
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:20315  | https://doi.org/10.1038/s41598-022-24485-y

www.nature.com/scientificreports

Contrast phase recognition in liver 
computer tomography using deep 
learning
Bruno Aragão Rocha 1,2*, Lorena Carneiro Ferreira 1, Luis Gustavo Rocha Vianna 2,5, 
Luma Gallacio Gomes Ferreira 2,5, Ana Claudia Martins Ciconelle 2, 
Alex Da Silva Noronha 2, João Martins Cortez Filho 4, Lucas Salume Lima Nogueira 4, 
Jean Michel Rocha Sampaio Leite 2, Maurício Ricardo Moreira da Silva Filho 1, 
Claudia da Costa Leite 1, Marcelo de Maria Felix 1, Marco Antônio Gutierrez 3, 
Cesar Higa Nomura 1, Giovanni Guido Cerri 1, Flair José Carrilho 4 & Suzane Kioko Ono 4

Hepatocellular carcinoma (HCC) has become the 4th leading cause of cancer-related deaths, with 
high social, economical and health implications. Imaging techniques such as multiphase computed 
tomography (CT) have been successfully used for diagnosis of liver tumors such as HCC in a feasible 
and accurate way and its interpretation relies mainly on comparing the appearance of the lesions 
in the different contrast phases of the exam. Recently, some researchers have been dedicated to 
the development of tools based on machine learning (ML) algorithms, especially by deep learning 
techniques, to improve the diagnosis of liver lesions in imaging exams. However, the lack of 
standardization in the naming of the CT contrast phases in the DICOM metadata is a problem for real-
life deployment of machine learning tools. Therefore, it is important to correctly identify the exam 
phase based only on the image and not on the exam metadata, which is unreliable. Motivated by this 
problem, we successfully created an annotation platform and implemented a convolutional neural 
network (CNN) to automatically identify the CT scan phases in the HCFMUSP database in the city 
of São Paulo, Brazil. We improved this algorithm with hyperparameter tuning and evaluated it with 
cross validation methods. Comparing its predictions with the radiologists annotation, it achieved an 
accuracy of 94.6%, 98% and 100% in the testing dataset for the slice, volume and exam evaluation, 
respectively.

Over the past few years, diagnostic medicine has achieved prominent success in the development of tools based 
on machine learning (ML) algorithms, especially by deep learning techniques such as convolutional neural 
networks (CNN), which are the most used and suitable approach for imaging analysis1. This computer-oriented 
approach enables the extraction of imaging patterns based on the ability to learn from data and has been suc-
cessfully applied in diagnosis and treatment of several conditions, including melanoma, nail mycosis, pneumo-
nia, acute respiratory distress syndrome (ARDS) and coronavirus disease, as well as in liver diseases, such as 
hepatocellular carcinoma (HCC)2–7.

Hepatocellular carcinoma has become the 4th leading cause of cancer-related deaths, with an increasing 
incidence, especially in western nations8–10. Magnetic resonance imaging (MRI) and multiphase computed 
tomography (CT) are currently the gold standard imaging method for detecting HCC with no need for a biopsy 
if a typical imaging pattern is present i.e. whenever a mass measuring 1 cm is found that demonstrates arterial 
hyper-enhancement and one or more major features in selected patients with high risk for HCC, according to 
the Liver Imaging Reporting and Data System8,11–14. These techniques involve intravenous contrast injection 
with a four-phase image acquisition protocol (unenhanced, arterial, portal and delayed), which is the clinical 
reference standard.
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Nonetheless, liver segmentation and HCC identification pipelines present many challenges related to the 
input images quality. For instance, Dercle et al.15 demonstrated that the quality of CT scans acquired at the por-
tal venous phase was suboptimal in one third of colorectal cancer patients. In addition, although radiologists 
can easily recognize the study phase visually, automatic phase identification is important for the deployment of 
future HCC screening algorithms. In the best scenario, automatic identification of CT scan phases should not 
be a problem, since there is a field called SeriesDescription in the DICOM metadata16, which has the name of 
the acquired series. However, in a real-life and clinical setting, the main problem is that there is no standard for 
naming across machines, even on machines of the same manufacturer. The series acquisition time DICOM Tag 
could also be a way to identify the series phase. However, this approach would only work if all exams had all four 
phases in clinical practices. As many exams may have fewer phases (for example, only the unenhanced and portal 
phase), this reinforces the importance of identifying the phase directly by analyzing the image.

