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Associative memory of structured 
knowledge
Julia Steinberg 1,2,3* & Haim Sompolinsky 2,4*

A long standing challenge in biological and artificial intelligence is to understand how new knowledge 
can be constructed from known building blocks in a way that is amenable for computation by neuronal 
circuits. Here we focus on the task of storage and recall of structured knowledge in long-term memory. 
Specifically, we ask how recurrent neuronal networks can store and retrieve multiple knowledge 
structures. We model each structure as a set of binary relations between events and attributes 
(attributes may represent e.g., temporal order, spatial location, role in semantic structure), and map 
each structure to a distributed neuronal activity pattern using a vector symbolic architecture scheme.
We then use associative memory plasticity rules to store the binarized patterns as fixed points in 
a recurrent network. By a combination of signal-to-noise analysis and numerical simulations, we 
demonstrate that our model allows for efficient storage of these knowledge structures, such that the 
memorized structures as well as their individual building blocks (e.g., events and attributes) can be 
subsequently retrieved from partial retrieving cues. We show that long-term memory of structured 
knowledge relies on a new principle of computation beyond the memory basins. Finally, we show that 
our model can be extended to store sequences of memories as single attractors.

Human memory is remarkable in its ability to robustly store and retrieve information with complex and hierar-
chical structure, guiding cognitive processes on many different timescales. In many instances, this “structured 
knowledge” can be described as sets of associations between discrete events with their contextual attributes. 
Some concrete examples are, temporal sequences representing events associated to particular times, episodic 
memories representing events associated with particular contexts1,2, cognitive maps representing spatial environ-
ments through landmarks associated with locations3–5, and semantic structures in language in which meaning is 
conveyed through sets of words associated with their respective roles within a sentence6–8.

To effectively use structured knowledge that has been stored in long-term memory, it must be represented 
in a way that allows for its retrieval through partial information, with tolerance for noisy and degraded cues. 
This is likely facilitated by the distributed nature of the underlying neural representations, which provide an 
inherent notion of similarity between representations and a mechanism for learning representations by the the 
tuning of synaptic weights in a neural network7,9–11. However, while the utility of distributed representations is 
clearly beneficial from this perspective, it is still not well understood how to represent associations and relations 
in neural networks in an efficient and flexible way that is amenable to the variety of computational demands 
involved in higher cognition12–14.

Several recent studies have addressed the contextual modulation of neuronal representations, e.g., by forming 
“mixed representations”15 or by gating parts of the network16. Other proposals have tried to implement more 
general relational structures in neural networks. An early attempt used the tensor product to create a distributed 
representation of pairwise relations between discrete items6. Subsequently, several Vector-Symbolic Architec-
tures (VSA) were proposed as compressions of the tensor product to avoid the increase in dimensionality of 
the representation, allowing for the creation of hierarchies of relations in a compact way17–22. More recently, 
several architectures for deep or recurrent neural networks have been proposed to promote flexible relational 
reasoning23–30. However, these works have primarily focused on working memory, i.e., online tasks of processing 
incoming structured data. By contrast, the challenge of storing and retrieving relational structures in long-term 
memory has received little attention.

Storing knowledge structures in long-term memory poses several additional challenges. While working 
memory tasks typically process few structures at a time, long-term memory networks must cope with storing 
a very large number of structures, such as complex cognitive maps, multiple sequences, or stories, which may 
scale with the size of the memory network itself. While several works in the psychology literature31 Two generic 
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measures of the efficiency of information storage in recurrent neural networks are their extensive capacity, i.e., 
the number of stored items scales with the number of neurons in the network32, and the ability to recall memories 
from partial cues which have small but significant overlap with the desired memory33. Both of these measures 
can be adversely affected by correlations across memorized patterns. For relational structures, additional correla-
tions may occur due to the presence of objects or contextual attributes in multiple memories, putting additional 
constraints on the encoding of relational information. In addition to these considerations, models of distributed 
representation of knowledge structures typically compress the relational structure into a fixed-length distributed 
vector representation. To compensate for this loss of information, “clean-up” mechanisms are invoked. Thus, it is 
crucial that such mechanisms can be adapted for the task of retrieval of such structures from long-term memory 
to efficiently store large numbers of relational structures each containing multiple associations.

In this work, we propose a model for associative memory of multiple relational structures by using a quadratic 
binding scheme to form vector representations of memories consisting of multiple binary relations between items 
(which we will henceforth denote as pairs of objects and their attributes).

While our model is quite general, in most of our work we will use the holographic reduced representation 
(HRR)7 VSA scheme for convenience. We show that the binarized versions of these structures can be stored 
as fixed point attractors in a recurrent neural network and each structure can be retrieved from the memory 
network by using a cue which is a structure encoding a subset of the relations in the memorized structure. We 
highlight the holistic nature of this model by comparing the storage of temporal sequences in the present model, 
where the entire sequence is stored as a single fixed point, to previous models, where a sequence is stored as a 
sequence of transitions between multiple fixed points and cannot be fully recalled at once34. Our model posits 
that in addition to the network that stores the structures, a Dictionary network stores all individual items (e.g., 
individual words, familiar objects). We show that the identities of the objects contained in the structure can be 
decoded faithfully from the retrieved memory by querying the retrieved structure with the appropriate cue as 
long as a “clean-up” operation is performed to map the noisy estimate of the object to the correct item in the 
Dictionary. Furthermore, this decoding works well even when the retrieved structure is significantly degraded.

