model based on U‑Net + EDSR.  A simple way to generate datasets is to 
synthesize CFB images from GT images. Here we adopt label-free multiphoton images as GT to synthesize the 
CFB images. The images were obtained using a multi-modal microscope, image modalities are CARS, TPEF, 
and SHG. The three modalities are combined into single RGB image. The lateral resolution is 1 μm. Image size is 
208 × 104 pixels. A CFB imaging model is applied to generate pixelated images49. The optic fiber model of Sumita 
HDIG is simulated for dataset generation, where the core diameter is 2.0 μm and core spacing is 3.0 μm. The 
well-trained network was applied to the test set, which contains 200 RGB images of 9 tumor and 2 non-tumor 
types. We compare the results for the methods of point interpolation, area interpolation, CS with TV regulari-
zation. The instance shows that the learning-based methods are superior to all others (Fig. 3a). Moreover, the 
U-Net + EDSR configuration shows edges more clearly than U-Net-only configuration. The U-Net architecture 
could learn the features at different resolution scales, but U-Net lacks deeper layers to learn complex and variable 
features in each scale. EDSR consists of deep residual blocks, so connecting EDSR with U-Net can make up for 
the limited ability of network characterization at high resolution scale. The enhanced image by U-Net + EDSR 
has prominent target features, which can help a doctor discriminate tissue type intraoperatively. By quantita-
tively analyzing the quality of reconstruction on 200 images in test set, U-Net + EDSR has the highest average 
PSNR and SSIM, and has more centralized distributions than U-Net (Fig. 3b). The computing time is much 
faster than interpolation and CS methods (Fig. 3c).

Resolution enhancement for experimentally acquired images.  Defects in real CFBs make the 
actual images deviate from simulations. For example, irregular core shape and nonuniform refractive index may 
cause the inner-core coupling or excite cladding modes. These factors can lead to failure of network prediction 
for real CFB images. To address the problem, a display-CFB-sensor imaging system is setup to obtain pairs of 
real CFB images and GT images directly (Fig. 4a). DLP LightCrafter Display 4710 is adopted as the display and 
the Thorlabs Quantalux is adopted as the image sensor. A neutral density filter is used to reduce the light inten-
sity to that comparable to the fluorescence. However, the light intensity is moderately increased to improve the 
image signal-to-noise ratio (SNR) for training set collection. Then the network can better learn the mapping 
between the fiber image and the original image without noise interference. The screen is projected onto the CFB 
(Sumita HDIG) facet using a 40 × objective and tube lens. The GT images are projected 30 μm away from the 
facet in accordance with the results in Fig. 2d. The distal CFB facet is then imaged onto a camera with 2.2 μm 
pixel pitch. The magnification is adjusted to × 2.7 so that the CFB occupies the same pixels number with GT 
image. We train the network for 105 iterations, and the validation loss always remains the same level with train-
ing loss (Fig. 4b), which shows the network has good generalization performance.

A customized resolution chart is displayed on the screen to experimentally test the imaging resolution and 
contrast. The group number indicates the line width in pixels. According to the pixel pitch of display and objective 
magnification, the minimum line width in the projected image is 1.15 μm. For all the reconstruction methods, 
Group-2 can be resolved (Fig. 4c), thus an upper bound for the resolution is 2.3 μm or 217 lp/mm. This is better 
than the core-to-core distance of 3 μm and achieved by the increased working distance. While the increased 
working distance decreases the contrast initially, the EDSR enables contrast enhancement again. The cross sec-
tions of Group-2 show the imaging contrast (Fig. 4d). Defining the contrast as (Imax − Imin) / (Imax + Imin) × 100%, 
where the Imax and Imin represent the average intensity of the white and black regions respectively. Then the con-
trast of the CFB image, interpolation, CS and DNN methods are 65.6%, 72.1%, 75.2%, and 86.3% respectively.