The lack of standardization and proper quality control of contrast-enhanced phases in abdominal CT scans 
is a pivotal limitation in the field of radiomics17, and, to the best of our knowledge, very few attempts have been 
made to address these issues18.

Hence, these problems motivated this group to implement an algorithm to automatically classify the CT scans 
phases in Hospital das Clínicas (HCFMUSP) database in São Paulo, Brazil. We created the Liver Artificial Intel-
ligence (HepatIA) platform to store the CT scans and facilitate the radiologists annotation of the exams. Using 
an unprocessed DICOM folder containing all four contrast phases as input, we implemented a fully-automated 
CNN algorithm that outputs a sorted folder for each of the relevant contrast phases.

Organization of article.  The introduction of this article describes our motivation to identify the contrast 
phases in a CT scan. In the following section, there is an overview of our methodology and a description of 
HepatIA platform. In “Methods” section, we present a detailed description of data collected, annotation process, 
algorithm construction and evaluation methods. Then, we present the results, discussion and conclusion. After 
the references, we added the acknowledgements, author contributions statement, additional information about 
the dataset and competing interests.

Overview of the methodology
As shown in Fig. 1, the data used in this paper are abdominal CT scans acquired with a protocol for evaluation 
of the liver, which can be evaluated in three levels: (1) slice, which is a single image of the exam; (2) volume, 
which is the group of slices that belongs to a single contrast phase; and (3) exam, which includes the four vol-
umes from the corresponding four phases. The training step was performed in two steps. Firstly, we performed 
a hyperparameter tuning to find the best combination of parameters for the convolution neural network (CNN). 
Secondly, we trained the defined model with our dataset. For a better evaluation of the final structure of our 
model, we included a cross validation step. The developed CNN analyzes slices, generating the probability of the 
slice belonging to each phase. For the analysis of volumes and exams, we combined the results from the slices with 
a post-processing technique. More details of the dataset and methods used is described in “Methods” section.

Methods
Study population.  The study was approved by Ethics Committee at the Hospital das Clinicas da Faculdade 
de Medicina da Universidade de São Paulo under the study protocol CAAE 69385217.1.0000.0068 in accord-
ance with the ethical guidelines of the 1975 Declaration of Helsinki. The need for written informed consent was 
formally waived by Ethics Committee at the Hospital das Clínicas da Faculdade de Medicina da Universidade de 
São Paulo due to its retrospective, single-center nature. Our study population is composed of 396 CT scans from 
unique patients, which are composed with 4 volumes each, summing in 178.633 slices. The data are from healthy 
liver donors (20%) and cirrhotic patients (80%), from the Division of Clinical Gastroenterology and Hepatology 
of the Hospital das Clínicas at the University of São Paulo (HCFMUSP) in São Paulo, SP, Brazil, from 2008 to 
2021. These patients underwent abdominal Multi-phase Contrast-enhanced Computed Tomography (CT) to 
assess liver conditions using a 4-phase protocol (unenhanced, arterial, portal-venous and delayed).

Figure 1.   Overview of the methodology and application. Our methodology is divided into three main steps: (1) 
data annotation and preprocessing, (2) model development and (3) model evaluation.



