Table 1 Ablation study showing performance of different DL models before and after modification of network backbone.
From: DiaNet v2 deep learning based method for diabetes diagnosis using retinal images
Model | Result type | Accuracy | Sensitivity | Specificity | Precision | F1-score | MCC |
---|---|---|---|---|---|---|---|
DenseNet-121 | Modified (DiaNet v2) | 0.9048 | 0.8925 | 0.9172 | 0.9134 | 0.9021 | 0.8108 |
Backbone | 0.8108 | 0.8181 | 0.8036 | 0.8068 | 0.8123 | 0.6218 | |
p value | 5.669E−154 | 5.888E−183 | 9.462E−147 | 7.443E−136 | 7.571E−173 | 2.677E−136 | |
ResNet-50 | Modified (DiaNet v2) | 0.9213 | 0.9184 | 0.9241 | 0.9231 | 0.9205 | 0.843 |
Backbone | 0.9059 | 0.9065 | 0.9053 | 0.9068 | 0.9058 | 0.8132 | |
p value | 1.666E−144 | 7.275E−139 | 2.175E−113 | 7.199E−117 | 3.827E−142 | 1.332E−144 | |
EfficientNet | Modified (DiaNet v2) | 0.8812 | 0.8556 | 0.9069 | 0.9011 | 0.8776 | 0.7637 |
Backbone | 0.874 | 0.8735 | 0.8746 | 0.8765 | 0.874 | 0.7497 | |
p value | 3.625E−153 | 1.764E−106 | 7.987E−149 | 1.053E−160 | 1.027E−155 | 2.261E−152 | |
VGG-11 | Modified (DiaNet v2) | 0.9263 | 0.9393 | 0.9132 | 0.9176 | 0.9281 | 0.8532 |
Backbone | 0.8914 | 0.9446 | 0.838 | 0.8781 | 0.9041 | 0.7978 | |
p value | 2.375E−232 | 1.574E−235 | 9.616E−17 | 9.175E−29 | 2.505E−206 | 3.565E−187 | |
MobileNet_v2 | Modified (DiaNet v2) | 0.8842 | 0.8918 | 0.8765 | 0.8784 | 0.8849 | 0.7687 |
Backbone Network | 0.8822 | 0.8814 | 0.8829 | 0.883 | 0.8821 | 0.7646 | |
p value | 4.069E−159 | 6.224E−158 | 4.146E−74 | 8.861E−80 | 7.673E−150 | 9.739E−160 |