Furthermore, the frequency domain characteristics of reconstructed images are analyzed. The validation 
on mouse vasculature image shows that the DNN method can recover the most high-frequency components 
(Fig. 4e). To explicitly compare the frequency component that can be recovered by various methods, the ampli-
tude spectra are averaged along the radial coordinate first and normalized to the spectral amplitude of the GT, 
for ten different images. The results are plotted in frequency-amplitude-curves (Fig. 4f). Note that the curve 
peak of the CFB image indicates the sampling frequency of the fiber core pitch at 0.33 μm−1, which is illustrated 
by the dashed line. According to Nyquist-Shannon sampling theorem, spectrum aliasing occurs when the sig-
nal frequencies exceed half of the sampling frequency. Interpolation methods only flatten the frequency curve 
but do not introduce high frequency components. The CS method introduces prior information through TV 
regularization, and high frequency components are slightly improved. However, TV regularization with a scalar 
weight is based on spatially invariant assumptions, which make it difficult to handle both homogeneous features 
and regions with rich details. In contrast, the DNN method can learn various features from the dataset, so that 
it can adaptively restore variable image features.
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Influence of image resolution on tumor classification results.  Fluorescence imaging for tissue pro-
vides rich information for tumor diagnosis and indicate tumor margin50, degree of tumor progression51 and 
other pathological features for fine-grained analysis52. However, all these diagnostic techniques rely on high-
resolution fluorescence images, which are often difficult to obtain in medical practice.

In this work the dependence of tumor recognition on image resolution will investigated. For the tumor 
delineation, only binary discrimination of tumor and non-tumor is necessary. If the classification results are 
not sensitive to resolution, a low resolution and large field of view endoscope can be adopted for rapid tumor 
screening. Otherwise, high resolution imaging technology is required. We applied Gaussian filters with different 
kernel sizes to reduce the resolution for the TPEF images of biopsies of human brain towards malignant and 
benign tumors. The full width at half maximum of Gaussian filter is used to represent the resolution of degraded 
images. A VGG-1953 classification network is trained on the resolution of 1 μm (original resolution), 2 μm, 
3 μm, 4 μm, 5 μm and 10 μm (Fig. 5a). The area under receiver operator characteristic curve (AUROC)54 is used 
for each test dataset as the performance metric. For each case, the training process is repeated for 5 times with 
different patients randomly chosen for training, in order to reduce the error caused by the randomness during 
data preparation and training. The upper and lower limits of error bar indicate the maximum and minimum 
achieved values.

For most tumors except glioblastoma (GBM), the AUROCs show low correlation with resolution. The prob-
lem of overfitting appeared in the training process of astrocytoma WHO I + II and III (Supplementary Fig. 1). 
For anaplastic oligodendroglioma WHO III, only at the 1 μm resolution, AUROC is stable and has a high level. 

Figure 3.   Image enhancement for the synthetic CFB images. (a) Comparison of enhanced images with ground 
truth by different methods in spatial and frequency domain. Scale bar: 20 μm. (b) Quantitative evaluation of 
the image quality of different methods in terms of PSNR and SSIM. Box plot: center line, median; box limits, 
upper and lower quartiles; whiskers, 1.5 × interquartile range; plus sign, outliers. (c) Average PSNRs, SSIMs and 
computing times of different methods. The U-Net + EDSR provides best image quality and fast computation.
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This tumor type may have more high-frequency features (Supplementary Fig. 2) so that the diagnosis strongly 
dependents on high resolution images.

For GBM, the AUROCs show a nearly linear decrease with resolution. Since GBM is one of the most aggres-
sive and lethal brain tumors, this highlights the necessity for high resolution imaging systems. Furthermore, GBM 
can be used to verify if the U-Net + EDSR network was truly able to retrieve high spatial frequency information 
by comparing classification results for original CFB images, enhanced CFB images and microscope images with 
different resolutions.

Efficient improving GBM classification performance using resolution enhancement net‑
work.  GBM is a highly aggressive type of brain tumor, so early diagnosis and treatment are of great signifi-
cance for prolonging the life span of patients. Here we use six metrics of AUROC, probability, accuracy, preci-
sion, sensitivity, and specificity to evaluate the effect of using resolution enhancement network on classification 
performance. We individually trained networks on microscopic images, CFB images and resolution enhanced 
images, and the classification results on different resolution are shown for comparison (Fig. 5b). In all metrics, 
the resolution enhanced images have better performance compared to the CFB images. This verifies the pro-
posed resolution enhancement network can efficiently improving GBM classification performance. The average 
accuracy of microscopic images, CFB image and enhanced image are 96.2%, 90.8%, 95.6%, respectively. In this 
case, the honeycomb artifacts of CFB images deteriorate some characteristics of tumor morphochemistry and 