Relational structures
We begin by modeling a binary relational structure S as a set of L object/attributes pairs

where both objects a and attributes b have embeddings as real vectors representing distributed patterns of acti-
vation in a neuronal population. For simplicity, both populations will be assumed to be of the same size N. We 
represent relations between items in a pair (a, b) by a transformation through a pairwise quadratic nonlinearity 
to a binding vector g(a, b) (in RN ) representing a distributed pattern of activity in a population of N “binding” 
neurons. Each component of the binding vector takes the form

where each Gk is an N × N  fixed binding matrix. The binding operation in Eq. (2) is a generalized version of 
a VSA scheme18 and can be interpreted as a lossy compression of the tensor product binding operation first 
proposed in6.

We obtain the representation of the full relational structure S by the vector summation of the individual 
object/attribute pairs,

where the vector summation induces a second source of information loss. The representation Ŝ is permutation 
invariant with respect to the index ℓ so that the relations within the structure have no particular order.

The compressed representations of structures can be used for a variety of computations, such as structure 
classification. Here we focus on unbinding tasks, in which given Ŝ and one of its attributes bℓ , we need to esti-
mate its pair aℓ . Similar to binding, we assume that the unbinding operation is performed through a quadratic 
transformation involving the pair (Ŝ, b) , so that the k-th component of the estimator âkℓ of aℓ is given by

where each Fk is an N × N  matrix chosen so that the decoding operation is the approximate inverse of the 
binding operation.

In general, the binding and unbinding matrices can be learned and the optimal choice should depend on the 
nature of the items contained in the dictionary. Here we use a generic set of matrices, a popular choice known 
as Holographic Reduced Representations (HRR) described in "Methods".

The final estimate of a, ã , is computed by comparing the noisy estimate against a Dictionary, i.e., a neural 
long-term memory system that stores all familiar objects ad , using,

A schematic of the encoding and decoding networks is shown in Fig. 1a.
The maximum likelihood (ML) decoding error is given by the probability Pǫ that the estimator â has the largest 

overlap with an incorrect item in the dictionary. It depends on the size of the dictionary D and the signal-to-noise 

(1)S = {(a1, b1), . . . , (aL, bL)}

(2)gk(a, b) = aTGkb

(3)Ŝ =
L∑

ℓ=1

g(aℓ, bℓ)

(4)âkℓ = ŜTFkb , k = 1, ...,N

(5)ã = argmax
d∈D

d · â
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ratio ( SNR ) overlaps of the estimator â with items dictionary defined in Eq. (20) in "Methods". ML decoding is 
an idealization of a more biologically realistic retrieval of the stored pattern a from a retrieval cue â in a long-
term associative memory network storing all individual Dictionary items. Two possible implementations of this 
memory system are a winner take all network with lateral inhibition35 or a sparse Hopfield network36.

Storing structures in long‑term associative memory
We now consider the long-term memorization of multiple knowledge structures by storing their vector repre-
sentations in a neural network for long-term Structured Knowledge Associative Memory (SKAM), so that they 
can be retrieved at a later time from partial cues and subsequently queried to reconstruct individual events. We 
consider a set of P structures {S1, . . . , SP} which for simplicity, all consist of L items. We label the set of L objects 
and attributes comprising the µ-th structure as aµℓ  , bµℓ , l = 1, ..., L.

For each structure, the HRR encoding scheme is used to create a vector representation Ŝµ from Sµ.
To store multiple structures as fixed points in a neural network, the neuronal input-output transformation 

must be highly non-linear, implying that the stored patterns themselves are limited to the dynamic range of the 
neurons. As in a standard Hopfield network32,33,37, we assume neurons are binary ±1 variables and the memory 
patterns, candidates of fixed points of the attractor dynamics are σµ = sgn(Ŝµ)s . For a network with N binary 
neurons, the memory load is defined as α = P

N  , where P is the number of stored structures.
In general, the associative nature of Hopfield memory networks is expressed in the ability to recall a memo-

rized pattern starting in any initial state which has a sufficiently large overlap with the memorized pattern. If the 
initial state is within the basin of attraction of the pattern, it will converge to the pattern without errors. In our 
case, we consider partial cues of a structure, Ŝ , in the form of a recalling structure Ŝ0 obtained by the binding 
and subsequent summation of any subset S0 of the L pairs of binary relations contained in Ŝ , i.e.,

(6)S
µ
0 =

L0∑

ℓ=1

g(a
µ
ℓ , b

µ
ℓ )

Figure 1.   (a) A schematic of the network used to bind objects/attribute pairs (a, b) to form the knowledge 
structure Ŝ alongside the network used to decode an object aℓ from Ŝµ by presenting the attribute bℓ . (b) The 
unbinding error Pǫ shown as a function of structure length L for N = 1000 for various values of D averaged 
10, 000 structures (c) SNR−1 shown as a function of L for several values of N averaged over 10, 000 structures.
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where L0 is the number of recalling elements in Ŝ0 and is assumed to be much less than L. The network is then 
initialized in the state σµ

0 = sgn(Ŝ
µ
0 ) and evolved to a fixed point which, if successful, corresponds to the stored 

binarized structure σµ . A schematic of our model is shown in Fig. 2 and more details on the memory network 
are given in "Methods".

