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Improved target detection method 
for space‑based optoelectronic 
systems
Rui Zhu 1,2, Qiang Fu 1,2*, Nan Liu 1,2, Feng Zhao 1,2, Guanyu Wen 3, Yingchao Li 1,2 & 
Huilin Jiang 1,2

The detection of faint and small targets by space-based surveillance systems is difficult owing to the 
long distances, low energies, high speeds, high false alarm rates, and low algorithmic efficiencies 
involved in the process. To improve space object detection and help prevent collisions with critical 
facilities such as satellites, this study proposes an improved method for the detection of faint and 
small space-based targets. The proposed method consists of two components: star atlas preprocessing 
and space-based target detection. The star atlas preprocessing step applies multi-exposure image 
pyramidal weighted fusion to the original image containing the faint and small space-based target. 
After obtaining the image pyramidal weighted fusion result atlas, the algorithm employs threshold 
segmentation to improve the overall image clarity, highlight image details, and provide additional 
information for target detection. The detection of targets partially relies on the local symmetry of 
the image. Accordingly, a diffusion function describing the local symmetry is established to precisely 
locate stars by measuring the symmetry factor in a small area surrounding each pixel in the star atlas. 
This effectively removes the background stars while retaining high-definition and high-contrast 
images. The efficacy of the algorithm is validated using simulated datasets consisting of space-based 
and real images. The results demonstrate that the proposed technique improves the applicability of 
the multistage hypothesis testing (MHT) method in the context of a complex space environment, thus 
improving the performance of the space-based electro-optical detection system to better catalogue, 
identify, and track space targets.

Orbital surveillance systems that are used to monitor space-based targets play an important role in the security of 
space assets, are fundamental to national strategic facilities, and represent an important direction for the future 
development of space situational awareness technologies. They are also cutting-edge technology in the field of 
space exploration, which is of strategic importance for the successful execution of national space missions and 
the maintenance of national security systems. Surveillance of space-based targets is primarily performed via 
radar detection, photoelectric detection, and other techniques. Optoelectronic detection technology offers the 
benefits of high-resolution images, large detection distances, compact system sizes, and low costs; these favour-
able properties facilitate the detection of many objects in space and meet the requirements of space-based target 
detection1,2.

Optical imaging is the most common way for space-based surveillance systems to acquire information on the 
space environment. In optical images, space-based targets appear as point-like targets without any information 
on their sizes, structures, and textures. Therefore, space-based target detection is often considered a problem 
of detecting faint and small targets in complex backgrounds. A major obstacle that prevents space-based sur-
veillance systems from quickly and accurately detecting space-based targets is the lack of a priori information, 
such as the target trajectory, direction of motion, position in the image, and image characteristics of the target 
and the background stars, which is compounded by the influence of image noise3. Space-based target detection 
technology primarily includes two components: star atlas preprocessing and faint target detection technology.

Star atlas preprocessing is defined as the processing of images prior to the detection and positioning of spatial 
targets in the image. Due to stray radiation and detector interference, space-based optical systems often cap-
ture images with a high level of noise, which reduces the image quality and hinders the extraction of the target 
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characteristics. Image preprocessing primarily utilises transform domain methods and spatial domain methods. 
In transform domain denoising methods, the frequency domain low-pass filtering4 and wavelet transform5,6 
techniques are extensively used. Frequency domain low-pass filtering employs a two-dimensional discrete Fou-
rier transform to convert the image information to the frequency domain. Subsequently, because noise typically 
behaves as a high-frequency component in the frequency domain, low-pass filtering is applied in the frequency 
domain to filter out the noise signal. Prominent spatial domain denoising techniques include median7, mean8, 
Wiener9, and morphological10 filtering. Despite this wide range of available techniques, none of them include 
the properties of the star atlas itself, which has resulted in unsatisfactory image processing outcomes.

