Table 1 Decision matrix for \({\mathbf{\aleph }}_{1}\).

From: Optimizing construction company selection using einstein weighted aggregation operators for q-rung orthopair fuzzy hypersoft set

 

\({\hat{d}}_{1}\)

\({\hat{d}}_{2}\)

\({\hat{d}}_{3}\)

\({\hat{d}}_{4}\)

\({\hat{d}}_{5}\)

\({\hat{d}}_{6}\)

\({\hat{d}}_{7}\)

\({\hat{d}}_{8}\)

\({\mathcal{H}}_{1}\)

\(\left(0.5, 0.4\right)\)

\(\left(0.4, 0.6\right)\)

\(\left(0.5, 0.7\right)\)

\(\left(0.2, 0.9\right)\)

\(\left(0.7, 0.8\right)\)

\(\left(0.4, 0.5\right)\)

\(\left(0.2, 0.6\right)\)

\(\left(0.1, 0.7\right)\)

\({\mathcal{H}}_{2}\)

\(\left(0.3, 0.6\right)\)

\(\left(0.1, 0.4\right)\)

\(\left(0.2, 0.4\right)\)

\(\left(0.5, 0.3\right)\)

\(\left(0.6, 0.4\right)\)

\(\left(0.5, 0.8\right)\)

\(\left(0.3, 0.2\right)\)

\(\left(0.9, 0.2\right)\)

\({\mathcal{H}}_{3}\)

\(\left(0.7, 0.8\right)\)

\(\left(0.8, 0.5\right)\)

\(\left(0.4, 0.6\right)\)

\(\left(0.7, 0.2\right)\)

\(\left(0.6, 0.1\right)\)

\(\left(0.4, 0.5\right)\)

\(\left(0.3, 0.2\right)\)

\(\left(0.9, 0.2\right)\)