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Prediction study of electric energy 
production in important power 
production base, China
XiXun Zhu 1, Zhixin Song 2, Gan Sen 2, Maozai Tian 2, Yanling Zheng 2* & Bing Zhu 3

Xinjiang is an important power production base in China, and its electric energy production needs 
not only meet the demand of Xinjiang’s electricity consumption, but also make up for the shortage 
of electricity in at least 19 provinces or cities in China. Therefore, it is of great significance to know 
ahead of time the electric energy production of Xinjiang in the future. In such terms, accurate electric 
energy production forecasts are imperative for decision makers to develop an optimal strategy that 
includes not only risk reduction, but also the betterment of the economy and society as a whole. 
According to the characteristics of the historical data of monthly electricity generation in Xinjiang 
from January 2001 to August 2020 , the suitable and widely used SARIMA (Seasonal autoregressive 
integrated moving mean model) method and Holt-winter method were used to construct the monthly 
electric energy production in Xinjiang for the first time. The results of our analysis showed that the 
established SARIMA((1,2,3,4,6,7,11),2,1)(1,0,1)12 model had higher prediction accuracy than that 
of the established Holt-Winters’ multiplicative model. We predicted the monthly electric energy 
production from August 2021 to August 2022 by the SARIMA((1,2,3,4,6,7,11),2,1)(1,0,1)12 model, 
and errors are very small compared to the actual values, indicating that our model has a very good 
prediction performance. Therefore, based on our study, we provided a simple and easy scientific tool 
for the future power output prediction in Xinjiang. Our research methods and research ideas can also 
provide scientific reference for the prediction of electric energy production elsewhere.

The invention and application of electric power set off the second high tide of industrialization. The large-scale 
electric power system appeared in the twentieth century is one of the most important achievements in the 
history of human engineering science. The rapid development of electric power industry has promoted economic 
development and social progress.

Xinjiang is an important power production base in China. Since the reform and opening-up, with the rapid 
economic development of Xinjiang, Xinjiang power industry has made great progress with the support of the 
central government and inland provinces of China. At present, the existing power generation methods are 
thermal power, hydropower, wind power and photovoltaic power generation, of which thermal power accounts 
for the largest proportion, followed by the order of hydropower, wind power, photovoltaic power generation. In 
today’s society which emphasizes Green Environmental Protection and sustainable development, the government 
in Xinjiang has made great efforts to develop traditional and clean energy sources, promote green projects for 
the harmonious development of energy, the economy and the environment, and continue the trend of green 
and low-carbon development in power generation. In terms of the share of electricity generation over the years, 
the share of thermal power generation has been decreasing year by year, the share of hydropower, photovoltaic 
power generation and wind power has increased year by year.

In 2019, electric energy production in Xinjiang ranks in the forefront of many provinces and cities in China. 
Electric energy production in Xinjiang has not only met the demand of power consumption in Xinjiang, but also 
properly solved the problem of power shortage in some provinces and cities in China. According to statistics 
from Xinjiang Power Exchange Center Co., Ltd., in 2019, the “sending out electricity in Xinjiang” exceeded 
71.2 billion kwh which was 1.4 times the size in 2018, and the power transmission range reached 19 provinces 
and municipalities (http://​www.​camch​ina.​cn/​sp/​9680h​tml). The electric power in Xinjiang not only plays an 
important role in ensuring the development of Xinjiang, but also plays an important role in some provinces 

OPEN

1Department of Computer Engineering, Jingchu University of Technology, Jingmen, 448000  Hubei, People’s 
Republic of China. 2College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830011, 
People’s Republic of China. 3Xinjiang Tianshan Cement Co. Ltd, Urumqi 830013, People’s Republic of China. *email: 
zhengyl_math@sina.cn

http://www.camchina.cn/sp/9680html
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-25885-w&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:21472  | https://doi.org/10.1038/s41598-022-25885-w

www.nature.com/scientificreports/

and cities supplied power by Xinjiang, ensuring the healthy and coordinated development of the economy and 
people’s life in these supplied areas.