In the field of space-based target detection, scholars have proposed methods such as multi-frame time series 
projection11, trajectory identification12,13, matching correlation14, and hypothesis testing15–18 by investigating 
the discrepancy between the space-based target to be detected and the background of the star atlas. However, 
space-based background noise is complex, variable and diverse, and consists of four main aspects: (1) interference 
from stray light due to light scattering and reflection, etc.; (2) interference from inhomogeneous and random 
noise due to various factors; (3) interference from the large number of stars present on target detection; and (4) 
difficulty in accurately distinguishing between spatial targets in the star atlas because of the similarity between 
their forms and grayscale values and the noise. These aspects lead to the fact that the methods in the literature 
mentioned above are often not effective in denoising space-based images, which results in the loss of target 
information or the generation of false targets.

To overcome these difficulties, this study proposes a modified multi-exposure image pyramidal fusion method 
based on the algorithm developed by T. Mertens19. The proposed method calculates the pixel weights of the fused 
image based on three indicators: contrast, two-dimensional entropy, and exposure goodness of the sequence 
image before fusion. The saturation function of the fusion coefficients in the original algorithm is replaced by an 
entropy information function. The improved algorithm can neglect the influence of illumination on the image 
when extracting the edges as well as improve the sharpness, contrast, and greyscale variance of the edge contours 
of the star atlas. This produces image fusion results that are more natural and richer in detail. For the space-
based detection of faint and small targets, this study presents an improved multistage hypothesis testing (MHT) 
method. The traditional MHT algorithm constructs the trajectories of a large number of candidate targets in a 
sequence of space-based images in a tree structure, and it prunes each frame in the image sequence via hypothesis 
testing conditions, resulting in excellent detection performance. However, an excessive number of stars in the 
image can lead the MHT algorithm to require a significant computational load. By invoking a diffusion function 
to measure the local asymmetry within a small region around each pixel in the star atlas to pinpoint the stars, 
the proposed method can effectively remove background stars, decrease the complexity of the algorithm, and 
improve the performance of the space-based detection of faint and small targets while retaining high-definition 
and high-contrast images. The flow of the proposed algorithm is illustrated in Fig. 1.

The rest of this paper is organised as follows. "Star atlas preprocessing" describes the star atlas preprocessing 
step. "Exposure quality" explains the improved MHT target detection method. In “Experimental evaluation”, 
the effectiveness of the improved algorithm is validated by simulated and real star atlases. Finally, “Conclusion” 
contains the conclusions of this study.

Star atlas preprocessing
Faint targets with low signal-to-noise ratios occupy only a few pixels, and their successful detection is highly 
sensitive to background clutter and noise. Therefore, it is difficult to detect the targets directly; this necessitates 
the preprocessing of the star atlas to suppress image noise and improve the efficiency of the detection algorithm. 
Star atlas preprocessing involves the utilisation of median filtering and multi-exposure image pyramidal fusion 
techniques. We first perform star atlas preprocessing instead of removing the stars in the background of the image 
is that star atlas preprocessing can improve the overall clarity of the star atlas and highlight the details of the 
image, which has the advantage of providing a good foundation for the next star removal and target detection, 
improving the success rate of target detection and reducing false alarms.

The median filtering technique is used to estimate the nonuniform background of each image, and the original 
image is subtracted from the background image in order to remove the nonuniformity of the image. The median 
filter is not used for stars, and its main function is to remove noise such as pretzels or non-uniformity in the star 
atlas. For targets, there is no loss of low SNR targets using median filtering, because whether or not low SNR 

Figure 1.   Flow chart of the detection of faint and small space-based targets.
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targets are lost depends on the size of the filtering window, and in this paper a smaller window (3 × 3) is used to 
better preserve the details of the targets. The median filtering formula is

where f (m, n) represents the initial image data,g
(

x, y
)

 is the filtered image data, and N
(

x, y
)

 is a two-dimensional 
template for a window for selecting elements and performing median calculations.

