Table 3 Performance of the DMIL models with different backbone networks.
Backbone | Pooling | ACC | AUC | SEN | SPE | F1-Score |
---|---|---|---|---|---|---|
AlexNet | Max | 0.848 | 0.937 | 0.862 | 0.867 | 0.847 |
Conv | 0.817 | 0.922 | 0.828 | 0.833 | 0.814 | |
AM | 0.866 | 0.951 | 0.892 | 0.900 | 0.862 | |
VGG16 | Max | 0.850 | 0.958 | 0.800 | 0.767 | 0.862 |
Conv | 0.817 | 0.931 | 0.788 | 0.767 | 0.825 | |
AM | 0.883 | 0.982 | 0.871 | 0.867 | 0.885 | |
ResNet34 | Max | 0.783 | 0.856 | 0.793 | 0.800 | 0.779 |
Conv | 0.800 | 0.886 | 0.781 | 0.767 | 0.806 | |
AM | 0.816 | 0.864 | 0.771 | 0.733 | 0.831 | |
DenseNet | Max | 0.817 | 0.883 | 0.828 | 0.833 | 0.814 |
Conv | 0.783 | 0.892 | 0.775 | 0.767 | 0.787 | |
AM | 0.850 | 0.927 | 0.889 | 0.900 | 0.842 | |
MobileNetV2 | Max | 0.800 | 0.871 | 0.765 | 0.733 | 0.813 |
Conv | 0.817 | 0.907 | 0.771 | 0.733 | 0.831 | |
AM | 0.850 | 0.963 | 0.784 | 0.733 | 0.866 |