From the perspective of changes in power consumption demand, with the continuous improvement of the 
level of social informatization, power will become the most important terminal consumption energy, and its 
status will continue to rise, and power consumption will continue to grow, especially with the coming of the 
information and Internet Age. The degree of electrification of the whole society is increasing, and the demand of 
electric power consumption is increasing obviously1–3. This also puts forward higher requirements for the power 
generation capacity of the power industry. Therefore, scientific forecasting of the electric energy production 
of Xinjiang is of great significance to the development planning of the power industry of Xinjiang. It can help 
Xinjiang and the provinces and cities supplied electricity by Xinjiang to accurately grasp the situation of power 
supply, make accurate predictions, and make good electricity demand arrangements in advance.

A common method of prediction is to establish an appropriate prediction model and make prediction analysis 
according to the characteristics of time series data. An important way to analyze time series is to study the 
statistical laws of the data generation patterns, and to assume that these laws will still play an important role in the 
future. Many mathematical models can be established to approximate this law and to make reasonable predictions 
for variables4–6. In the 1970s, the American scholar Box and the British statistician Jenkins cooperated with each 
other to develop a perfect statistical prediction method named Box-Jenkins method5,6. There are many models 
in this method: autoregressive model AR (p), moving average model MA (q), autoregressive moving average 
model ARMA (p, q), autoregressive integrated moving average model ARIMA (p,d,q), seasonal autoregressive 
integrated moving average model SARIMA (p,d,q)(P,D,Q) s, etc. All the first four models are special forms of 
SARIMA (p,d,q)(P,D,Q)s models. In above models, the p is the order of autoregression, the q is the order of 
moving average, the d is the times of ordinary difference when the time series becomes stationary, P is the order 
of seasonal autoregression, Q is the order of seasonal moving average, and D is seasonal difference times, and 
s is the seasonal cycle. Generally speaking, for the monthly time series, s is 12. In the analysis of time series 
prediction, we often need to use different models according to the characteristics of data changes. Because Box-
Jenkins method can often obtain high prediction accuracy, they are widely used in time series prediction analysis 
in various fields7,8. Application of Box-Jenkins methods in non-energy forecasting: Ilie et al.9 pointed out that 
ARIMA models were suitable for making predictions during COVID-19 crisis and offered an idea of the COVID-
19 epidemiological stage of Ukraine, Romania, the Republic of Moldova, Serbia, Bulgaria, Hungary, USA, Brazil, 
and India. Hernandez-Matamoros et al.10 applied ARIMA models to forecast the COVID19 of many regions 
successfully. He et al.11 found that the ARIMA model could effectively predict the positive rate of influenza virus 
in a short time in Wuhan, China. Fanoodi et al.12 pointed out the ARIMA models was more accurate in predicting 
the uncertainties in demand than the baseline model used in Zahedan Blood Transfusion Center. Zheng et al.13 
used the ARIMA model to predict the total health expenditure in China from 1978 to 2022. Liu et al.14 found 
that the ARIMA model could be used to predict the seasonality and trend of pulmonary tuberculosis in the 
Chinese population. Keskin et al.15 applied ARIMA model to simulate total electron content, earthquake and 
radon relationship identification. Yingzi et al.16 applied ARIMA model to predict vehicle speed. Application of 
Box-Jenkins methods in energy forecasting: González-Romera et al.17 found that the ARIMA model could be 
used to predict the medium-term electric energy demand based on the Spanish monthly electric demand series. 
Parag et al.18 revealed that ARIMA (1,0,0)(0,1,1) model was the best fitted model for energy consumption and 
ARIMA (0,1,4)(0,1,1) was the best fitted model for greenhouse emission of a pig iron manufacturing organization 
of India. Aasim et al.19 put forward the ARIMA model for very short-term wind speed forecasting. Contreras 
et al.20 pointed out that ARIMA model was good to predict next-day electricity prices. Kavasseri et al.21 found 
that ARIMA models could forecast day-ahead wind speed well. Wang et al.22 did a good prediction for U.S. shale 
gas monthly production using a hybrid ARIMA and metabolic nonlinear grey model.

