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Fluctuation‑based outlier detection
Xusheng Du *, Enguang Zuo , Zheng Chu , Zhenzhen He  & Jiong Yu 

Outlier detection is an important topic in machine learning and has been used in a wide range of 
applications. Outliers are objects that are few in number and deviate from the majority of objects. As a 
result of these two properties, we show that outliers are susceptible to a mechanism called fluctuation. 
This article proposes a method called fluctuation‑based outlier detection (FBOD) that achieves a 
low linear time complexity and detects outliers purely based on the concept of fluctuation without 
employing any distance, density or isolation measure. Fundamentally different from all existing 
methods. FBOD first converts the Euclidean structure datasets into graphs by using random links, 
then propagates the feature value according to the connection of the graph. Finally, by comparing 
the difference between the fluctuation of an object and its neighbors, FBOD determines the object 
with a larger difference as an outlier. The results of experiments comparing FBOD with eight state‑
of‑the‑art algorithms on eight real‑worlds tabular datasets and three video datasets show that FBOD 
outperforms its competitors in the majority of cases and that FBOD has only 5% of the execution time 
of the fastest algorithm. The experiment codes are available at: https:// github. com/ Fluct uatio nOD/ 
Fluct uation‑ based‑ Outli er‑ Detec tion.

The outlier detection problem can be defined as follows: given a dataset X, find objects that are considerably 
dissimilar, exceptional and inconsistent with respect to the remaining majority of  objects1. Detecting outliers is 
important for many applications, such as financial fraud  detection2,3, network  analysis4,5, medical  diagnosis6,7, 
intelligence  agriculture8,9 and even the discovery of new stars in  astronomy10,11.

The efficiency and effectiveness of most existing outlier detection methods, including distance-based and 
density-based methods, may be severely affected by increasing data volumes and dimensions due to the “curse of 
dimensionality”. Clustering-based, classification-based, and autoencoder-based algorithms are usually byproducts 
of algorithms originally designed for purposes other than outlier detection. This leads to these methods often 
underperforming and detecting too few outliers. For isolation-based methods, when the number of objects is too 
large, normal objects interfere with the process of isolation and reduce the ability to detect outliers. To address 
the above problems, we propose a fluctuation-based outlier detection algorithm. Our motivation is to customized 
design an outlier detection algorithm with low time complexity and independent of the curse of dimensionality.

Outliers have two distinct properties: (1) they represent a very small proportion of the overall dataset; (2) the 
feature values deviate significantly from the majority objects. If the neighbors of an outlier are overwhelmingly 
normal objects, the fluctuations, or degree of change in its feature values when the feature values of its neighbors 
are aggregated, will be more different from the fluctuations of its neighbors. Normal objects, which come from 
similar generative mechanisms, will have higher similarity between their feature values. When a normal object 
aggregates the feature values of its neighbors (the majority of which are normal objects), its fluctuations will be 
less different from those of its neighbors overall. Although fluctuation-based outlier detection is a very simple 
method, we show in this article that it is both effective and efficient in detecting outliers.

We summarize the main contributions of this work as follows:

1. We first proposed a concept of fluctuation. The changes that an object causes in itself by aggregating the 
feature values of its neighbors are called fluctuations. The more similar the fluctuation values of an object 
and its neighbors are, the less likely it is to be an outlier.

2. Our proposed FBOD algorithm does not need to calculate the distance or similarity between objects, which 
reduces the computational cost and improves the detection efficiency.

3. FBOD has a linear time complexity with a small constant, which means FBOD has the capacity to scale up 
to handle large data sizes and extremely high-dimensional problems.

4. We performed extensive experiments on eight real-world datasets and three video datasets to demonstrate 
the effectiveness of our method. The experimental results demonstrated the superiority of the proposed 
algorithm over several state-of-the-art algorithms.
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Related work
The earliest studies on outlier detection date back to the 1960s, when researchers considered outliers to be noise 
and not to contain any valuable information. However, “one person’s noise may be another person’s signal”12, 
in-depth analysis of outliers can reveal information of significant value hidden in the  data13.

Many well-established outlier detection algorithms have been devised, and they come in a wide variety with 
varying performance. Based on their core detection principles, we have divided them into two categories, which 
are: (a) classical outlier detection; (b) deep learning-based outlier detection. Classical outlier detection methods 
are those traditional algorithms that do not use deep neural networks. It is worth noting that some deep learning 
based outlier detection methods are used in combination with classical outlier detection methods.

Classical outlier detection. Since classical outlier detection algorithms have a large research history, we 
subdivide them into seven categories, which are: Statistical-based; Distance-based; Graph-based; Density-based; 
Clustering-based; Ensemble-based; Isolation-based.