There are several learning rules which can be used to store patterns as discrete fixed points in recurrent neural 
network models of associative memory. Here, for simplicity, we use the Pseudo-inverse learning rule proposed 
in38 to train the network. In a Pseudo-inverse network, all structures are perfect fixed points for α < 1 , which 
is assumed throughout. This allows us to focus on the retrieval cues, since failure to perfectly recall a structure 
occurs only when the retrieval cue is outside of the basin of attraction of the memorized structure. We observe 
qualitatively similar behavior for the Hebb learning rule and the Storkey rule introduced in39 for α well below 
the memory capacity described in Section 3.4 of the Supplementary Material.

Results
We evaluate the performance of the scheme introduced in the previous section by the ability to accurately per-
form the unbinding operation after retrieval of a structure from the SKAM. For example, after retrieving the 
structure µ = 1 , we should be able to extract the item a1ℓ with a query in the form of its pair, i.e., b1ℓ with low error. 
We quantify performance by the average unbinding error Pǫ obtained in simulations where structured memories 
are created from random patterns, stored in memory, retrieved with partial cues σµ

0 = sgn(Ŝ
µ
0 ) , and subsequently 

decoded using the ML “clean-up” operation. We assume all items appearing in memorized structures are stored in 
dictionaries for objects and for attributes which are then used to decode from the retrieved memory. A schematic 
of this process is shown in Fig. 2 and full details of the simulations are provided in "Methods".

The parameters involved in the performance measure are: network size N, memory load α = P/N , size of 
the relational structures and the retrieval cue, denoted as L and L0 , respectively. We consider the regime where 
both N and P are very large and the memory load α ∼ O(1)32,40, mainly considering values α ∼ 0.1− 0.2 , where 
the network acts as a good associative memory.

Retrieval of structured memories.  We begin by showing numerical results which measure the quality 
of the retrieved structures in terms of the unbinding error Pǫ and the SNR of overlaps defined in Eq. (20). In all 
reported results, the extracted item (and the associated query) comes from pairs that are not part of the cue-
ing structure S0 . Thus any performance better than chance necessarily involves information extracted by the 
retrieval from long-term memory. In Fig. 3a we show the dependence of the unbinding error Pǫ on L, L0 , and α . 
For comparison, we show Pǫ for the original structure prior to storage in the memory network, demonstrating 
that except for small L, the dominant contribution to the error comes from retrieving the structure from long-
term memory. We also observe that for a fixed L, L0 , and α , the error is suppressed as N increases, in contrast to 
standard large attractor memory networks where performance depends only on P/N. To elucidate this behavior, 
we replot the results in terms of the SNR−1 , i.e., the inverse of the SNR as defined above in Fig. 3b, showing that 
for each L0 , there is a critical L above which the SNR of the memorized structures decreases relative to the origi-
nal SNR, SNR0 before storage in long-term memory. Note that due to binarization, SNR0 is smaller by a factor of 
2
π

 relative to the value given in Eq. (22). we replot the same results in terms of the inverse of the normalized SNR, 
SNR/SNR0 vs., L/L0 . Since SNR0 is proportional to N/L, this normalization factors out the “trivial” dependence 
on L/N from the post retrieval SNR . Figure 3c shows that for a fixed α the normalized inverse SNR depends only 
on L/L0 . and only weakly on N, suggesting that the main N dependence comes from the linearity of SNR0 in N.

Figure 2.   A schematic of the process of storing multiple binarized structures in a memory network. These 
structures can be retrieved from memory by encoding a retrieval cue from a subset of the relations in the 
desired structure as in Eq. (6) and initializing the network in the state of the binarized cue.
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Length of cueing structure and memory basins.  As seen in Fig. 3, the performance worsens (and 
SNR decreases) as L increases, while the converse holds true for L0 . We find that there is a critical ratio, lc = L0

L  , 
defined as the minimum initial cue (relative to the total length), that leads to very small error which is essentially 
equivalent to the error for the original structure.

To understand the origin of lc , we note that LL0 specifies the average initial overlap of the retrieval cue with the 
corresponding memorized structure, which we denote m0 . For small values of L0 , m0 ≈ 2

π

√
L0
L  . The size of m0 

determines whether on average the initial state is within the basin of the desired memory, so that the recurrent 
dynamics will succeed (or fail) in converging to the desired attractor. As the cue length L0 grows, the initial state 
becomes increasingly likely to be within the basin of attraction of the desired structure, retrieving it with essen-
tially no error. In these conditions, the unbinding operation has the same probability of success as for the original 
structure. Conversely, for small enough L0 the initial state is likely outside the attraction basin of the memory, 
leading to errors in the retrieved structure.

To determine the minimum value of L0 required for perfect retrieval, we use known estimates38 of the radius 
of attraction in attractor memory networks, R(α) = 1−mmin(α) , where mmin(α) is the minimal overlap between 
the initial state and the desired memory required for convergence to the correct fixed point on average. mmin(α) 
determines the minimal length of the cueing structure, i.e., lc(α) ≈ π

2m
2
min(α).

We conclude that when L0/L < lc , the main source of the decoding error in our model comes from the limi-
tation on good retrieval of the structure from memory, due to small values of L0/L , and not from noise in the 
original encoding (corresponding to L0/L > lc).