The exponential smoothing method is also a perfect statistical prediction method, which is widely used 
in forecasting research. According to the different times of smoothing, the exponential smoothing method is 
divided into: the single exponential smoothing method, the double exponential smoothing method and the 
triple exponential smoothing method23. The triple exponential smoothing model was developed by Holt and 
Winters, which is also called Holt-Winters method, it includes Holt-Winters’ additive method and Holt-Winters’ 
multiplicative methods. Liljana et al.24 found that Holt–Winters methods ensured the best forecasting values 
in purpose of long-term heat load forecasting and monthly short-term heat load forecasting of the Company 
Energetika Ljubljana in the Republic of Slovenia. Vincenzo et al.25 employed Holt–Winters exponential smoothing 
method for the nonresidential electricity consumption prediction in Romania, they found Holt–Winter’ 
prediction accuracy was good in relation to the time horizon considered in their study. Guan et al.26 developed 
Holt–Winters additive model and Holt–Winters multiplicative model for short-term extrapolation forecast based 
on monthly reported human brucellosis cases in mainland China. Zhang et al.27 found that Holt winter method 
could predict tuberculosis registration rates in Henan Province, China successfully28–31.

In this study, we carefully analyzed the trend of historical monthly electric energy production in Xinjiang. 
According to the characteristics of the data changes, we tried to build SARIMA model4, Holt-Winters’ additive 
model and Holt-Winters’ multiplicative model5 to do fitting analysis of Xinjiang monthly electricity generation. 
And then, we compared and analyzed the fitting and prediction precision of these established models. Finally, 
we applied the established model to do the prediction analysis of Xinjiang monthly power generation from 
August 2021 to December 2022. Our prediction results could provide a scientific reference for Xinjiang and some 
provinces and cities of needing Xinjiang electric power to do a good job in the allocation of power resources in 
advance. Our research methods can also provide research ideas for researchers to predict power production in 
other place.
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Data and methodology
Data.  In this study, we focus on the prediction and analysis of Xinjiang’s monthly electric energy production. 
We collected the data of Xinjiang’s monthly electric energy production from January 2001 to August 2022, 
including 260 months’ data, which are derived from the National Bureau of Statistics of China. Our research 
area and Xinjiang annual electric energy production data are shown in Fig. 1.

Methodology.  SARIMA model.  SARIMA (seasonal autoregressive integrated moving average) model can 
well predict and analyze time series with seasonality, trend and randomness4–6. The SARIMA(p,d,q)(P,D,Q)s 
model can be expressed as follows: 

where, � and �s denote non-seasonal and seasonal differences, respectively.ϕ,�, θ and � are the parameters of 
the model, εt is white noise with independent and identical distribution. A sparse coefficient model is a special 
case of SARIMA model. If some of the coefficients in the SARIMA model are 0, then, the model becomes a sparse 
coefficient model. If only the autoregressive part has some missing terms, the sparse coefficient model can be 
recorded as:SARIMA((p1,…,pm),d,q)(P,D,Q)s.

The construction of SARIMA model has main four steps:
Step 1. SARIMA model is built on the basis of stationary time series, so the stationarity of time series is 

an important prerequisite for modeling. The Augmented Dickey-Fuller (ADF) unit root test model can be 
used to test the stationary of time series (if p-value is less than 0.05, the data is stationary). If the time series is 
un-stationary, it can be stabilized by some operations, such as ordinary difference or seasonal difference.

Step 2. To draw the autocorrelation function (ACF) and partial autocorrelation function (PACF) of the 
smooth data, which can help to determine the possible values of P, Q, p, and q in the model.

Step 3. After determining p, q, P and Q values, it is necessary to check the parameters of the model for 
determining the values of p, q, P and Q, and calculate the R2, Akaike information criterion (AIC) and Schwarz 

(1)

�p(L)AP(L
s)�d�D

s yt = �q(L)BQ(L
s)εt ,

�p(L) = 1− ϕ1L− ϕ2L− · · · − ϕpL
p,

AP(L
s) = 1− α1L

s − α2L
2s − · · · − αPL

Ps ,

�q(L) = 1+ θ1L+ θ2L+ · · · + θqL
q,

BQ(L
s) = 1+ β1L

s + β2L
2s + · · · + βQL

Qs ,

�syt = (1− Ls)yt = yt − yt−s ,

�s = 1− Ls ,

εt : WN(0, σ 2)

Figure 1.   (a) The red area in the figure is the geographical location of Xinjiang, (this figure is plotted by 
ArcMap10.4); (b) Xinjiang annual electric energy production (billion kWh).
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criterion (SC) of the model. The bigger the R2 is, the smaller the AIC and SC are, the better the model is. The 
mathematical expressions of R2, AIC, and SC are as follows:

where, L is the maximum likelihood of the model, n is the number of observations, and k is the number of 
variables in the model.