Statistical-based In statistical-based outlier detection methods, the objects are sometimes modeled using a 
Gaussian distribution or regression methods, some objects can be labeled as outliers depending on the fitting 
degree with the distribution model. The disadvantage of statistical-based outlier detection is when faced with 
high-dimensional datasets, the processing time is sharply  elevated14.

Distance-based The core idea of the distance-based approach is derived from the definition of outlier points 
by Knorr et al. Knorr and Ng define “a point x in a dataset X is a DB(g, D) outlier if at least a fraction g of the 
points in X lies at a greater distance than D from x”15. These methods are difficult to handle large scale and 
complex data because of their high consumption of computational resources and their inability to implement 
batch  computation16.

Graph-based Cut-point clustering (CutPC) algorithm can automatically perform outlier detection without 
any user-set parameters. This method can identify clusters with arbitrary shapes and detect outliers. However, 
CutPC is not effective in detecting datasets with large density variations and is also affected by the curse of 
 dimensionality17.

Density-based This type of approach usually relies on the assumption that “outliers are in sparse regions of the 
data space, far away from highly dense clusters of normal objects.” Typical representative algorithms are Local 
Outlier Factor (LOF)18, Connective Outlier Factor (COF)19, and Local Distance-based outlier Factor (LDOF)20. 
The density-based approach has the same shortcomings as the distance-based approach, i.e., high computational 
resource requirements and difficulty in handling complex high-dimensional data.

Clustering-based Clustering-based outlier detection approaches usually take a two-step approach: grouping the 
data with clustering and analyzing the degree of deviation based on the clustering results. The representative algo-
rithms are K-means21, Ordering Points to Identify the Clustering Structure (OPTICS)22, etc. Their performance 
is highly dependent on the effectiveness of capturing the cluster structure of normal objects. In clustering-based 
methods, outliers are binary. There is no quantitative indication of the object’s  outlierness23.

Ensemble-based The outlier detection algorithm for ensemble learning works by focusing on combining the 
outputs of different types of algorithms to build stable integrated models for efficient detection of detecting 
outliers. They are more stable and give better predictive models, but for real-world datasets, outlier analysis can 
be very complex to evaluate, and selecting the right meta-detectors is a difficult  task24.

Isolation-based Isolated forest is widely used in industry. Isolation-based method determines those objects 
that are more easily to be isolated as outliers by constructing isolated trees and ensemble them into an isolated 
forest. However, the IForest algorithm is difficult to detect outliers that are mixed around normal  objects25.

Deep learning‑based outlier detection. In various practical applications, deep outlier detection offers 
significantly better performance than traditional outlier detection in solving challenging detection problems. 
Deep outlier detection includes three conceptual paradigms: (1) deep learning for feature extraction, (2) nor-
mality learning for feature representation and (3) end-to-end outlier scoring learning.

Deep learning achieves state-of-the-art performance for outlier detection in structured, high-dimensional 
data. In most deep learning-based approaches, autoencoders play a central role, usually assuming that outliers are 
difficult to reconstruct by the  autoencoder26–28. The autoencoder method does not restrict data types, but relies 
on data patterns, which can cause large deviations if uncommon data patterns are encountered. In recent years, 
some researchers have used generative adversarial networks (GAN) for outlier  detection29. The representative 
one is the Single-objective generative adversarial active learning (SO-GAAL)  algorithm30, which can generate a 
large number of potential outliers, to balance the outlier detection problem into a binary classification problem. 
However, GANs are difficult to train, and in practice, multiple generators need to be trained to generate higher 
quality potential samples, which results in lower detection efficiency of the algorithm.

At the same time, many researchers have started to apply graph neural  networks31 to various types of domains 
due to their demonstrated power in processing graph data. In the field of outlier detection, most researchers have 
focused on the use of graph neural networks for outlier detection in graph  data32–34. However, there is a lack of 
research related to the application of graph neural networks to outlier detection in tabular datasets.

Model
Let X = {x1, x2, x3…, xn} be the given dataset of a D-variate distribution. The core idea of fluctuation-based out-
lier detection is as follows. The fluctuations produced by normal objects aggregating the feature values of their 
neighbors on themselves are similar to the fluctuations of their neighbors (the neighbors are basically normal 
objects). The fluctuations produced by outliers aggregating the feature values of their neighbors on themselves 
are completely different from the fluctuations of their neighbors. The fluctuation-based method compares the 
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difference between the fluctuation of an object and its neighbors and determines the object with a larger differ-
ence as an outlier. Figure 1 shows the overall architecture of the FBOD algorithm.