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:20315  | https://doi.org/10.1038/s41598-022-24485-y

www.nature.com/scientificreports/

Database and preprocessing.  As our exams are obtained with a four-phase image acquisition protocol, 
the exam’s volumes should be labeled indicating the phase, which are: unenhanced phase (also known as non-
enhanced) is an image acquisition before the administration of intravenous contrast; Arterial phase is an acquisi-
tion about 35–45 s after intravenous contrast injection; portal phase is 60–75 s post-injection and delayed phase 
is about 3 minutes post-injection (Fig. 2).

For the creation of the database and dataset preparation, we created a web-based platform called HepatIA 
implemented with Django 3.2.9, where the CT scans were stored in an Orthanc DICOM server (version 1.5.8) 
which is connected to the hospital PACS, while patient and clinical-related information was stored in a Post-
greSQL relational database19.

Our platform allows the radiologists to access and fill out exam information, including the correct labels for 
each of the four contrast phases. This phase annotation was performed by three radiologists with two, four and 
eleven years of experience, by subjective analysis of the images using the DICOM viewer tool integrated into the 
HepatIA web-based platform (Fig. 3). Each reader checked the written phase DICOM tag and looked directly 
at the image to confirm it. We considered this activity to have a very low probability of human error, therefore, 
we dispensed the need for double reading.

A total of 396 exams (CT scans), from unique patients, were collected in DICOM format. The scans were 
randomly split into training (80%) and testing (20%). For each CT scan, we used all the four phases and, for each 
phase, we selected up to 150 slices that were spaced approximately evenly. The exams were taken by different 
CT machines, of which 214, 91, 90 and 2 are from Philips, GE Medical Systems, Siemens Health and Toshiba, 
respectively.

Proposed model.  The implemented model was a Convolutional Neural Network (CNN)20 with a dense 
final classification layer. Figure 4 shows the high level description of the architecture which consists of a series 
of convolutional blocks with an additional densely connected hidden layer and one output for each of the four 
contrast phases.

Figure 2.   Demonstration of the contrast phases of a liver CT scan.

Figure 3.   HepatIA platform liver tomography contrast phase annotation screen.
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The convolutional blocks that we used are detailed on Fig. 5. Each block consists of a convolutional step, 
which aims to identify patterns in the images, and a pooling step for reducing the image dimensions, and, finally, 
a regularization step, where batch normalization and dropout are applied.

Hyperparameter tuning.  The definition of the model depends on several parameters, such as number of con-
volutional layers, and finding the best combination is not a trivial task. As a solution, we used the Hyperband 
parameter tuning algorithm21 to test the hyperparameters described in Table 1 for all possible values indicated 
on the table.

The Hyperband algorithm was chosen since it can test a wide range of hyperparameter sets with few epochs 
and only does full time training on the most promising combinations, thus allowing many more values to be 
tested within a reasonable tuning time.

In the case of Dropout and Learning Rate, the tuning algorithm samples values according to a log-based prob-
ability distribution, assigning equal probabilities to each order of the magnitude range. The Learning Epochs and 
Batch values were set after testing for impacts on execution time and memory consumption.

For this step, we used the train data set split into training (80%) and validation (20%). The evaluation of the 
model with the chosen hyperparameters was made with the test data set. The final parameters of the model are 
presented in the Results section.

Cross‑validation.  Using the data set that was previously assigned for training purposes and the model defined 
with the tuning procedure, we performed a k-fold cross-validation, where k corresponds to both the number of 
subsets the data was randomly sorted into, as well as the number of iterations. In this investigation, we set k as 5. 
For each iteration, four of the folds were used for training the CNN while the remaining one was used for testing, 
so that, at the end, each input data (either slices, volumes or exams) was used exactly four times for training and 
once for testing, respectively.

Figure 4.   High level description of the CNN architecture.

Figure 5.   Convolutional block with the convolutional and pooling steps, followed by regularization. N input 
feature size.
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Loss function.  In order to measure and minimize the errors over the epochs during the training and validation 
steps, we used the Categorical Cross-Entropy loss function, defined as:

where yo,c corresponds to a binary indicator, i.e. 1 if class label c is the correct classification for this observation 
and 0 otherwise. M corresponds to the classes, which are the four exam phases; Observation o is the slice; po,c is 
the model predicted probability that observation o is from class c.