Step 4. To plot ACF and PACF and do Box-Jenkins Q test of residuals to help judging whether or not model 
residuals are white noise. If the residuals are white noise, the autocorrelation coefficients and partial correlation 
coefficients of the residuals are basically within twice the standard deviation, and the p-value of Box-Jenkins 
Q test is greater than 0.05, which indicates that the model has good fitting performance and can be used for 
prediction analysis.

To understand more intuitively the steps of SARIMA model building, we draw SARIMA flow chart Fig. 2.

Holt‑Winters’ method.  Holt-Winters’ method is generally more suitable for forecasting and analyzing time 
series with trend, seasonality and randomness.

Holt-Winters’ additive model has the following expression31–34: 

Holt-Winters’ multiplicative model has the following expression31–34: 

(2)AIC = −2 ln(L)+ 2k.

(3)SC = −2 ln(L)+ ln(n)× k.

(4)R2 = 1−

∑n
i−1 (ŷi − yi)

2

∑n
i (yi − yi)2

,

(5)

ŷt+h/t = lt + hbt + st−m+h,

lt = α(yt − st−m)+ (1− α)(lt−1 + bt−1),

bt = β(lt − lt−1)+ (1− β)bt−1,

st = γ (yt − lt−1 − bt−1)+ (1− γ )st−m.

(6)

ŷt+h/t = (lt + hbt)st−m+h,

lt = α
yt

st−m
+ (1− α)(lt−1 + bt−1),

bt = β(lt − lt−1)+ (1− β)bt−1,

st = γ
yt

(lt−1 + bt−1)
+ (1− γ )st−m,

1. Plot the data. Identify unusual observations. 
Understand patterns

2. If necessary, difference the data until it appears 
stationary. Use ADF test if you are unsure.

4. Try your chosen models and use the R2, AIC and 
SC to search for a better model.

3. Plot the ACF/PACF of the differenced data and 
try to determine possible candidate models.

6. Prediction analysis. 

5. Check the residuals from your chosen model by 
plotting ACF/PACF of residuals and doing Box 
Jenkins Q test.

Do the residuals 
look like white 
noises?

Yes

No

Figure 2.   The modeling flowchart of SARIMA method.
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where, 0 ≤ α ≤ 1 , 0 ≤ β ≤ 1 , 0 ≤ γ ≤ 1−α . st−m+h is the seasonal term. α, β, and γ are the smoothing 
parameters. m is seasonal periods, and h is the predicted step size.

There are three main steps for Holt-Winters modeling process: first, to do model parameter estimation; 
Second, to do model fitting accuracy analysis, third, using the Box-Jenkins Q method and the normal distribution 
map of the residuals to test whether or not the residual data is white noise. If the test can pass, it shows that the 
model has good fitting performance, then, model can be used for prediction analysis.

The indexes for model comparison.  Root mean square error (RMSE), mean absolute error (MAE), mean 
absolute percentage error (MAPE) are the measure indexes of the accuracy of model fitting, and they are widely 
used to compare the accuracy of model prediction. The smaller the three values, the higher the fitting accuracy, 
the better the model performance. In this study, these three indexes are used to compare the performance of 
SARIMA model and Holt-Winters model. where,

Data analysis software.  In the study, data were analyzed using ArcMap10.4, R3.6.2, and Eviews7.0.

(7)RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)2.

(8)MAE =
1

n

n
∑

i=1

|yi − ŷi|.

(9)MAPE =
1

n

n
∑

i=1

|
yi − ŷi

yi
| · 100.

Figure 3.   Time series of electric energy production in Xinjiang from January 2001 to July 2020 (since the x-axis 
length is limited, only the January location of each year is marked in the figure).