As shown in Fig. 1, the FBOD algorithm first constructs the connection relationship between objects by 
sampling (graph generation); then propagates the feature values based on the graph, each object aggregates the 
feature values of its connected nodes and affects itself; then calculates the fluctuation value of the object; and 
finally defines the outlier factor of the object based on the difference between the fluctuation value of the object 
and its neighbors. The higher the outlier factor, the more likely the object is an outlier.

The fluctuation-based method consists of three parts: (a) graph generation; (b) feature value propagation; 
and (c) outlier factor. We will describe these three parts in detail below.

Graph generation. In the Euclidean structure dataset, objects are independent of each other, and there is 
no connection relationship. We propose a random link method to convert the original unconnected relationship 
into a connected relationship, called graph generation. The graph generation mechanism is represented in Fig. 2.

Definition 1 k neighborhood of an object xi.

Randomly select k objects from the dataset X; the set formed by these k objects is named the k neighborhood 
of an object xi and denoted as Nk(xi) ( xi /∈ Nk(xi) and |Nk(xi)| =k ). The process of constructing its k-neighbor-
hood for any object is equivalent to subsampling the dataset X once.

Based on the fact that there is very few outliers in the dataset, even with the random link method, it is still 
possible to ensure that the k-neighborhoods of each object will contain mostly normal objects. Figure 3 describes 
the ratio of outliers in Nk(xi) is similar to the original ratio.

Graph generation consists of three main steps: (1) construct Nk(xi); (2) construct a directed edge from the 
object’s neighbors to itself; (3) store the constructed graph in the adjacency matrix A. The flow chart of graph 
construction is shown in Fig. 4.

fluctuation

X

Normal 
objects

Outlier

A

Random Link
Feature values 
propagation Outlier Factordifference

Figure 1.  Illustration of the fluctuation-based outlier detection mechanism. FBOD compares the difference 
between the fluctuation of an object and its neighbors and determines the object with a larger difference as an 
outlier.

Figure 2.  Illustration of the graph generation mechanism. The graph generated from real-world dataset wine 
(k = 5); the solid green circles indicate the outliers. On the right side of this figure, each object has 5 indegrees 
and is connected to itself.
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Algorithm1 Graph Generation
Input: Given dataset X, the number of neighbors k.
Output: Generated graph (adjacency matrix A)

[m, n]=size(X);
for i=1:m

Nk (i ,:) = randperm (m, k); 
 

1. 
2. 
3.
4. end
5. Construct a directed edge from the object's neighbors to the object itself. 
6. Set the weights on the directed edges and diagonal value of A to 1. 
7. return A. 

Feature value propagation and fluctuation. Let the graph generation from X be A. Design the feature 
value propagation as:

We provide an example to illustrate feature value propagation in more detail. Let X =

[

x11

x12

x21

x22

]

 . Each col-

umn in X represents an object, and each object has two features. A =

[

1

W(x1, x2)

W(x2, x1)

1

]

 , 

X ∗ A =

[

x11 ∗ 1+ x21 ∗W(x1, x2)

x12 ∗ 1+ x22 ∗W(x1, x2)

x11 ∗W(x2, x1)+ x21 ∗ 1

x12 ∗W(x2, x1)+ x22 ∗ 1

]

 . After feature value propagation, object x con-

(1)X ′ = X ∗ A

(a) Original sample (b) The ratio of outliers in Nk(xi) 
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Figure 3.  Using the real-world dataset wine to describe the ratio of outliers in Nk(xi) is similar to the original 
ratio. (a) Includes 129 objects with 10 outliers, and the rate of outliers is 7.75%. (b) Shows that by randomly 
selecting k objects from (a) and constructing the neighborhood of xi, the average rate of outliers in Nk(xi) are 8% 
(when k takes different values, the average value is taken of 10 executions).
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Figure 4.  Graph generation.
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tains not only its own feature value but also the feature value passed by its neighbors. We give an example to 
illustrate the feature values propagation in Fig. 5.

Definition 2 Fluctuation.

Let xi’ denote xi after feature value propagation; then:

In Eq. (2), Nk(xi)d denotes the feature value of the kth neighbor of object xi in the dth dimension. From 
section "Graph generation", it is clear that the majority of those contained in Nk(xi) are normal objects. Since 
the feature values of normal objects are similar and the feature values of outlier and normal objects have large 
differences, we can deduce that:

Combining Eq. (2) with Eq. (3):

If xi belongs to a normal object, its fluctuation value is approximately equal to 1/(1 + k); if xi belongs to an 
outlier, the fluctuation value will be significantly different from that of the normal objects.