Lorem ipsum

Figure 3.   (a) The decoding error Pǫ is compared for several values of L0 from structures containing L pairs of 
items for two values of N and two values of α . (b) SNR−1 v. L. For each value of L0 , lc is given by the value of L 
where SNR−1 diverges from the line corresponding to the original structure, which is marked for each value 
of L0 . (c) (SNR/SNR0)

−1 v. LL0 where SNR0 = N
L  . For all figures, T = 20 parallel updates are used in memory 

retrieval and the average is performed over 10, 000 memories. The dictionary is fixed to D = 30N.
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Retrieval outside memory basins.  Naively, one would expect that for L0 < lcL , Pǫ will be very large due 
to the accumulation of errors in the retrieved structure, which is outside the memory basin. However, as shown 
in Fig. 3, this is not case. Surprisingly, the decoding performance is well below chance level for substantial range 
of values of L, even when L ≫ L0/lc . This observation can be explained by two scenarios: (1) the actual basins 
fluctuate in their shape so that for some structured memories, initial states may converge to the memory fixed 
point even if they are outside the mean basin radius; (2) initial states outside the true memory basin converge to 
fixed points with significant overlap with the structured memory.

To test these scenarios, we measured the empirical distributions p(m) where m is the overlap between the 
fixed point and the desired structure, obtained from histograms of overlaps for several values of L > L0

lc
 , shown 

in Supplementary Fig. 3.
We find that as N is increased, p(m) becomes sharply peaked around a single value m∗ . Inside the basin of 

attraction, i.e., m0 < mmin(α) , m∗ = 1 . However, outside of the basin when m0 < mmin(α) , m∗ < 1 ; nevertheless 
it is substantially larger than 0. The value of m∗ depends on both m0 and the load α roughly as

described in further detail in "Methods" and the Supplementary Material 3. A schematic of the energy landscape 
is shown in Fig. 4a. Furthermore, for α � 0.3 , f (α) > 1 (Fig. 4b), implying that the final overlap with the retrieved 
structure is significantly larger than the initial overlap m0 even far outside the basin of the structure.

SNR of retrieved structures outside the basin.  We use the preceding results to estimate the SNR for 
L0/L ≪ lc , i.e., when the initial state is well outside the memory basin. First, we argue that the SNR of unbinding 
from a noisy state with overlap m < 1 with the true structure, should be roughly,

where, as before, the factor of 2
π

 comes from binarization and c ≈ 0.65 accounts for the fact that part of the overlap 
m is contributed by the initial cueing structure S0 and is more concentrated around the relations contained in 
the retrieval cue. For very large networks, we can replace m in Eq. (8) with m∗ from Eq. (7). Using Eq. (30) from 
"Methods", we express m0 in terms of L0/L and arrive at

which is verified in Fig. 5 for two values of α . These results summarize the rich behavior of associative memory 
of structured knowledge. In contrast to standard memory functions, here the performance depends not only on 
the memory α but also on the network size N, structure length L, and cueing length L0 through the SNR. The 
key difference is that in structured memories, the criterion for success is not limited to convergence to the target 
memory; even if the target memory is only partially retrieved, the underlying memorized relations can be still 
be retrieved faithfully using the semantic memory. The well-known property of pattern completion is realized 
here by a sub-structure of length L < L0 , in addition to the standard random initial condition.

Storage and retrieval of sequences
Storing sequences as binary structures.  We now extend the results of the previous sections to repre-
sentations of temporal sequences. Temporal sequences can be modeled as structures in several ways. One pos-
sibility is to bind each event in the sequence with its temporal order in the sequence. This can be implemented 
via a contextual drift process with a context representation that evolves as items in the sequence are retrieved 

(7)m∗(α,m0) ∼ f (α)m0

(8)SNR(m) ∼ 2c

π

m2N

L

(9)SNR ∼ 8cf (α)2

π3

NL0

L2
, L0 ≪ L

Figure 4.   (a) schematic of the energy landscape of the memory network. The large filled circles are stored 
memories and the dashed circles denote their basins of attraction. The two small red circles are fixed points 
outside of the basin of attraction of the red memory which still lead to a large enough overlap for accurate 
decoding when 1 ≫ N/L . (b) f (α) defined in Eq. (7) is obtained from simulations of a Pseudo-inverse network 
storing random memories of size N = 8000 . The black dotted line at 1 shows that m∗ > m0 for α � 0.3 . T = 20 
parallel updates are used for memory retrieval and averages are performed over 50 trials.
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as in the Temporal Context Model of free recall of lists2 and similarly in the Context Retrieval and Updating 
model41,42. Here we use temporal proximity as the contextual cue by interpreting a sequence as a set of binary 
associations between temporally proximal events. Thus, a temporal sequence of length L, (a1, a2, ..., aL) can be 
represented as a structure of the form

and the entire sequence S is represented by a vector Ŝ of size N given by

Decoding an episode at a particular time, i.e., aℓ , is performed through an unbinding operation with a query by 
the preceding event, aℓ−1 . Starting from a query by a1 , the entire sequence can be unfolded through a sequence 
of queries. Because each event appears in two binary relations, we need to use an asymmetric binding opera-
tion so that g(a, b)  = g(b, a) . Within HRR, this can be accomplished by switching the binding and unbinding 
operations43.

As before, we consider the case in which all items being decoded are contained in a Dictionary 
D = {a1, a2, . . . , aD} , so each decoding step involves a clean-up of the decoded item before preceding to decode 
the next item from the sequence. A schematic of this process is shown in Fig. 6a.