Table 1.   The ADF test results of original monthly electric energy production data and its secondary 
differential data in Xinjiang.

t-Statistic p-value

Original data

Augmented Dickey–Fuller test statistic 1.98 0.9999

Test critical values

1% level − 3.46

5% level − 2.87

10% level − 2.57

Data after difference

Augmented Dickey–Fuller test statistic − 13.48  < 0.001

Test critical values

1% level − 3.46

5% level − 2.87

10% level − 2.57
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Results
We divided the data into three parts; the data that was used for the modeling in this study are monthly electric 
energy production in Xinjiang from January 2001 to July 2020. Data from August 2020 to July 2021 were used 
to test the model prediction effect, and data from August 2021 to August 2022 were used to view the model 
prediction performance. The change diagram of the time series for modeling is shown in Fig. 3. It can be seen 
from the diagram that the time series has obvious trend and randomness. From 2001 to 2010, Xinjiang’s electric 
energy production showed a slow growth trend. And from 2011 to 2020, it showed a rapid growth, and the 
fluctuation of monthly electric energy production increased.

Modeling analysis of SARIMA model.  The SARIMA model takes into account not only the dependence 
of economic phenomena on time series, but also the disturbance of stochastic fluctuation in the process of 
economic forecasting; it is one of the widely used methods in recent years.

During the construction of the SARIMA model, the data must be stationary, therefore, we first used ADF to 
test whether or not the time series from January 2001 to July 2020 was stationary. The test results showed that 
the p-value was greater than 0.05, which indicated that the original time series was not stationary, so, we did a 
common difference of data. The ADF test of the data after difference showed that the data was still not stationary. 
Then, we did the secondary ordinary difference of the data, the p-value of the ADF test of the data after the 
secondary ordinary difference was less than 0.05, this indicated that the data after the secondary difference was 
stationary (d = 2, D = 0). And the test results were shown in Table 1. To draw the ACF and PACF of stationary 
data (see Fig. 4), we could see these correlation coefficients of the data at lag 1, 5, 6, 12 and 24 were relatively 
large, so we let q take 1, 5 or 6,and Q take1. Because these partial correlation coefficients of the data at lag 1, 2, 
3, 4, 6, 7, 11 and 12 were relatively large, so we let p take 1, 2, 3, 4, 6, 7 or 11, and P take1, s take 12. According to 
the combination of the values of p, q, P, Q, several SARIMA models were established and the parameters of the 
models were tested, and the R2, AIC and SC values of the model were calculated simultaneously. In the end, only 
six models passed the parameters test, and the results were shown in Table 2. The AIC and SC of the Model 1 
were the smallest. We used the Box-Jenkins Q method to test whether or not the residual was white noise, and the 
p-value of the test was less than 0.05, which indicated that the correlation between the residuals was significant. 
Therefore, the residuals were not white noise, which showed that the model was not good enough to be used for 
prediction analysis. When comparing the R2, AIC and SC values of the remaining five models, it was found that 
the Model 6 had the largest R2 and the smallest AIC. The p-value of Box-Jenkins Q test of Model 6 was more than 
0.05, which indicated that there was no correlation between model residues. Furthermore, the ACF and PACF 
of the residuals of Model 6 were plotted (see Fig. 5). The autocorrelation and partial correlation coefficients of 
the residuals were almost within twice the standard deviation, this further indicated that the residuals at each 
lag were not correlated and they were white noise, which indicated that Model 6 has a good fitting performance, 
and could capture original data information well. Therefore, Model 6 could be used for prediction analysis. The 
specific expression of Model 6 was SARIMA((1,2,3,4,6,7,11),2,1)(1,0,1)12.

Modeling analysis of Holt‑Winters models.  According to Fig. 3, we can see that the time series for the 
modeling has obvious trend, and the fluctuation of data is increased with the passage of time. We decomposed 
the time series of Xinjiang electric energy production data from January 2001 to July 2020 using the R software 
decompose() function. As shown in Fig. 6, we could see that the time series was trend, seasonal and random. 
According to all the above data characteristics, we wanted to build the best Holt-Winters model to forecast and 
analyze the electric energy production data in Xinjiang. We used the ets() function package of R software to 
find the best smoothing parameters of model. First, we constructed Holt-Winters’ additive model, we obtained 
α = 0.2418, β = 0.0191, and γ = 0.4914. Using the Box-Jenkins Q method to test whether the model residuals 

Figure 4.   Autocorrelation and partial correlation diagram of electric energy production time series in Xinjiang 
after quadratic difference.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21472  | https://doi.org/10.1038/s41598-022-25885-w

www.nature.com/scientificreports/

were white noise, the results showed that the p-value was less than 0.05 (p-value = 0.02). Furthermore, from the 
residual normal distribution Q-Q chart and histogram (see Fig. 7), we could see that the residual error did not 
obey the normal distribution, which indicated that the model residual was not white noise, indicating that the 
model fitting accuracy was not high, and the model couldn’t be used to predict Xinjiang monthly electric energy 
production. Second, we constructed Holt-Winters’ multiplicative model, we obtained α = 0.6204, β = 0.0223, and 
γ = 0.0001. The p-value of Box-Jenkins Q test of model residual was more than 0.05 (p-value = 0.66) for the 

Table 2.   Six models with their R2, AIC and SC passed parametric test.