We use a two-dimensional synthetic dataset in Fig. 6 to demonstrate significant differences in the fluctuations 
of outliers and normal objects:

After the objects in the 2D synthetic dataset are propagated by feature values, their fluctuation values are 
significantly different due to two different generation mechanisms of outliers and normal objects. The fluctua-
tion values of the two outliers located in the upper right corner are significantly higher than those of the normal 
objects, while the fluctuation values of the outliers located in the lower left corner are significantly lower than 
those of the normal objects. Based on the difference in fluctuation values, the outlier factor of the objects can be 
further calculated in the downstream task.

Outlier factor. The outlier factor of xi is defined as:

(2)
fluctuation(xi) =

D
∑

d=1

xid

x′id
=

D
∑

d=1

xid

xid+
k
∑

k=1

Nk(xi)d

(3)
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∑
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Figure 5.  An illustrate graph of feature values propagation. The rightmost side of Fig. 4 shows the distribution 
of X after feature value propagation. When the object aggregates the feature values of other objects, its own 
feature values change, resulting in a significant change in the overall data distribution.
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In Eq. (5), T denotes the number of generated graphs. Since a random connection is used in the graph 
generation process, multiple graphs are used to ensure the stability of the FBOD. The outlier factor of object xi 
captures the degree to which we call xi an outlier. The larger the OF value is, the more likely it is that the object 
is an outlier; the smaller the OF value is, the more likely it is that the object is normal.

Algorithm2 Outlier Factor 
Input: Given dataset X, Adjacency matrix A, the number of neighbors k, the number of 

outliers p 
Output: The set of outliers O 
1. Use Equation (5) to calculate the OF of the object. 
2. [value, index] = Sort(OF, ‘descend’); 
3. O = index (1:p,:); 
4. return O. 

Time complexity analysis. The steps of FBOD to detect outliers contain a total of 3 parts: graph genera-
tion, feature value propagation and fluctuations, and calculation of outlier factors. We analyze the time complex-
ity of each part in detail:

(a) Graph generation The time complexity of randomly selecting k neighbors for n objects in the dataset is O(k 
* n).

(b) Feature value propagation The time complexity of each object in X aggregating the feature values of its 
neighbors is O(k * n).

(c) Fluctuation The original feature values of each object are compared with the feature values after feature 
value propagation with a time complexity of O(n).

(d) Outlier factor The time complexity of comparing the fluctuating values of each object with the feature values 
of its neighbors is O(k * n).

Since k is a constant, the overall time complexity of the FBOD algorithm is O(n).

Experiments
To verify the effectiveness of the FBOD method, we compare the FBOD with several state-of-art algorithms in 
real datasets. The source code of our model is implemented in MATLAB 2019A. The hardware environment 
for the experiments is an Intel(R) Core(TM) i7-7700 3.60 GHz CPU with 16 GB of RAM. The operating system 
environment is Microsoft Windows 10 Professional.

The summary of datasets and compared algorithms. ODDS (http:// odds. cs. stony brook. edu/) 
openly provides access to the collection of outlier detection datasets with ground truths in various real-world 
fields. We use the multidimensional point datasets in the ODDS and remove duplicate objects. All the datasets 

(a) 2-D synthetic dataset (b) Fluctuation value of each object
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Figure 6.  2D synthetic dataset and fluctuation value of each object. Sixteen normal objects are represented by 
blue hollow circles, and four outlier points are represented by solid green diamonds.
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are summarized in Table 1. The following eight datasets are widely used in the literature related to outlier detec-
tion.

We selected five different types of eight state-of-the-art outlier detection algorithms in for comparison experi-
ments with the proposed FBOD. These algorithms in Table 2 are common types in the outlier detection field, 
and are used as comparison algorithms in most related literature. To compare the performance of each algorithm 
fairly, all algorithms are implemented in MATLAB 2019A.

Due to the large variety and number of algorithms in the comparison experiments, the parameter settings 
for each type of algorithm are different. Therefore, Table 3 is used to describe in detail the parameter settings of 
each algorithm in the experiments.

Evaluation techniques. In real-world applications, ground truth outliers are generally rare. The receiver 
operating characteristic (ROC) curve, which captures the trade-off between sensitivity and specificity, has been 
adopted by a large proportion of studies in this area. The area under the curve (AUC), which ranges from 0 to 
1, characterizes the area under the ROC curve. An algorithm with a large AUC value is  preferred35. We choose 
the execution time, AUC, accuracy (ACC), detection rate (DR), and false alarm rate (FAR) as the algorithm 
performance evaluation metrics. Higher AUC, ACC, and DR values and lower FAR and execution time indicate 
better performance.