The binarized versions of the structures representing each sequence are stored for long-term memory in 
a recurrent neural network with synaptic weight matrix determined via the Pseudo-inverse rule. The cueing 
structure Ŝ0 consists of the first relation (a1, a2) , so the overlap of Ŝ0 with the stored sequence Ŝ  is closely 
approximated by Eq. (30) with L0 = 2 . Alternatively, the first item a1 can be used as a retrieval cue if it is added 
to the representation Ŝ in Eq. (11). We are primarily interested in the ability to reconstruct the entire sequence 
after it is retrieved from memory.

Retrieval of sequences from long‑term memory.  Due to the sequential nature of decoding sequences 
in our model, the decoding error accumulates as each subsequent element is retrieved. Thus, the unbinding 
error for an event depends on its position in the sequence (relative to the cued events). In Fig. 6b, we show the 
decoding error Pǫ at each position along sequences encoded by Eq. (11) for sequences of different length L. Since 
the SNR of the overlap with the correct item along each position in the sequence depends on L, the length of the 
sequence limits the accuracy of decoding at all positions along the sequence. Nevertheless, for low memory loads 
and moderately long sequences, the accumulated error is small.

Decoding error.  An interesting outcome of this mode of recall is the accumulation of errors as the recall 
sequence advances. This would give rise to correlations between probabilities of recall that decay as a function 
of the temporal lag between the events, consistent with observations2. This behavior was previously explained 
by positing that proximal temporal context vectors are correlated. In our model, these correlations are a natural 
consequence of the fact that the proximal events serve as temporal context cues.

The present scheme of long-term storage of sequences as single fixed points overcomes a key disadvantage 
of previous attempts at storing multiple temporal associations in attractor neural networks. In previous models 
of sequential memory34, all of the patterns contained in the sequences are stored as separate attractors in one 
network and the sequences themselves are encoded in a time-delayed synaptic plasticity rule that associates each 
pattern with its next pattern in the sequence, illustrated in Fig. 6c and reviewed in Section 4 of the Supplemen-
tary Material. Because of the Markovian nature of the synaptic plasticity, retrieval will fail if multiple sequences 

(10)S = {(a1, a2), (a2, a3), . . . , (aL−1, aL)}

(11)Ŝ =
L−1∑

ℓ=1

g(aℓ, aℓ+1)

Figure 5.   SNR−1 v. L2/NL0 shown for N = 8000 and N = 12000 and for several values L0 as an average over 
items contained in 10, 000 memories shown for α = 0.1 and α = 0.2 . The black line is obtained from Eq. (9) 
with c = 0.65 . T = 20 parallel updates are used for memory.
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share the same event, as shown in Fig. 6d. By contrast, in the present model, the entire sequences are stored 
and retrieved as separate “holistic” attractors. Thus, as long as the retrieval cue is unique to a single sequence, 
it will retrieve it unambiguously and the subsequent unfolding of the sequence by the unbinding network will 
be immune from interference with other sequences. To demonstrate this, we consider P sequences Sµ with 
µ = 1, . . . ,P of length L where neighboring sequences Sµ and Sµ+1 share Ls events in common.

In Fig. 6e, we show the decoding error for a sequence stored in memory with another sequence containing 
an overlapping event, demonstrating the successful retrieval of the entire sequence despite the presence of an 
overlapping state (compare with Fig. 6d).

Figure 6f shows that sequences can be faithfully retrieved even with multiple common states, up to the point 
where the basins of attraction of individual sequences shrink due to the large overlap between them.

Figure 6.   (a) A schematic of the decoding scheme for sequences. (b) Decoding accuracy as a function 
of sequence position ℓ along sequences of length L retrieved from memory shown for several values of L. 
N = 2500 , α = 0.05 , and the average is computed over 100 trials. (c) A schematic of the energy landscape for 
two temporal sequences containing a single common element which are encoded as sequences of attractors 
using the scheme in34 (discussed in Section 4 of the Supplementary Material). (d) The average overlap of the 
network state 〈m〉 with each attractor in the sequence is shown as a function of retrieval time for a network 
of size N = 1000 storing two sequences containing a single element in common. The parameters τ = 8 and 
� = 2.5 are used and the average is computed over 1000 trials. (e) The average overlap of the estimator âℓ 
(normalized by �â2 · a2� ) with the correct Dictionary item at each position in the sequence for a network of 
size N = 1000 storing two sequences containing a single element in common. The average is computed over 
10, 000 trials. (f) Decoding accuracy as a function of sequence position ℓ for P = αN sequences for which each 
neighboring sequence contain Ls common elements with the previous one. N = 2500 , α = 0.05 and the average 
is computed over 100 trials.
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Finally, it is interesting to compare the the memory capacity of the two models. In the sequence attractor 
model, the maximal number of stored sequences of length L is P < αcN/L since the network stores PL states. In 
contrast, in the present model, since only P attractors are stored, the capacity of storage is P < αcN . Nevertheless, 
for a successful unfolding of the sequence we need PL/N to be bounded (for a fixed L0/L ) due to the noise in the 
unbinding operation. A potential disadvantage of the current model is the need to devote additional memory 
resources to store the individual events in a Dictionary. On the other hand, the Dictionary can be used for mul-
tiple other cognitive tasks aside from the retrieval of these sequences. Another flexibility in the separation of the 
retrieval of the neural representation of the sequence from the subsequent reconstruction of individual events, 
is the fact that, for some tasks, the agent may not need to access the full detail of the sequence, for instance in 
tasks that requires distinguishing between one episode and another one. Such tasks may not need to rely on the 
full unbinding of the sequences.