Variable Coefficient p-value R2 AIC SC

Model 1

AR(1) − 0.63  < 0.001

0.8 7.03 7.12

AR(2) − 0.33  < 0.001

AR(3) − 0.27  < 0.001

SAR(12) 0.92  < 0.001

MA(1) − 1.06  < 0.001

SMA(12) − 0.39 0.0004

Model 2

AR(1) − 0.59  < 0.001

0.796 7.07 7.18

AR(2) − 0.43  < 0.001

AR(3) − 0.23 0.0033

AR(4) − 0.17 0.0178

SAR(12) 0.92  < 0.001

MA(1) − 0.99  < 0.001

SMA(12) − 0.35 0.0011

Model 3

AR(1) − 0.57  < 0.001

0.801 7.06 7.18

AR(2) − 0.43  < 0.001

AR(3) − 0.23 0.0035

AR(4) − 0.19 0.0094

AR(6) − 0.15 0.018

SAR(12) 0.92  < 0.001

MA(1) − 0.99  < 0.001

SMA(12) − 0.39 0.0007

Model 4

AR(1) − 0.62  < 0.001

0.799 7.07 7.2

AR(2) − 0.422  < 0.001

AR(3) − 0.25 0.0016

AR(4) − 0.16 0.0286

AR(7) − 0.12 0.0347

SAR(12) 0.92  < 0.001

MA(1) − 0.99  < 0.001

SMA(12) − 0.34 0.0005

Model 5

AR(1) − 0.59  < 0.001

0.806 7.05 7.2

AR(2) − 0.45  < 0.001

AR(3) − 0.27 0.0004

AR(4) − 0.19 0.0071

AR(6) − 0.19 0.0041

AR(7) − 0.16 0.0097

SAR(12) 0.83  < 0.001

MA(1) − 0.99  < 0.001

SMA(12) − 0.25 0.0169

Model 6

AR(1) − 0.61  < 0.001

0.813 7.04 7.2

AR(2) − 0.44  < 0.001

AR(3) − 0.29 0.0002

AR(4) − 0.21 0.0043

AR(6) − 0.221 0.0011

AR(7) − 0.16 0.012

AR(11) 0.17 0.0181

SAR(12) 0.90  < 0.001

MA(1) − 0.99  < 0.001

SMA(12) − 0.30 0.0048
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Figure 5.   The ACF and PACF of SARIMA((1,2,3,4,6,7,11),2,1)(1,0,1)12 residuals.

Figure 6.   Decomposition of monthly electric energy production time series in Xinjiang from January 2001 to 
July 2020 (since the x-axis length is limited, only the January location of each year is marked in the figure).

−3 −2 −1 0 1 2 3

−4
0

−2
0

0
20

Normal Q−Q Plot

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

Residuals

Fr
eq

ue
nc

y

−40 −20 0 20 40

0
20

40
60

80
10

0

a b

Figure 7.   Normal distribution Q-Q graph (a) and histogram (b) of Holt-Winters’ additive model residuals.



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21472  | https://doi.org/10.1038/s41598-022-25885-w

www.nature.com/scientificreports/

established multiplicative model, and the residual normal distribution Q-Q chart and histogram (see Fig. 8) 
showed that the residual error obeyed the normal distribution. These indicated that the residuals of Holt-
Winters’ multiplicative model was white noise, and fitting accuracy of this model was high. Therefore, Holt-
Winters’ multiplicative model could be used to predict Xinjiang monthly electric energy production.