Let TP be the number of outliers correctly marked as outliers by the algorithm (TOP-p); TN be the number 
of normal objects correctly marked as normal by the algorithm; FP be the number of normal objects incorrectly 
marked as outliers by the algorithm; FN be the number of outliers that the algorithm incorrectly marks as normal 
objects. The calculation method of each evaluation techniques is shown in Algorithm 3.

Table 1.  Dataset statistics.

Dataset # of records # of features # of outliers Outlier ratio (%)

breastw 683 9 239 34.9

wbc 377 30 20 5.3

wine 129 13 10 1.2

heart 267 44 55 20.6

vowels 1452 12 46 3.1

lympho 148 18 6 4.1

pima 768 8 268 34.8

glass 213 9 9 4.2

Table 2.  Comparison algorithm statistics.

Type of algorithm Acronym of algorithm

Neuron network-based AE, SO-GAAL

Graph-based CutPC

Local outlier factor-based LOF, COF

Clustering-based K-means, OPTICS

Isolation-based IForest

Table 3.  Parameter setting.

Algorithms
k(number of 
nearest neighbors) Number of graphs Learning rate

Number of 
iterations Number of layers

xi(relative 
decrease in 
density)

minpts(Number of 
points required to 
form a cluster)

Number of 
isolation trees & 
subsample size

FBOD 2–100 1–5 \ \ \ \ \ \

AE \ 0.0001–0.002 10–100 3 \ \ \

CutPC \ \ \ \ \ \ \ \

LOF 2–100 \ \ \ \ \ \ \

COF 2–100 \ \ \ \ \ \ \

K-means 2–100 \ \ \ \ \ \ \

OPTICS \ \ \ \ \ 0.1 2 –100 \

IForest \ \ \ \ \ \ \ 100, 56–256

SO-GAAL \ \ 0.0001–0.002 10–100 3 \ \ \
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Algorithm3 Evaluation Techniques 
1. Let no be the number of true outliers. 
2. Let nn be the number of true normal objects. 
3. Rank all objects according to their outlier factors in descending order. 

4. Let S be the sum of ranking of the actual outliers, 
1

=
on

i
i

S r , where ri is the rank of the ith 

outlier in the ranked list. 

5.
( ) / 22

o o

o n

S n nAUC
n n  

6. TP TNACC
TP TN FP FN  

7. TPDR
TP FN

8. FPFAR
TN FP  

Experimental on real‑world tabular datasets. We judged the p objects (the size of p is equal to the 
number of true outliers in the dataset) with the highest outlier factor determined by the FBOD as outliers and 
compared them with the labels. Figure 7 shows the fluctuation values of each object as determined by FBOD. The 
left side of Fig. 7 show the original data distribution after dimensionality reduction using principal component 
analysis (PCA), and the right side shows the fluctuation values of each object determined by FBOD.

Figure 7 shows the breastw, wbc, wine, heart, vowels, lympho, pima, and glass datasets from top to bottom. 
There are many outliers in the original dataset that is mixed in the normal object area on the left. These outli-
ers are usually difficult to detect by distance-based, density-based and clustering-based algorithms. On the 
right side of Fig. 7, after the feature value propagation, the fluctuation values of normal objects and outliers are 
significantly different; therefore, true outliers can be detected in downstream tasks based on the difference in 
fluctuation values between objects.

For each algorithm on each dataset, we adjusted the parameters and executed 20 experiments. In order to 
eliminate the influence of random factors on the experimental results, we repeated the experiment 30 times under 
the parameters corresponding to the best detection results obtained by the algorithm and used the average value 
as the final performance evaluation of the algorithm.

The experimental results of our proposed method and eight comparison algorithms on eight datasets are 
shown in Table 4. At the same time, we use the Table 5 to describe the parameters corresponding to the best 
detection results obtained by each algorithm.

In the eight real-world datasets, we compared the execution times of the eight algorithms. Observing Table 4, 
we can conclude that the execution time of the FBOD is much lower than that of the comparison algorithms. The 
average execution time of FBOD is only 5% of the average execution time compared to the OPTICS algorithm, 
which has the fastest average execution time. Furthermore, FBOD accounts for only four ten-thousandths of its 
execution time compared to the COF algorithm, which has the slowest average execution time.

The main reasons for the extremely low time overhead of FBOD are that (1) it does not require the calcula-
tion of distances or densities, and (2) it only calculates the difference between the fluctuations of the object itself 
and the fluctuations of its neighbors and does not involve the calculation of relationships with all objects in the 
dataset.