Evaluation.  Prediction levels.  The algorithm generates predictions in three evaluation levels: individual 
slices, individual phase volumes and exams. The model analyzes the 3D input images by processing one 2D slice 
at a time. The algorithm assigns a score to each input slice for all possible phases. Hence, volume-level prediction 
is made by choosing the corresponding phase with the highest mean score across all slices. Finally, the full exam 
prediction is made by combining the predictions of its corresponding volumes. Since there is exactly one volume 
for each phase, in cases where more than one volume has the same volume-level prediction the volume with 
highest confidence is chosen and the other volume’s prediction is changed to the next available option.

For both slice and volume levels several classification performance metrics are described in the next section. 
Exam level predictions were evaluated according to the number of volumes correctly identified.

Evaluation metrics.  Herein, we evaluated the performance of our model in the testing set using the most com-
mon metrics for classification problems: F1 score, Area under the ROC curve, accuracy, precision and recall22. 
These metrics were calculated in a one-vs-rest manner .i.e. there will be four measures for each evaluation met-
ric, each of them corresponding to correctly classifying the images as a given class against all the other classes. 
The means were also reported for each evaluation metric.

The accuracy of the model is calculated as the fraction of images classified correctly over the total number 
of images:

where TP, FP, TN and FN correspond to the number of true positives, false positives, true negatives and false 
negatives, respectively.

The following metrics are defined based on a class C, in this case, the classes are the four phases of the CT 
scan. The precision is defined as follows:

while the recall (also referred to sensitivity or true positive rate) corresponds to:

The formula for the F1 score is defined as:

As the last metric, AUC is the area under the ROC curve, which is the plot of FPR x recall. FPR is given by:

(1)Categorical_Cross_Entropy(o, y, p) = −

M∑

c=1

yo,c log(po,c)

(2)Accuracy =
TP + TN

TP + TN + FP + FN

(3)Precision(C) =
TP(C)

TP(C)+ FP(C)

(4)Recall(C) =
TP(C)

TP(C)+ FN(C)

(5)F1score(C) =
2× Precision(C)× Recall(C)

Precision(C)+ Recall(C)

Table 1.   Hyperparameters of the CNN.

Hyperparameter

Class Name Possible values

Architecture Convolutional layers 2, 3, 4, 5, 6

Architecture Convolutional kernel 3 × 3, 5 × 5, 7 × 7

Architecture Filters on 1st layer 8, 16

Architecture Dense layer size 8, 16, 24, 32

Architecture Image side 256, 512

Regularizer Dropout [1e−6, 1e−2]

Regularizer Augmentation Yes or no

Regularizer Batch normalization Yes or no

Optimizer Optimizer Adam, SGD

Optimizer Learning rate [1e−6, 1e−2]
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Each of these metrics is calculated per slice prediction as well as per volume prediction.
Lastly, the performance of the analysis per exam was expressed in terms of how many phases in each exam 

were correctly classified. In this step, we iteratively associate volumes with phases. The first assignment of a 
volume-phase pair is done according to the highest prediction among all possible volume-phase pairings. After 
that, the next highest prediction value for a pairing that does not contain the already paired volume and phase 
is identified and the corresponding volume and phase are paired. This step will happen until only one volume 
and one phase remain to be paired. Thus, in the end, an exam will always have each of its 4 volumes associated 
with a different phase as well as an indicated volume for each of the four phases.

The implementation was performed using Python 3.8 environment with Tensorflow 2.6 and Keras 2.6 pack-
ages. The computer used had the following specifications: Linux Ubuntu 20.04 Virtual Machine in a FOXCONN 
M100-NHI High Processor Computing (HPC) with 32 Cores CPU @ 2.9 GHz 346 GB RAM and a cluster of 16 
NVIDIA Tesla V100 16 GB cards.