Neural implementation of multiplicative binding
We now briefly consider possible implementations of the binding computation in Eq. (2) through multiplicative 
interactions in biological neurons44. Previously, several mechanisms have been proposed to facilitate multiplica-
tive interactions among neurons including dendritic gating45, quadratic firing rate response46, and short-term 
synaptic plasticity. Short-term plasticity comprises a variety of synaptic processes that modulate synaptic efficacy 
in a transient, activity-dependent manner47. These processes occur on timescales ranging from milliseconds 
to minutes48 and are thought to mediate higher cognitive functions like attention and working memory. More 
recently it has been suggested that “fast weights” in artificial neural networks may serve as an analogy to short-
term plasticity in the brain49 with connections to linear transformers50.

We start by noting that gk(a, b) = aTb′ where b′ = Gkb . The last term is a representation of the activity pattern 
b by propagating it through a synaptic matrix Gk . Finally the dot product between a and b′ can be implemented 
can be decomposed into an outer product of two fixed synaptic weight vectors, i.e. Gk = wk

aw
kT
b  so that compo-

nents of the binding vector take the form

We now use the above form to consider how firing rate nonlinearity and short-term synaptic plasticity can serve 
as mechanism for generating quadratic binding.

Nonlinearity of the firing rate.  Biological neurons can potentially implement the computation of the 
binding vector g(a,  b) via the nonlinearity of the firing rate response to a synaptic current r = f (I) where 
the synaptic current is given by the sum I = wk

a · a+ wk
b · b . While for many neurons rectificed nonlinearity 

f (I) = [I − I0]+ is a good approximations, other neurons are found to be approximated by quadratic nonlin-
earity f (I) = [I − I0]2+ where the firing in response to the sum of the separate responses to each input a and b 
is subtracted from the response to the combined input from a and b. Building on a quadratic f(I) curve, we can 
write

The subtraction can be implemented by inhibitory neurons or by temporal derivative in a working memory 
system.

Short‑term synaptic plasticity.  Another potential mechanism to generate quadratic binding is short-
term synaptic plasticity. This can be accomplished by a short-term increase in residual presynaptic calcium 
levels in working memory enabling b to modulate the synapses Gk so that subsequent input aT will generate the 
postsynaptic potential

which contains a multiplicative component of the form in Eq. (12). Note that Eq. (14) contains a linear term 
weighted by ω . This term may not need to completely cancel as it provides the trace with some similarity to 
both a and b, potentially allowing objects or context to be independently used as a retrieval cue. However, if ω 
relatively small, the trace will remain most similar to the bound conjunction g(a, b).

Discussion
In summary, we have proposed and analyzed a model demonstrating how multiple knowledge structures, i.e., 
sets of relations between pairs of items, can be represented, stored, and retrieved in Hopfield type recurrent 
neural network models of long-term memory. Our model hypothesizes that the entire set of relations is encoded 
through binding operations, summation and binarization, in a single pattern of activity in a neuronal population, 
which is then stored as fixed point in the recurrent network. Retrieval of relational information from long-term 
memory, consists in our model of two stages: first, retrieval of the desired fixed point, and subsequent unbinding 
to uncover individual relations with the aid of a separate memory system, the Dictionary. Our analysis of this 
model clearly shows that the decoding SNR exhibits the appropriate scaling of parameters required for accurate 
decoding of objects coexisting among many other relations within a structure, and also among the extensive 
number of other structures stored in memory.

(12)gk(a, b) = (wk
a · a)(wk

b · b)

(13)f (wk
a · a+ wk

b · b)− f (wk
a · a)− f (wk

b · b) = 2(wk
a · a)(wk

b · b)

(14)
ω(wk

a · a)+ (ω +�ω)(wk
b · b) ≈ ω(wk

a · a+ wk
b · b)

+ (wk
a · a)(wk

b · b)
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We also show that this scheme can be used to model long-term memory of temporal sequences by creating 
structure vectors for sequences of temporally associated items and store in a recurrent network compressed 
versions of the sequences as fixed points. Sequence recall consists of retrieval of the “sequence” fixed point, and 
subsequent unfolding of the stored events through a sequence of unbinding operations. In this application we 
have also demonstrated that our model for storing structure vectors in long-term memory is not very sensitive 
to the presence of a partial overlap between different structures.

Our analysis suggests that the success of this long-term memory system depends not only on the memory 
capacity of the attractor network but also very crucially on the properties of the memory basins of attraction 
and the landscape in the surrounding “terrain”, such as the degree of overlap between “spurious” states outside 
the basins with the target fixed point (inside it). For this reason, a learning rule that decorrelates memories and 
yields smoother basins is clearly superior, as shown in Supplementary Fig. 8. Due to the dense distributed nature 
of the binding scheme employed here (HRR), we have not studied the effect of pattern sparsity on the long-term 
memory system36. It would be interesting to explore the sparsity effect in sparse binding schemes51–54 and gener-
ally how the binding matrices can be learned in a biologically plausible way.