From Table 4b–e, several observations can be obtained:

1. FBOD obtains the best results in four datasets: breastw, wbc, wine, and heart. Since the heart dataset has 44 
dimensions, the curse of dimensionality caused a near failure of the distance- or density-based methods.

2. The FBOD algorithm did not achieve the best detection results on the four datasets of vowels, lympho, pima, 
and glass. Combined with Fig. 7, it can be seen that the deviation of normal objects from outliers in these 
four datasets is small. Most of the outliers are mixed with the normal objects, and the resulting difference 
between the fluctuation values of the normal objects and the fluctuation values of the outliers is small, which 
affects the detection performance of the FBOD algorithm.

3. The average AUC value of FBOD on eight real datasets is 0.85, which is 6% higher than the next highest 
OPTICS method. The average AUC value of FBOD is 10% higher than that of the isolated forest algorithm. 
The effectiveness of FBOD is demonstrated by the excellent detection results achieved in different types of 
outlier detection tasks.
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(a.1) breastw (a.2) fluctuation value --breastw

(b.1) wbc (b.2) fluctuation value --wbc

(c.1) wine (c.2) fluctuation value --wine

(d.1) heart (d.2) fluctuation value --heart

Figure 7.  The original data distribution after PCA dimensionality reduction. The blue hollow circles represent 
normal objects, the green solid diamonds represent the true outliers in each dataset (left) and fluctuation values 
of each object in datasets, and the green solid diamonds represent the fluctuation values of true outliers in each 
dataset (right).
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(e.1) vowels (e.2) fluctuation value --vowels

(f.1) lympho (f.2) fluctuation value --lympho

(g.1) pima (g.2) fluctuation value --pima

(h.1) glass (h.2) fluctuation value --glass

Figure 7.  (continued)
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Table 4.  Experimental results on real-world datasets. Values marked in bold are ranked by the top 2 in the 
dataset.

Datasets

(a) Actual execution time

Time (s)

FBOD AE CutPC LOF COF K-means OPTICS IForest SO-GAAL

breastw 0.0026 0.2353 0.1232 0.1539 1.2333 0.1240 0.1215 0.1692 0.168

wbc 0.0028 0.1404 0.0370 0.2016 0.5517 0.0824 0.0464 0.1372 0.193

wine 0.0004 0.0421 0.0325 0.0573 0.1698 0.0062 0.0096 0.1421 0.091

heart 0.0023 0.0990 0.0375 0.0798 0.3482 0.0200 0.0250 0.2282 0.078

vowels 0.0107 0.3380 0.1847 0.4356 25.981 0.1272 0.1757 0.1859 0.447

lympho 0.0004 0.0473 0.3153 0.1057 0.5457 0.2353 0.0113 0.1566 0.176

pima 0.0030 0.1944 0.0776 0.2131 23.531 0.0360 0.0594 0.1722 0.195

glass 0.0006 0.0626 0.0162 0.0820 2.3947 0.0076 0.0138 0.1285 0.045

Datasets

(b) AUC performance

AUC 

FBOD AE CutPC LOF COF K-means OPTICS IForest SO-GAAL

breastw 0.9906 0.8911 0.9238 0.8131 0.6962 0.8814 0.8522 0.9412 0.6212

wbc 0.9802 0.9005 0.9529 0.9555 0.9328 0.9372 0.9405 0.9705 0.8533

wine 0.9677 0.9437 0.5286 0.9244 0.7790 0.7790 0.8542 0.9222 0.6791

heart 0.5201 0.4758 0.1910 0.2420 0.2314 0.3652 0.3321 0.2533 0.2032

vowels 0.9186 0.8102 0.9889 0.8480 0.8180 0.5554 0.9078 0.6829 0.5943

lympho 0.9035 0.5213 0.9812 0.7899 0.7840 0.8847 0.8635 0.8742 0.6892

pima 0.7823 0.9322 0.7798 0.4900 0.7363 0.9510 0.8893 0.6705 0.6697

glass 0.7719 0.5487 0.8399 0.7941 0.8769 0.4733 0.7216 0.7213 0.5543

Datasets

(c) Accuracy performance (%)

ACC(%)