Results
Hyperparameter tuning.  Table 2 shows best values for the hyperparameters adjusted with hyperparam-
eter tuning. These values were then used in all further analysis.

Comparing a model trained with the default hyperparameter values with a model trained with the best tuned 
values, we observed an accuracy increase from 78.02 to 85.49% in the slices evaluation and 89.90 to 92.31% in 
the volume one.

Best model results.  Figure 6 displays the accuracy and the loss of the model for both training and valida-
tion data sets over 25 epochs, that is, 25 rounds of evaluation with all training images. The highest accuracy with 
the smallest loss was achieved in the 23rd epoch in the validation data set.

The output of the model is the probabilities of each slice belonging to each contrast phase, as shown in Fig. 7. 
The final classification of the slice is the contrast phase with higher probability. The accuracy achieved in the 
testing set was 94.6%. Among the other metrics, as shown in Table 3, the unenhanced phase had the best results.

When combining each slice prediction into a single volume prediction, the accuracy rose to 98%. Increases 
were also observed for the other evaluation metrics, as shown in Table 4. Across the four phases, the F1-score and 
AUC metrics show a decrease in performance according to the order of occurrence of the phases. Particularly, 
the unenhanced has the best values while the delayed has the lowest ones. It is possible to observe in Fig. 8 that 
most mistakes in classification are in the portal and delayed phases.

The accuracy of the exams evaluation was 100%, which means that all phases in all exams were correctly 
classified.

Cross validation results.  For a better evaluation of our model, we added a cross validation step using four 
folds. Despite the decreasing performance shown in Tables 5 and 6 , the general accuracy for slices and volumes 
was above 92%. The accuracy for the exams was 96.5 ± 3.93%.

Overall, all metrics were higher in the volumes evaluation than in the slices one. For both slices and volumes, 
the highest metrics were achieved in the unenhanced and arterial phases.

(6)False_positive_rate(C) =
FP(C)

FP(C)+ TN(C)

Table 2.   Best hyperparameters after tuning. *Only one value was tested for this hyperparameter.

Hyperparameter

Class Name Value

Architecture Convolutional layers 5

Architecture Convolutional kernel 5 × 5

Architecture Filters on 1st layer 32

Architecture Dense layer size 32

Architecture Image side 256

Regularizer L2 * 0.01

Regularizer Dropout 2.045× 10
−4

Regularizer Augmentation No

Regularizer Batch normalization Yes

Optimizer Optimizer Adam

Optimizer Learning rate 1.483 10−3

Optimizer Loss function * Cross entropy

Execution Learning epochs * 50

Execution Batch * 5
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Figure 6.   Accuracy and loss in the training and validation data sets of a CNN to identify the four phases of 
abdominal CT scans.

Figure 7.   An example of slice with correct prediction of contrast phase. This plot shows the confidence of 
the slice belonging to each contrast phase. For this slice, the correct phase is non-enhanced and the algorithm 
classified it correctly with 70% of confidence, while it also gave a probability of approximately 18% of belonging 
to delayed, 10% of belonging to portal and 2% of belonging to arterial.
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Given that the exams used in this experiment are from four different CT machine manufacturers, we evalu-
ated the accuracy of the exams for each manufacturer. The results show that there was not a significant difference 
among them and the accuracy is above 95% for all machines.

In addition, exams from patients with chronic liver disease (n = 65) have an accuracy of 96.5 ± 3.4%, while 
the exams from healthy patients (n = 15) have 96.7 ± 6.7%.

Discussion
Herein, the CNN model developed to predict, identify and differentiate contrast-enhanced phases in liver com-
puter tomography presented results with high accuracy.

