Table 3 Optimal feature selected for tumour response classification using SVM-RBF algorithm developed based on ultrasound data (Feature Set IV), ultrasound data + molecular subtype (Feature Set VII), and the best performed feature set (Feature Set VI) with leave-one-out cross validation approach.

From: A priori prediction of breast cancer response to neoadjuvant chemotherapy using quantitative ultrasound, texture derivative and molecular subtype

No

Only ultrasound data (Feature Set IV)

Ultrasound data + Molecular subtype (Feature Set VII)

Best model feature set (Feature Set VI)

1

Core MBF-ENE-ENE

Luminal-A

Luminal-A

2

CMCR-SI

Core AAC-COR

Core SI-COR-HOM

3

CMCR-AAC

CMCR-AAC

Margin AAC-CON-COR

4

CMCR-ASD

Core SI-COR-HOM

Core MBF-CON-COR

5

Core SS-COR-ENE

CMCR-SI

Core SI-COR-ENE

6

Margin AAC-COR-HOM'

Core SI-COR

Margin AAC-COR-CON

7

CMR-SI

Core MBF-ENE

Margin MBF-CON-COR

8

Core MBF-ENE-COR

Core SI-COR-ENE

Core SS-COR-CON

9

Margin MBF

Core MBF-CON-COR

Core MBF-ENE-HOM

10

Margin MBF-CON-COR

CMCR-ASD

Margin AAC-COR-HOM

  1. Feature Set IV: QUS + Texture + Core-to-Margin + Texture-Derivative; Feature Set VI: Texture-Derivative + Molecular Subtype; Feature Set VII: QUS + Texture + Core-to-Margin + Texture-Derivative + Molecular Subtype.