FBOD AE CutPC LOF COF K-means OPTICS IForest SO-GAAL

breastw 97.07 94.33 94.43 68.66 91.50 68.66 68.66 96.09 68.66

wbc 96.81 94.51 95.22 95.75 94.69 94.69 95.22 95.40 94.69

wine 94.83 91.73 84.49 90.69 84.49 87.59 89.14 91.73 87.59

heart 67.04 61.29 59.55 61.04 61.04 65.54 64.04 59.80 61.04

vowels 96.32 94.21 98.07 95.73 95.86 94.07 95.86 94.62 94.35

lympho 96.39 93.69 97.29 94.59 94.59 94.59 94.59 94.14 93.24

pima 73.43 84.63 70.05 70.05 62.50 95.83 82.29 72.22 70.05

glass 94.36 92.17 92.48 92.48 93.45 92.48 92.48 92.80 92.48

Datasets

(d) Detection rate performance (%)

DR(%)

FBOD AE CutPC LOF COF K-means OPTICS IForest SO-GAAL

breastw 95.81 91.91 92.05 55.23 87.86 55.23 55.23 94.42 55.23

wbc 70 48.33 55.00 60 50 50 55.00 56.66 50

wine 66.67 46.67 0 40 0 20.0 30 46.67 20

heart 20 6.06 1.81 5.45 5.45 16.36 12.72 2.42 5.45

vowels 42.03 8.69 69.56 32.60 34.78 6.52 34.78 15.21 10.86

Datasets

DR(%)

FBOD AE CutPC LOF COF K-means OPTICS IForest SO-GAAL

lympho 55.56 22.21 66.67 33.33 33.33 33.33 33.33 27.78 16.67

pima 61.94 77.98 57.08 57.08 45.79 94.02 74.62 60.19 57.08

glass 33.33 7.41 11.11 11.11 22.22 11.1 11.11 14.81 11.11

Datasets

(e) False alarm rate (%)

FAR(%)

FBOD AE CutPC LOF COF K-means OPTICS IForest SO-GAAL

breastw 2.25 4.35 4.27 24.09 6.53 24.09 24.09 3.00 24.09

wbc 1.68 2.89 2.52 2.24 2.80 2.80 2.52 2.42 2.80

wine 2.79 4.48 8.40 5.04 8.40 6.72 5.88 4.48 6.72

heart 20.75 24.37 25.47 24.52 24.52 21.69 22.64 25.31 24.52

vowels 1.89 2.98 0.99 2.20 2.13 3.05 2.13 2.77 2.91

lympho 1.88 3.28 1.40 2.81 2.81 2.81 2.81 3.05 3.52

pima 20.40 11.80 23.00 23.00 30.00 3.20 13.60 21.33 23.00

glass 2.94 4.08 3.92 3.92 3.41 3.92 3.92 3.75 3.92
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Experiments on video data. The UCSD outlier detection dataset (http:// www. svcl. ucsd. edu/ proje cts/ 
anoma ly/ datas et. htm) was acquired with a stationary camera mounted at an elevation, overlooking pedestrian 
walkways. In the normal setting, the video contains only pedestrians. Outliers are due to either:

(a) The circulation of nonpedestrian entities in walkways.
(b) Anomalous pedestrian motion patterns.

Commonly occurring anomalies includes bikers, skaters and small carts. All outliers are naturally occurring, 
i.e., they were not staged for the purposes of assembling the dataset. We constructed 3 datasets based on the 
UCSD library, and each dataset contained 60 normal images and 3 outliers. Finally, each dataset is transformed 
into a 37,604*63 matrix X. Each column of X represents an object (a picture), and each row corresponds to the 
value of a pixel point at a certain location. Figure 8 shows a selection of photos from the video dataset used.

Most outlier detection algorithms are difficult to execute due to the high dimensional of the video dataset. 
Therefore, we only choose the AE, SO-GAAL algorithm in section "The summary of datasets and compared 
algorithms" for comparison experiments with FBOD. Each algorithm is executed 30 times, and the average value 
are selected as the final performance evaluation of each algorithm. The FBOD algorithm has features that make it 
possible to achieve effective detection in arbitrarily high dimensions. FBOD selects those images with the largest 
differences in pixel values as outliers based on the differences in pixel value between images.

Figure 9 shows the experimental results of the three algorithms. FBOD was able to detect the majority of outli-
ers in the dataset. This is due to the large changes in pixel values of the images caused by anomalous behaviors 
such as bikers and small cars on the sidewalk. FBOD is able to detect outliers based on the different fluctuation 
values generated after aggregating neighbor information between images. Also, since the FBOD algorithm does 
not need to calculate distance and similarity between objects, that makes the FBOD have the potential to han-
dle real-world video anomaly detection tasks. Figure 10 visualizes some of the detection results in the dataset.