We close by briefly discussing two important aspects of this work which have the most immediate phenom-
enological implications. A key aspect of our model is the existence of neuronal populations representing entire 
relational structures in long-term memory as persistent patterns of activity displaying the “holistic context” of 
each structure. This system interacts with a working memory system which executes the dynamics of retriev-
ing details of the stored relations. We have not addressed the interesting question of the mechanism by which a 
stream of experiences is segmented into a sequence of discrete events55, or more generally, the mechanism that 
segments complex environments into a discrete sets of bound items and how these representations may evolve 
over time56,57. In particular, our model of long-term memory of sequences predicts that the retrieval of a temporal 
sequence is associated with a persistent pattern of activity (representing the context of the entire sequence) in 
addition to sequential dynamics involving the dynamic interaction between working and long-term memory. 
This can be tested in recordings of neuronal activity during recall of sequences in the hippocampus and in song-
birds. It would also be interesting to see how this fits in with studies of the dynamics of recognition memory in 
the psychology literature56,58.

Finally, as mentioned above, our framework of storage and retrieval of relational knowledge structures in 
long-term memory relies on the existence of a complementary long-term memory system, the “Dictionary”, 
which stores the individual building blocks comprising the relational knowledge. It is tempting to identify these 
two complementary memory systems as representing episodic memory (the relational system)1 and semantic 
memory (the Dictionary)59, although we emphasize that in the present context, semantic memory does not neces-
sarily require language and presumably exists in other species as well. The synergy of these two “complementary” 
memory systems results in an associative memory system with both the capacity and flexibility to store and 
faithfully represent complex knowledge structures in long-term memory in analogy with the “complementary 
learning systems” framework proposed in60 and revisited in61,62. Adapting this framework to further explain 
empirically observed phenomena in memory will require adherence to known biological properties of hip-
pocampal representations as well more explicit models of both the Dictionary and the working memory system 
in which binding and unbinding occurs.

Methods
Holographic reduced representation.  HRR8,63 is a commonly used VSA scheme with fixed forms for 
the binding and unbinding matrices in Eqs. (2) and  (4). The binding operation g is given by the circular convolu-
tion operation of the vectors a and b where

and all subscripts are defined modulo N. The circular convolution operation is both associative and commutative. 
The corresponding decoding operation φ is realized through circular correlation of the two vectors Ŝ and b where

We see from comparing Eqs. (2) and (4) with Eqs. (15) and (16) that HRR corresponds to the following choice 
for the encoding and decoding matrices

The commutativity of the encoding operation implies that HRR encoding is commutative. To represent non-
commutative asymmetric relations, we can simply exchange the binding and unbinding operations i.e., binding 
with circular correlation and unbinding with circular convolution43. The full details of the statistics of decoding 
for HRR is given in Section 1.2 of the Supplementary Material.

(15)gk =
N−1∑

j=0

ajbk−j , k = 0, . . . ,N − 1

(16)âkℓ =
N−1∑

j=0

Ŝjbj+k,ℓ

(17)Gk
ij = δk,j+i

(18)Fkij = δk,j−i
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Unbinding accuracy.  We access the typical decoding performance by considering the case in which a’s 
and b’s are random vectors with components drawn iid from N (0, 1

N ) and the dictionaries for a’s contains D 
elements. Then the ML decoding error is well approximated by

where Dz = dz√
2π

e−
z2

2  and H(z) = 1
2 erfc

(
z√
2

)
 . Here SNR is a signal-to-noise-ratio defined in terms of the mean 

overlap of the estimator âd with the correct Dictionary item ad and the variance of the overlap with incorrect 
Dictionary item ad′ , i.e.,

where d′ �= d , and the average is over the Gaussian distributions of the components of ad and ad′ . For full details 
see Section 2 of the Supplementary Material. For SNR ≫ 1 , the decoding error can be approximated as

To leading order, the SNR for many VSA binding schemes (including HRR) is

Equation 21 implies that Pǫ ≪ 1 as long as N � O(L logD) . Hence, for L ≪ N accurate decoding requires the size 
of the Dictionary D be at most polynomial in N. In this regime, assumed throughout, the size of the Dictionary 
has little effect on performance, which is dominated by the SNR. Pǫ and the inverse SNR are shown as functions 
of L in Fig. 1b and c, respectively.

Memory network.  Throughout this work, we consider Hopfield type recurrent neural networks with binary 
neurons. The state of the network at time t, σ(t) is given by the update rule

where updates are done either in series or in parallel. For simplicity, parallel updates are used for the figures in 
the main text, but we show in Section 3.3 of the Supplementary Material that the results are qualitatively similar 
for serial updates.

Given a set of memories σµ , the synaptic weight matrix Jij must be chosen so that each of the memories is 
a fixed point of the dynamics in Eq. (23). There are several different learning rules which can accomplish this. 
Mainly, we consider the Pseudo-inverse rule38 with synaptic weight matrix given by

where the pattern overlap matrix Cµν is defined as

We also consider the Hebb rule given by

and the Storkey rule39,64,65 with Jij given by

where,

(19)Pǫ ≈
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−∞
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These learning rules differ in their capacity and the average size of the basins of attraction for memories at a 
given memory load α , further discussed Section 3.4 of the Supplementary Material.