Besides the accuracy achieved using each single slice as input being slightly higher than the one achieved 
by Dercle et al.18, who used a random forest classifier for predicting optimal-portal phase (85% in our analysis 
compared to 84% in theirs), the average accuracy of our algorithm rose to 98% in the volumes evaluation. In 
addition, our algorithm’s performance rose up to 99% when considering other evaluation metrics such as the 

Table 3.   Performance metrics in the testing set for the slices evaluation using the best model found by the 
Hyperparameter tuning.

Precision Recall F1-score AUC​ N

Unenhanced 0.99 0.99 0.99 1 10,757

Arterial 0.98 0.98 0.98 1 10,870

Portal 0.92 0.89 0.89 0.99 11,907

Delayed 0.89 0.93 0.91 0.99 10,803

Average 0.95 0.95 0.95 0.99 –

Table 4.   Performance metrics in the testing set for the volumes evaluation using the best model found by the 
Hyperparameter Tuning.

Precision Recall F1-score AUC​ N

Unenhanced 1.00 1.00 1.00 1.00 80

Arterial 0.99 1.00 0.99 1.00 80

Portal 0.97 0.99 0.98 1.00 80

Delayed 0.99 0.96 0.97 0.99 80

Average 0.99 0.99 0.99 0.99 –

Table 5.   Performance metrics in the testing set for the slices evaluation using cross validation. The values are 
mean±standard deviation.

Precision Recall F1-score AUC​ N

Unenhanced 0.98 ± 0.02 0.99 ± 0.01 0.99 ± 0.01 1 ± 0.00 10,839.25 ± 126.79

Arterial 0.97 ± 0.01 0.95 ± 0.04 0.96 ± 0.02 0.99 ± 0.01 10,972.75 ± 148.56

Portal 0.87 ± 0.06 0.87 ± 0.04 0.87 ± 0.02 0.98 ± 0.01 11,770.0 ± 129.03

Delayed 0.89 ± 0.03 0.88 ± 0.05 0.88 ± 0.01 0.98 ± 0.00 10,926.25 ± 174.68

Average 0.93 ± 0.01 0.92 ± 0.01 0.93 ± 0.01 0.99 ± 0.00 –

Table 6.   Performance metrics in the testing set for the volumes evaluation using cross validation. The values 
are mean ± standard deviation.

Precision Recall F1-score AUC​ N

Unenhanced 0.99 ± 0.01 1.00 ± 0.00 0.99 ± 0.01 1.00 ± 0.00 80

Arterial 0.99 ± 0.01 0.97 ± 0.04 0.98 ± 0.02 0.99 ± 0.01 80

Portal 0.93 ± 0.05 0.97 ± 0.02 0.95 ± 0.03 0.99 ± 0.01 80

Delayed 0.97 ± 0.02 0.94 ± 0.02 0.96 ± 0.02 0.99 ± 0.00 80

Average 0.97 ± 0.02 0.97 ± 0.02 0.97 ± 0.02 0.99 ± 0.00 –
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AUC (0.997 ± 0.002). Hence, this result further demonstrates the potential of our approach to be applied in the 
clinical setting. In terms of the delayed phase’s accuracy, our findings are also in unison with Dercle et al.18, since 
this phase concentrated most of prediction mistakes among all the evaluated phases.

Nonetheless, it should be noted that these findings may be compared with some caution, since the input, 
algorithm and output data differ among our study and the one by Dercle et al.18. For instance, we aimed to pre-
cisely identify only four phases of the exams (unenhanced, arterial, portal and delayed), since the CT evaluation 
of the liver is most commonly based on this four-phase protocol rather than a five-phase one that includes an 
optimal-portal category described by Dercle et al.18. Furthermore, we developed a fully-automated solution using 
only imaging data as input for our CNN algorithm, as opposed to Dercle et al.18, who used the mean intensities 
of the abdominal aorta and portal vein extracted from specialist annotated pixels.