Figure 4.   Image enhancement for the real CFB. (a) Experimental setup for dataset acquisition. The displayed 
images are projected to the optimal working distance z = 20 μm in front of the fiber fac images et. L, lens; MO, 
microscopic objective. (b) The change of loss function during training process. (c) Comparison of imaging 
results between different methods for resolution chart. Scale bar, 50 μm. (d) Cross section on Group-2 for each 
method. (e) Comparison of frequency domain characteristics of different image enhancement methods. The 
closeups show the details of tiny vessels. Scale bar, 40 μm. The corresponding spectrum maps are shown in the 
bottom of spatial images. (f) Radial normalized amplitude of spectrums. Plotted are the mean (line) and 95% 
confidence interval (shading) over 10 images. The dashed line indicates the core sampling frequency.
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reduce the classification performance slightly. Then the resolution enhancement process can reconstruct features 
and improve classification accuracy to the same level as the microscopic image.

Discussion
Fast, precise, and minimally invasive tissue classification are crucial in cancer treatment. The current approach 
based on biopsies and histopathological analyses has some major drawbacks. It requires an additional interven-
tion, which can cause trauma such as internal bleeding. It consists of a labor-intensive process chain lasting 
several hours to days. In addition, it exists the possibility to have recovered ill-suited tissue resulting in an 
inconclusive histopathological analysis. Recently fast and all optical, virtual staining and tissue classification 
has been demonstrated using DNNs. Translation into clinical practice requires minimally invasive approaches.

Here we discussed the usability of commercial coherent fiber bundles for direct imaging in conjunction with 
DNN-based super-resolution to enable a simple, robust, and cheap endoscopic system enabling single-use-
probes. The method is based on applying the CFB in a defocused manner, to capture information from dead 
spaces and allow for compressive reconstruction. The enhancement in resolution beyond the fiber core spacing 
is demonstrated in simulation as well as on real images through a CFB, resulting in higher contrast and generally 
more recovered features high spatial frequency. We ensured generalization by training on random images from 
the ImageNet database unrelated to the later application.

Furthermore, we have shown that two-photon exited fluorescence microscopy in conjunction with a standard 
VGG-19 network is well suited for binary tissue classification over a variety of different tumor types and that 
classification results for glioblastoma greatly depends on optical resolution. Thus, we used GBM as a proxy to 
investigate if clinically relevant data can be recovered via the U-Net & EDSR network. We found an increased 
performance over several different metrics which was similar to ex vivo microscope images with 1 μm resolution. 
This highlights the potential of this approach towards in vivo diagnostics.

In conclusion, an end-to-end tumor diagnosis scheme is proposed by combining the reconstruction network 
and the classification network, to provide both high-resolution endoscopic imaging and tumor recognition. Our 
approach adopts single-shot manner so that no scanning parts and post-processing algorithms are required, 
which is an advantage to realize real-time imaging and makes intraoperative diagnosis possible. Another unique 
selling point is that, due to the simple and compact structure, the low cost of our endoscope makes a single-
use-probe in clinics promising, and the risk of post-surgical cross infection is minimized, therefore. The novel 
fiber-based diagnosis scheme dispenses the cumbersome process of biopsy and mitigates discomfort caused 
by invasion, and is thus friendly to both of patients and physicians. A paradigm shift from the conventional 

Figure 5.   Comparison of classification performance for different image types. (a) AUROC values of the 
classification networks trained on different resolution levels. (b) The classification performance for GBM. The 
classification networks are individually trained and predicted for each data type CFB images and resolution 
enhanced images. All the results are based on TPEF modality.
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diagnosis based on histochemical staining to a real-time and in situ diagnosis using label-free endomicroscopic 
imaging is achieved.

Additionally, it should be noted that the approach for enhancing CFB images is not limited towards brain 
cancer discrimination, to non-linear microscopy nor to lens-less CFB schemes. For example, the approach can 
easily be translated to holographic imaging. By selecting optimal object-image distance in both distal end and 
optimal end, a CFB can be used for cell size measurement55,56. The approach can also combine with optical 
coherence tomography (OCT), virtual staining and other medical imaging techniques with high requirements 
for abundant feature information. In order to advance the translation to the clinic, further experimental analysis 
on bulk tissue will be investigated next as well as the use on linear auto-fluorescence for an even simpler setup. 
Lastly, since the explainable AI has made some progress in real-world applications57,58, the future research will 
focus on the mechanisms of tumor classification by DNN, and improve the network to provide more robust, reli-
able and abundant information, such as the degree of the lesion and lesion area, so that deep learning methods 
can provide trusty means of medical diagnosis.

