Table 3 Performance of the DMIL models with different backbone networks.

From: Deep multiple instance learning for predicting chemotherapy response in non-small cell lung cancer using pretreatment CT images

Backbone

Pooling

ACC

AUC

SEN

SPE

F1-Score

AlexNet

Max

0.848

0.937

0.862

0.867

0.847

Conv

0.817

0.922

0.828

0.833

0.814

AM

0.866

0.951

0.892

0.900

0.862

VGG16

Max

0.850

0.958

0.800

0.767

0.862

Conv

0.817

0.931

0.788

0.767

0.825

AM

0.883

0.982

0.871

0.867

0.885

ResNet34

Max

0.783

0.856

0.793

0.800

0.779

Conv

0.800

0.886

0.781

0.767

0.806

AM

0.816

0.864

0.771

0.733

0.831

DenseNet

Max

0.817

0.883

0.828

0.833

0.814

Conv

0.783

0.892

0.775

0.767

0.787

AM

0.850

0.927

0.889

0.900

0.842

MobileNetV2

Max

0.800

0.871

0.765

0.733

0.813

Conv

0.817

0.907

0.771

0.733

0.831

AM

0.850

0.963

0.784

0.733

0.866

  1. *AM attention mechanism, ACC accuracy, AUC area under the curve, SEN sensitivity, SPE specificity.