Improved multi‑exposure image fusion
In complex space-based backgrounds, images can appear to have excessively high contrast between light and dark 
areas, resulting in overexposed and saturated bright areas throughout the image, underexposed dark areas, and 
missing edge information and texture detail. To address these issues, T. Mertens proposed a pyramid-based image 
fusion algorithm, which fuses the three functions of image contrast, colour saturation, and exposure quality; this 
enables the acquisition of the pixel weights of the fused image and generates superior fusion outcomes19. This 
study aimed to make this algorithm more applicable to the detection of faint and small targets in space-based 
environments. We employed a two-dimensional entropy information function instead of the saturation func-
tion of the fusion coefficients in the original algorithm. The effect of illumination on the image was neglected 
when extracting edges, resulting in a more natural and detailed fusion result, as well as an improvement in the 
sharpness, contrast, and greyscale variance of the edge contours of the star atlas.

(1) Image contrast
The original multi-exposure image is Laplace-filtered, assuming that if the grey value of a point is greater than 
its surroundings after filtering, the point is a bright spot with dark surroundings; otherwise, it is a dark spot with 
bright surroundings. The contrast coefficient is used to evaluate the value of that point relative to its surroundings. 
Therefore, the absolute value of the pixel at that location is acquired, and the resulting absolute value response 
coefficient reflects information about the contrast of the image at each pixel. The weight coefficients are produced 
by computing the changes in the image edge, turning the image into a greyscale one, and normalising the pixels 
in the image to the interval1. Calculating the second-order gradient of the image provides a more comprehensive 
description of the image contrast information. The Laplace operator is

and the convolutional template can be derived from the Laplace operator as

(2) Two‑dimensional entropy
Entropy is typically used as a method to evaluate the focus and to assess the amount of information contained in 
an image; the higher the entropy, the clearer the image. The one-dimensional entropy of an image may describe 
the aggregated features of the greyscale distribution of the image, but not its spatial qualities. To characterise 
these spatial properties, the two-dimensional entropy of an image may be introduced to represent the combined 
qualities of the greyscale information of the pixels and the greyscale distribution in the neighbourhood of each 
pixel. The expression for the two-dimensional entropy E required for the assessment of a greyscale image is

where i represents the pixel’s grey value, j represents the neighbourhood’s grey mean, and Gi,j represents the 
combined properties of the pixel’s grey value and the grey distribution of the surrounding pixels.

where c
(

i, j
)

 is the number of occurrences of the feature binary 
(

i, j
)

 ; W and H denote the image size. Figure 2 
shows the 2D entropy information image obtained by grey-level co-occurrence matrix, and the two-dimensional 
entropy information value is 0.2024.

(3) Exposure quality
The image pixels are normalised, typically, the greyscale value is to 0.5, set the value to 0.5 because this makes 
the brightness in the fusion result more balanced and retains more detail. Details in lower exposure images will 
not be too dark and details in higher exposure images will not be too bright. This achieves a more natural and 
balanced result, and the pixel weighting at a given exposure is indicated by W

(

x, y
)

 , which is defined as

(1)g
(

x, y
)

= median
(m,n)∈N(x,y)
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where V
(

x, y
)

 represents the normalized pixel value, pixel normalization can be achieved by dividing all pixel 
values by the maximum pixel value, which is 255. because normalizing the pixels is more convenient for calculat-
ing the weight value of the exposure factor and does not affect anything else.

The image pixels are chunked into a 3 × 3 matrix, with the pixel centroids representing the amount of infor-
mation in the matrix. The main reason for segmenting image pixels into a 3 × 3 matrix is to obtain sufficient 
exposure range and detail information. The 3 × 3 exposure range is chosen to cover relatively low brightness, 
medium brightness and relatively high brightness. This ensures that more details and dynamic range are captured 
during the fusion process to produce images with high dynamic range.

3 × 3 and 5 × 5 each have their own advantages over each other, with 3 × 3 allowing for more detailed treat-
ment of localized details in the image and 5 × 5 allowing for better treatment of smooth areas. Whether to use 
3 × 3 or 5 × 5 depends on the content of the image data and the desired effect. In this paper, the choice of 3 × 3 
exposure range is a balance in multi-exposure pyramid fusion that provides sufficient dynamic range and detail 
information while maintaining reasonable computational complexity.