Methods
CFB‑based imaging model.  The CFB translates the spatial intensity distribution on the distal facet to the 
proximal facet in a degraded, pixelated manner. Considering a sample placed at a distance z from the distal facet, 
each fiber core couples the light within its acceptance angle, implementing a weighted sum of the original image. 
The image degradation can be modeled as convolution with a point spread function (PSF), consisting of three 
parts: distance attenuation term, source divergence angle and facet coupling efficiency. The distance attenuation 
term follows inverse-square law, and considering the fiber critical angle, rays with an incident angle greater than 
the critical angle θc cannot be coupled into the fiber. The distance attenuation term could be formalized as:

where θ = arctan
(

|�r|
/

z
)

 . The facet coupling efficiency depends on the collection aperture of the fiber. An approx-
imation model for the facet coupling efficiency is a Gaussian distribution, which can be parameterized as follow:

where σ denotes the width of the Gaussian function. When the full width at half maximum (FWHM) of the 
Gaussian distribution is equal to the fiber core diameter d, σ has the value d

/

2
√
2 ln (2) . Assuming the light 

source has uniform distribution in all angle, the total PSF could be modelled as:

where “*” denote convolution sign. Then each fiber cores samples the intensity at distal facet:

where ri is the position vector of the core centers. Yi represents the ith downsampling measurement for the 
high-resolution image X. Then the fiber bundle conveys the sampled intensities to the proximal end. For single 
mode cores, only the LP01 mode can be transmitted over optical fibers so that all the cores have the same relative 
intensity distribution at the proximal facet. The LP01 mode of optical fiber is often expressed approximately by 
the Gaussian field59. Then applying the convolution again to form the observed honeycomb-like image:

where deviation ω is the equivalent mode field radius, which is related to the fiber parameters.

Compressive reconstruction.  The true resolution of the honeycomb-like image is the number of fiber 
cores, which is usually much less than the number of sensor pixels. To reconstruct a high-resolution image from 
the CFB image is an ill-posed problem. Compressive sensing (CS) is a typical method to deal with such problems. 
Compressive sensing is a powerful signal reconstruction framework and provides complete theoretical support 
for image reconstruction. It states a given signal can be reconstructed accurately with fewer samples or measure-
ments, which is not necessary to satisfy the Nyquist’s sampling theorem60. CS theory indicates the conditions 
for accurate reconstruction are sparsity and incoherence61. Sparsity means there are many zero-valued elements 
in the signal itself or in some transform domain. Incoherence means that sensing matrix and representation 
matrix are uncorrelated. Natural images are sufficiently sparse with its representation in the gradient domain62 
or wavelet domain63. In CFB imaging, the general image degradation can be expressed as convolution form. CFB 
imaging can approximately satisfy the compressed sensing condition and achieve high-quality reconstruction.

Since the valid measurements for CFB imaging is the core intensities, the CFB image can be represented by 
integrating each intensity in the core and rearrange them into 1-dimensional (1D) vector �Y  . If representing the 
original image as a 1D vector �X in lexicographical order, then Eq. (4) can be rewritten in matrix–vector form:
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where �E is the additive noise, C is convolution operation, and D is the downsampling operation. All linear 
manipulations can be simplified into CS literature form to:

where W operation combines the convolution and down-sampling operation into a single operation. Assuming 
the fiber bundle has M cores, and the camera has N pixels, where M < N, then �Y  is the M × 1 vectorized observa-
tion, �X is the N × 1 vectorized object, and W is a M × N matrix. Obviously, this is an underdetermined system. 
The traditional solution for this problem is the least squares method, which is to solve the following optimiza-
tion problem:

However, additive noise in measurements greatly affects the accuracy of the results. Thus, it is necessary to 
introduce a regularization term to stabilize the solution. Then the optimization problem becomes:

where τ is a coefficient that balances the regularization term and the data fitting term and Φ is the regularization 
term representing the prior. Reconstructions can be performed using the two-step iterative shrinkage/threshold 
(TwIST) algorithm64 with total variation (TV) regularization.