Research on the influence of parameters on the detection performance of FBOD. We con-
ducted 20 experiments on each real-world dataset to investigate the effects of the number of neighbors k and the 
graph number T on the performance of the FBOD. The experimental results are shown below.

FBOD performance against various neighbor’s k. Parameter k ranges from 5 to 100, and the value of k increases 
by 5 each time (graph number T = 2). Figure 11 shows that when k gradually increases, the AUC of FBOD also 
gradually increases. After reaching the highest AUC, k continues to increase, and the AUC value tends to stabi-
lize. At the same time, when k gradually increases, the execution time of FBOD gradually increases.

FBOD performance against various graph numbers T. Parameter T ranges from 1 to 20, and the value of T 
increases by 1 each time (k = 10). Figure 12 shows that when T gradually increases, the AUC of the four datasets 
of wine, heart, lympho, and glass are highly variable. The main reason for this phenomenon is that the distribu-
tion of normal objects in the dataset is too loose, which leads to a large variation in the selection of neighbors 
in each graph generation. Compared with the number of neighbors k, the parameter T has less impact on the 
performance of the FBOD; its main role is to fine-tune the performance and improve the robustness of the 
algorithm.

Conclusion
In this paper, we proposed a fluctuation-based unsupervised outlier detection algorithm that changes the dis-
tribution of an original dataset by allowing objects to aggregate the feature values of their neighbors. Then, 
we define a new property of the object, fluctuation, in addition to distance, density and isolation. Finally, the 
fluctuation of the object is compared with its neighbors, and those objects with larger outlier factors are judged 
as outliers. FBOD is the first method that uses feature value propagation techniques and utilizes fluctuation for 

Table 5.  Optimal parameter setting.

Algorithms
k (number of 
nearest neighbors) Number of graphs Learning rate

Number of 
iterations Number of layers

xi (relative 
decrease in 
density)

minpts (number 
of points required 
to form a cluster)

Number of 
isolation trees & 
subsample size

FBOD 60 4 \ \ \ \ \ \

AE \ \ 0.0008 100 3 \ \ \

CutPC \ \ \ \ \ \ \ \

LOF 50 \ \ \ \ \ \ \

COF 50 \ \ \ \ \ \ \

K-means 10 \ \ \ \ \ \ \

OPTICS \ \ \ \ \ 0.1 30 \

IForest \ \ \ \ \ \ \ 256

SO-GAAL \ \ 0.0006 70 3 \ \ \

http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm
http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm
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Outlier Normal

Figure 8.  Video outlier detection dataset. The outliers on the leftmost are anomalous events on the sidewalk 
with bikers, small carts and skaters, and we have highlighted the cause of the anomaly with a red rectangle.

(a) AUC (b) ACC

(c) DR (d) FAR

Figure 9.  Experimental results of the three algorithms on video dataset.
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outlier detection. The results of experiments comparing FBOD with eight state-of-the-art algorithms on eight 
real-world tabular datasets show that FBOD achieves the best or next best AUC on six datasets. Meanwhile, 
FBOD achieves excellent detection results on video data. Most importantly, since the fluctuation-based algo-
rithm does not need to calculate distance or density, the algorithm requires a very short execution time. It has 
high potential for real-worlds applications for outlier detection in large-scale data. Finally, we investigate the 
influence of hyperparameters in the FBOD on the detection effect in detail. However, the FBOD method still has 
some limitations, such as the need for the researcher’s experience to manually adjust the hyperparameters. In the 
future, we will try to find the best settings for hyperparameters that can fit most practical applications as well as 
references for adjusting them. At the same time, we will attempt to take the FBOD algorithm by pretraining it to 
learn the fluctuation bounds of normal objects and then introduce it into the online application of data streams.

Outlier Normal
OF=0.03728 OF=0.00709 OF=0.00641 OF=0.00198 OF=0.00485

OF=0.01248

OF=0.04354

OF=0.00558 OF=0.00314 OF=0.00267 OF=0.00446

OF=0.00944 OF=0.00356 OF=0.00519 OF=0.00812

OF=0.00349

OF=0.00376

OF=0.00270

Figure 10.  Visualization of FBOD detection results. The OF value of the leftmost outlier is significantly higher 
than that of the normal object.
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Figure 11.  FBOD AUC performance (y1-axis) and execution time (y2-axis) versus the different neighbors’ k 
(x-axis).
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Figure 12.  FBOD AUC performance (y1-axis) and execution time (y2-axis) versus the different graph numbers 
(x-axis).
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Data availability
The datasets generated and/or analyzed during the current study are available in the ODDS repository, http:// 
odds. cs. stony brook. edu/.
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