Model comparison.  Both the SARIMA((1,2,3,4,6,7,11),2,1)(1,0,1)12 model and the Holt-Winters’ 
multiplicative model could fit Xinjiang power generation time series well, we calculated the fitting precision 
indexes RMSE, MAE and MAPE of two models respectively (see Table  3). Based on these two models, we 
predicted the monthly electric energy production in Xinjiang from August 2020 to July 2021, and calculated 
the prediction precision indexes RMSE, MAE and MAPE of two models respectively (see Table 3). The fitting 
and prediction performance of the two models was compared by these index values in Table 3. The smaller the 
three index values, the better the performance of model. The comparison showed that there was little difference 
in fitting ability between the two models. The RMSE of the SARIMA((1,2,3,4,6,7,11),2,1)(1,0,1)12 model was 
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Figure 8.   Normal distribution Q-Q graph (a) and histogram (b) of Holt-Winters’ multiplicative model 
residuals.

Table 3.   The fitting and prediction accuracy values of SARIMA((1,2,3,4,6,7,11),2,1)(1,0,1)12 model and Holt-
Winters’ multiplicative model.

Indexes

Fitting Prediction

RMSE MAE MAPE RMSE MAE MAPE

SARIMA((1,2,3,4,6,7,11),2,1)(1,0,1)12 7.8 5.14 4.87 22.09 17.96 4.78

Holt-Winter multiplicative model 8.34 4.79 4.3 48.77 40.76 10.82

Figure 9.   The comparison of fitting effects of the SARIMA((1,2,3,4,6,7,11),2,1)(1,0,1)12 model and the Holt-
Winters’ multiplicative model (since the x-axis length is limited, only the January location of each year is marked 
in the figure).
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less than that of Holt-Winters’ multiplicative mode, but the MAE and MAPE of Holt-Winters’ multiplicative 
model were less than that of SARIMA((1,2,3,4,6,7,11),2,1)(1,0,1)12 model. For a more intuitive comparison, 
we drew Fig. 9. From Fig. 9, we could see that the two models had almost the same fitting ability, and their 
fitting precisions were both very high. However, as can be seen from the predictive accuracy indexes, the three 
accuracy indexes of the SARIMA((1,2,3,4,6,7,11),2,1)(1,0,1)12 model are significantly smaller than that of the 
Holt-Winters’ multiplicative model, so, overall, the SARIMA((1,2,3,4,6,7,11),2,1)(1,0,1)12 model performs better. 
Therefore, we considered using the SARIMA (1,2,3,4,6,7,11),2,1)(1,0,1)12 model to predict Xinjiang’s monthly 
electric energy production from August 2021 to December 2022. The forecast results were shown in Table 4 and 
Fig. 10.

Discussion
In this study, firstly, according to the characteristics of Xinjiang monthly electric energy production time series 
data, we established the best SARIMA((1,2,3,4,6,7,11),2,1)(1,0,1)12 model. We could see from Table 2 (model 6) 
that all the parameters of the model passed the test (p-value were less than 0.05). From the autocorrelation and 
partial correlation Fig. 5 of the model residuals, it can be seen that the autocorrelation and partial correlation 
coefficients of the SARIMA((1,2,3,4,6,7,11),2,1)(1,0,1)12 model residuals were basically in the double standard 
deviation, indicating that the residuals of the SARIMA((1,2,3,4,6,7,11),2,1)(1,0,1)12 model were white noise, 
and the model had good performance. We could see from the fitting curve of the historical data of the 
SARIMA((1,2,3,4,6,7,11),2,1)(1,0,1)12 model (in Fig. 9) that the fitting curve of the model basically coincided with 
the original Xinjiang monthly electric energy production time series, which indicated that the fitting accuracy of 
the model was very high. Secondly, we used the ets() function package of R software to construct Holt-Winters’ 
additive model, but when we did the residual test of the model, the result showed that the model residuals were 
not white noise, therefore, the model fitting accuracy was not high, and Holt-Winters’ additive model was not 
suitable for predicting the future monthly electric energy production of Xinjiang. Finally, we constructed the 
Holt-Winters’ multiplicative model, the p-value of the residual test of the model was greater than 0.05 and the 
Q-Q chart of model residuals and Histogram (see Fig. 8) showed that the residuals basically obeyed normal 
distribution, which indicated that the model residuals were white noise and the model had good performance. 
Using Holt-Winters’ multiplicative model to fit the historical data of Xinjiang monthly electric energy production 
(see Fig. 9), the model fitting curve basically coincided with the original Xinjiang monthly electric power output 
time series, which indicated that the model fitting accuracy was very high. To establish the best forecast model 
of Xinjiang monthly electric energy production, we compared the SARIMA((1,2,3,4,6,7,11),2,1)(1,0,1)12 model 
and Holt-Winters’ multiplicative model fitting accuracy and prediction accuracy (see Table 3). We found that the 
SARIMA((1,2,3,4,6,7,11),2,1)(1,0,1)12 model has a better predictive performance than that of the Holt-Winters’ 