The success of our approach is also evidenced by the performance of the exams evaluation, which, to the best 
of our knowledge, had not been previously tested by any research group. Furthermore, we included a hyperpa-
rameter tuning step, which has been shown to slightly improve the accuracy of AI algorithms, being fundamental 
for any cutting-edge pipeline23. In addition, we showed that there is no variability among CT machines in terms 
of algorithms’ accuracy. Furthermore, one of the advantages of our approach does not need to use metadata in 
order to be applied to real data sets.

In the test set volume, the algorithm misclassified the exam series in four volumes. By analyzing each case 
individually, the reason behind the misclassification cannot be determined with certainty, but it is possible to 
infer potential confounding factors. In two cases, the algorithm classified a delayed phase as a portal as shown in 
Fig. 9. When analyzing the images, we observed that these correspond to patients whose delayed phase showed 
no contrast excreted in the collecting system. We deduced that, probably, the lack of contrast in the collecting 
system in these patients with possible slow cardiac output or slow renal excretion rate may be the confounding 
factor. In this kind of situation, a radiologist who only has access to this phase of the exam will also have difficul-
ties in differentiating whether it is a delayed phase or a portal phase with poor quality. In the other two cases, the 
algorithm classified a portal phase as an delayed phase as shown in Fig. 10. There was extensive thrombosis of 
the trunk of the portal vein, causing the liver and the portal vein not to present significant enhancement, which 
may have been the confounding factor.

An important aspect to be taken into account in this study is the fact that it included healthy patients and 
mostly cirrhotic patients, including in very advanced stages. This composition of the patient profile shows that 
the algorithm performs well even in a population with a high prevalence of liver disease.

For instance, in a clinical environment, this kind of deep learning approach to identify contrast phase may also 
be useful for creating databases that facilitate radiologists’ daily routine and, ultimately, accelerate the diagnosis 

Figure 8.   Confusion matrix heat map of the testing set volumes.
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of liver diseases, identifying, selecting and organizing images within the DICOM viewer, based on post-contrast 
phases, saving one more step in the analysis. Besides, it could also allow the post-contrast images’ quality evalu-
ation, bringing new possibilities for quality control tools.

Furthermore, a CT phase identifier can be used as a general, yet extremely useful strategy to organize and 
clean the input data for any algorithm that utilizes image information. As noted by Castaldo et al.1, these two 
issues are among the main limitations in the fields of radiomics and artificial intelligence. In this context, this 
AI solution can potentially aid in solving those issues and might be incorporated in other radiology-pipelines, 
improving the accuracy of virtually any CT abdominal algorithm that uses specific contrast phases as input.

These results show a promising application of a CNN-based phase identifier. However, it is necessary to 
evaluate it on a larger dataset of exams, especially with more diverse machines and image acquisition protocols 
to guarantee the maintenance of performance and subsequent practical implementation of this type of approach.

Conclusion
Our study successfully demonstrates an approach to phase recognition of contrast-enhanced abdominal CT 
scans using a Convolutional Neural Network (CNN). Considering the high mean accuracy of our algorithm, our 
results can significantly aid in the proper and fundamental standardization and quality control of input data for 
liver segmentation and identification of HCC lesions. Further validation studies are necessary to check whether 
the algorithm’s accuracy remains the same for a diverse set of CT exams, especially for different patient profiles 
and institutions with potentially different infusion pumps and contrast timing protocols. Addressing this ques-
tion will be fundamental to tailor AI solutions for a faster and more proper care of patients with liver diseases.

Figure 9.   Two slices from the delayed phase incorrectly classified as portal phase. In general, in the delayed 
phase, we notice contrast being excreted in the urinary collecting system. In this case, despite being a delayed 
phase, no contrast was observed, probably due to low cardiac output or slow urinary function.

Figure 10.   Example of a portal phase incorrectly classified as a delayed phase. Note that there is an infiltrative 
hepatocellular carcinoma with extensive portal vein thrombosis.
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Data availability
The dataset generated during the current study is not publicly available due to institutional privacy policies but 
is available from the corresponding author on reasonable request.
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