Simulations.  We simulate the memory storage, retrieval, and decoding processes by creating dictionaries 
of objects and attributes Da and Db where a’s and b’ s are random vectors with components drawn iid from a 
Gaussian distribution i.e. ai ∼ N (0, 1

N ) , bi ∼ N (0, 1
N ) . The size of these dictionaries is fixed to D = LmaxN , 

where Lmax is the size of the largest structure being considered. In Fig. 1b we show the decoding error for sev-
eral values of Lmax and for Figs. 1c and 3 we set Lmax = 30 . We then use a subset of the dictionaries to create P 
knowledge structures with vector representations given by HRR encoding. These structures are then point-wise 
binarized and used to compute the synaptic weight matrix using the Pseudo-inverse rule unless otherwise stated. 
Since the encoding of the structures induces a similarity with individual relations g(a, b) rather than with a or 
b individually, we find that the same set of attributes {b1, b2, . . . bL} can be the same across several or all of the 
different knowledge structures while retaining the ability to decode the corresponding object aµℓ  from retrieved 
structure σµ

r  . Hence, we consider the case in which the same attributes are used in each structure i.e. bµℓ = bℓ.
We test the performance of the memory network by initializing the network in the state σµ(0) = σ

µ
0 = sgn(Ŝ

µ
0 ) 

for each memory µ = 1, . . . ,P where Sµ0 = {(aµℓ , b
µ
ℓ )}

L0
ℓ=1 is the subset of L0 relations used to create a retrieval cue. 

We then evolve the network for T parallel updates, denoting the attractor reached by the network as σµ
r = σµ(T) 

, i.e., the retrieved state starting from partial cue of the µ-th structure. We define mµ as the overlap between σµ 
and σµ

r  i.e.

For each retrieved structure σµ
r  , we use bµL  , corresponding to a relation not contained in the initializing struc-

ture, to obtain an estimate âµL  for aµL  , which then identified with the Dictionary element with which it has the 
highest overlap.

The Pseudo-inverse rule ensures that the basins of attraction for different structures are essentially identical 
regardless of potential differences in the overlap between different structures. In simulations, this allows us to 
consider each structure as an independent trial. The fraction of trials in which aµL  is incorrectly decoded from 
σ
µ
r  provides an empirical estimate of the decoding error Pǫ . We also construct an empirical SNR from Eq. (20). 

Finally, we measure mµ for each structure (Eq. 29) to obtain an empirical distribution p(m) where the overlaps 
m are calculated for each memory in a trial and accumulated over many trials. The distribution p(m) does not 
appear to change if measured over multiple trials with different patterns or for multiple patterns within the same 
trial, which further supports the ability to consider each structure as a separate trial. The distribution p(m) is a 
statistical measure of the retrieval quality for structures of fixed size L, memory load α , and retrieval cue length L0.

Determination of l
c
.  To determine lc as a function of the various network parameters, we calculate the rela-

tion between L0/L and the average initial overlap m0 with the desired structure in the limit of large N, yielding

Further details of the derivation are provided in Supplementary Section 1.4 of the Supplementary Material. Using 
Eq. (30), we write lc(α) in terms of mmin(α) defined in the main text as

To determine mmin(α) we resort to the Pseudo-inverse model with random binary patterns as memories38, which 
is simpler to simulate. Results relating mmin(α) and lc are shown in Supplementary Fig. 1.

Empirical distribution of overlaps.  We find that the empirical distribution p(m) is bimodal and takes 
the general form

where p1 is the probability that a structure is perfectly retrieved from memory and pm<1(m) corresponds to the 
distribution of m for imperfectly retrieved memories.

The peak at m = 1 corresponds to trajectories converging to the target memories. This can be nonzero even 
when initial overlap m0 is outside the mean basin radius, indicating non-spherical basin shape. The second mode, 
peaked at 0 < m < 1 results from trajectories that converged to a fixed point outside the basin with a significant 
residual overlap with the memory. We characterize the shape of the distribution by the probability of m = 1 , p1 , 
the width of the lower m mode, σm and the mean of that mode, m∗ . Results are shown in Supplementary Fig. 4a, 
for several values of N and two values of α.
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As noted in38,40, the shape of the distribution p(m) is sensitive to finite size effects. To analyze these effects, we 
calculate p(m) for different sizes in a standard Pseudo-inverse model where the initial overlap m0 can essentially 
be varied continuously. For m0 > mmin(α) almost all trials converge to the memorized pattern. For a range of 
values m0 < mmin(α) , p(m) is bimodal. We find that p(m) obtained from networks storing random patterns is 
very similar to the distribution obtain from networks storing structure memories, when the m0 and L0/L are 
related as in Eq. (30). We find that for large N, p1 approaches a step function changing from zero to one as m0 
crosses mmin(α) = 1− R(α) . Near this transition, p1 can be approximated as

indicating that it converges to a step function exponentially fast with 
√
N  . In addition, σm is very small outside 

the narrow transition regime of m0 and shrinks to zero everywhere as 1/
√
N  . From this, we conclude that for 

N → ∞ , p(m) becomes a δ function, which is either located at m = 1 for m0 > mmin or at a smaller value m∗ 
which increases smoothly with m0 , starting from zero and reaching 1 as m0 increases from zero to mmin . Thus in 
large networks, the basins have a roughly spherical shape, such that virtually all initial conditions with m0 ≥ mmin 
converge to the memory, and all initial conditions with m0 < mmin converge to fixed points with partial overlap, 
m∗.

Data availability
The data that support the findings of this study are available from the corresponding authors upon reasonable 
request.
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