Table 4.   The actual values and the predicted values by the SARIMA((1,2,3,4,6,7,11),2,1)(1,0,1)12 model of 
monthly electric energy production (billion kWh) of Xinjiang. Error = Actual − SARIMA prediction.

Date SARIMA Prediction Actual Error Date SARIMA Prediction Actual Error

202108 383.16 399.50 16.3 202205 380.49 378.20 − 2.29

202109 353.68 364.30 10.62 202206 395.28 403.50 8.22

202110 372.3 353.00 − 19.3 202207 418.57 431.60 13.03

202111 388.95 374.70 − 14.25 202208 416.38 419.60 3.22

202112 406.09 393.50 − 12.59 202209 392.35

202201 381.05 381.70 0.65 202210 406.54

202202 383.09 381.70 − 1.39 202211 423.78

202203 388.65 388.00 − 0.65 202212 438.99

202204 388.98 362.90 − 26.08

Figure 10.   The curves of actual values and predicted values of electric energy production of Xinjiang (since the 
x-axis length is limited, only the January location of each year is marked in the figure).
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multiplicative model. Therefore, we applied the SARIMA((1,2,3,4,6,7,11),2,1)(1,0,1)12 model to predict Xinjiang’s 
monthly electric energy production from August 2021 to December 2022. From Table 4, we can see the errors are 
relatively small, which indicates SARIMA((1,2,3,4,6,7,11),2,1)(1,0,1)12 model can well predict the electric energy 
production in Xinjiang. From the Fig. 10 we can see that the monthly electric energy production of Xinjiang from 
August 2020 to December 2022 shows a fluctuating upward trend, which is consistent with the actual situation.

Some studies often found that the prediction effect of a single model was not good, so the combination 
prediction was used, and their research results showed that the combination prediction could achieve more 
accurate results35. However, in this case, the prediction model is often more complex and not easy to operate 
in the actual prediction analysis. In our study, three models were used, and two models were compared for the 
prediction performance. A series of analysis results showed that the single SARIMA((1,2,3,4,6,7,11),2,1)(1,0,1)12 
model has high prediction accuracy when predicting the output of Xinjiang electric power (see Fig. 9). A single 
model is relatively simple and is easier to use when doing the actual predictive analysis.

In this study, although the fit and prediction accuracy of the SARIMA((1,2,3,4,6,7,11),2,1)(1,0,1)12 model are 
relatively high, there are also some errors. The reason of errors is that there are many factors affecting electricity 
production, such as population size, industrial development scale, people’s living standards, the speed of 
economic development, and public health emergencies such as COVID-19. In our study, we only used historical 
power production data for predictive analysis, not considering other factors, because we thought that adding 
these factors will increase the model complexity, and these factors will also have many uncertainties, which 
may not necessarily improve the prediction accuracy of the model. Interested readers can do further research.

Considering that the forecasting uncertainty may affect the decision making process and increase the risk 
of scheduling, some studies have used interval prediction for their predictive analysis and got better prediction 
effect36,37. In our next-step study, we will consider doing interval prediction analysis in an attempt to find models 
with higher optimal prediction accuracy.

Conclusions
Electric Power plays a vital role in the national economy and people’s livelihood, especially in the peak period 
of electricity consumption. Early prediction of electric energy production can provide scientific reference for 
the rational planning and distribution of power demand. Based on the monthly power output data of Xinjiang 
from January 2001 to August 2022, this study is the first time to construct a prediction model that can relatively 
accurately predict the electric energy production in Xinjiang. Although the methods we used were not complex, 
our prediction accuracy was very high, which provided a kinds of simple and easy-to-use scientific tools for the 
future energy production prediction in Xinjiang. Our research methods and research ideas can also provide a 
reference for other researchers to make power prediction in some place.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on 
reasonable request.
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