Data acquisition.  Our analysis of resolution enhancement and tumor classification based on a multipho-
ton image set, which comes from Uckermann’s et al. paper65. It includes Coherent anti-Stokes Raman Scatter-
ing (CARS), Two-Photon Excited Fluorescence (TPEF), and Second Harmonic Generation (SHG) microscopy 
images on cryosections of brain tumors of 382 patients and 28 human non-tumor brain samples. The previous 
research verified the combined analysis of texture parameters of the CARS and TPEF signal is most suited for 
the discrimination of non-tumor brain versus brain tumors. The classification includes different tumor types 
(low- and high-grade astrocytoma, oligodendroglioma, glioblastoma, recurrent glioblastoma, brain metastases 
of lung, colon, renal, and breast cancer and of malignant melanoma), and demonstrate a correct rate of 96% 
(sensitivity: 96%, specificity: 100%) by using linear discriminant analysis (LDA) method 66.

We reproduce the classification using deep neural network (DNN) in the case of single modality: TPEF, two 
modalities: CARS & TPEF, and three modalities: CARS & TPEF & SHG. TPEF is chosen in single modality for 
comparison because of its high classification accuracy65 and straightforward implementation in a fiber probe67. 
In our case, the total number of patients used for training, validation and testing are 311, 33, and 37, respectively 
(see the patient distributions of each tumor type in Supplementary Table 1). For each type of tumor, we randomly 
assigned 2 patients with non-tumor to participate in classification training. We use accuracy, sensitivity (correct 
rate of tumor) and specificity (correct rate of non-tumor) to evaluate the overall classification performance. The 
results show the single modality has a correct rate of 98.2% (sensitivity: 97.3%, specificity: 100%), which has 
almost equivalent performance with multi-modalities (Supplementary Table 2). The results verify the feasibility 
of clinical exploitation using two-photon fluorescence endomicroscopy systems.

Network architecture and training process.  The proposed network cascades a U-Net68 and a EDSR69 
in sequence (Supplementary Fig. 3). The U-Net part consist of a series of down sampling and up sampling blocks 
to learn the features at different resolution scales. We remove the batch normalization layers in both networks, 
since they get rid of range flexibility from networks by normalizing the features. For the EDSR part, the network 
is mainly composed of residual blocks in series. The additional scaling layer in the residual block of the EDSR 
helps to stabilize the training progress. A convolution layer is used to extract features at the beginning and the 
end of all the residual blocks, respectively. A skip connection connects these two convolution layers. Finally, the 
image is output through a convolution layer. All convolutional layers use filters of size 3 × 3. Since there is no 
need to increase the image size in our case, we remove the upsample layer from the original model. The depth 
(the number of residual blocks) is 32 and feature number is 256.

The loss function is evaluated on both pixel-wise and feature-wise metrics. The mean absolute error is calcu-
lated as pixel-wise metric. The pretrained VGG-16 is used to define the perceptual loss function that measures 
perceptual differences in output and ground truth (GT) label. The total loss function is the sum of these two 
terms with an adjustable weighting coefficient.

We trained two networks for synthetic images and real images respectively. For the synthetic images, 10,000 
images from multiphoton biopsies images of human brain tumors are randomly selected and then cropped to 
the size of 192 × 96. 9,500 of them are used for the training, 300 for the validation and 200 for the testing. For 
real images, we adopt 5,500 natural images from ImageNet70 as GT to display on the screen, which are scaled 
to 512 × 512 pixels for display. The minibatch size is 4. The learning rate is initialized to 10−4 for all layers and 
decreases by a factor of 0.5 for 2 × 103 iterations. The training was run on a workstation with 32 AMD Ryzen 9 
3950X 16-Core Processors and a NVIDIA RTX A6000 GPU.

(6)�Y = DC �X + �E

(7)�Y = W �X + �E

(8)X̂ = argmin
�X

∥

∥W �X − �Y
∥

∥

2

2

(9)X̂ = argmin
�X

{

∥

∥W �X − �Y
∥

∥

2

2
+ τ�

(�X
)

}
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Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author 
upon reasonable request.
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