The total weight is calculated using

where k is the sequence number of the image. C, E, and W represent the image’s contrast, entropy, and expo-
sure level of the image, respectively; a = b = c = 1 ; Ck

(

x, y
)

 is the contrast weighting; Ek
(

x, y
)

 is the entropy 
weighting; Wk

(

x, y
)

 is the exposure weighting factor; and wc , ws , and we are the weighing factors (the number 
1 is often used).

The total weight values are normalised to

where N is the number of input images. As N increases, the output of the final weighting atlas used to determine 
the coefficients becomes more precise.

Applying Eq. (8) to successive images captured with various exposure times results in

where R
(

x, y
)

 is the image output and Ik
(

x, y
)

 is the kth input image.
The algorithmic outline of this section is shown below.

(6)W
(

x, y
)

=
−
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V
(
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)

− 0.5
]2

2σ 2
0 ≤ V
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(7)wk
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)

Figure 2.   2D entropy information image.
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Threshold segmentation
In space-based image processing, weak spatial targets may be misclassified as part of the background if the image 
is segmented immediately using mean and standard deviation-based thresholds without suppressing stellar and 
other spatial targets. To address this challenge, a threshold segmentation approach that combines global and 
local threshold segmentation is adopted according to the following stages.

(1)	 The global thresholding TG is an adaptive threshold segmentation for the whole image and is defined as

\begin{algorithm} 

\caption{Improved multi-exposure image fusion} 

\begin{algorithmic}[1] 

Step 1: Read the input image  
\State $image1 \gets$ ReadImage("image1.jpg") 

\State $image1 \gets$ ConvertToFloat(image1) 

Step 2: Build the Pyramid 
\State $numLevels \gets 5$ 

\State $gaussianPyramid1 \gets$ CreateEmptyList(numLevels) 

\State $laplacianPyramid1 \gets$ CreateEmptyList(numLevels) 

\State $gaussianPyramid1[1] \gets image1$ 

\For{$level = 2$ to $numLevels$} 

    \State $gaussianPyramid1[level] \gets$ DownsampleImage (gaussianPyramid1

[level-1]) 

\EndFor 

Step 3: Calculate the image contrast factor, 2D entropy information factor,
and exposure factor 
\State $contrastFactor \gets Formula 2$  

\State $entropyFactor \gets Formula 4$ 

\State $exposureFactor \gets Formula 6$ 

Step 4: Build the Laplace Pyramid 
 \If{$level < numLevels$} 

 \State $laplacianPyramid1[level] \gets gaussianPyramid1[level] - UpsampleImage

 (adjustedExposure1)$ 

 \Else 

  \State $laplacianPyramid1[level] \gets gaussianPyramid1[level]$ 

\EndIf 

\EndFor 

Step 5: Reconstruct the fused image 
\State blendedImage \gets laplacianPyramid1[numLevels]+ laplacianPyramid2 

[numLevels] + laplacianPyramid3[numLevels]$ 

\For{$level = numLevels-1$ down to $1$} 

\State $blendedImage \gets UpsampleImage(blendedImage) +  

laplacianPyramid1[level] + laplacianPyramid2[level] + laplacianPyramid3[level]$ 

\EndFor 

Step 6: Display the image 
\State ShowImage(blendedImage) 

\end{algorithmic} 

\end{algorithm} 

(10)TG = µ+ ασ
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where µ is the average image background noise,σ is the standard deviation, and α is a constant .
(2)	 After global threshold segmentation, the image is characterised by

(3)	 Local threshold segmentation separates the image into N × N areas and determines the threshold TLi for 
each region, which is defined as

where σi is the standard deviation of the ith partition area, and i = 1,2,3, …, N × N , and µi is the mean of 
the first partition region.

(4)	 The results of local threshold segmentation are

(11)BG(x, y) =

{

1 R(x, y) > TG

0 R(x, y) ≤ TG

(12)TLi = µi + ασi

(13)BL(x, y) =

{

1 R(x, y) > TLi

0 R(x, y) ≤ TLi

Figure 3.   Image preprocessing flow chart.

Figure 4.   The overall flowchart of the algorithm.
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(5)	 For efficient identification of spatial targets with a low signal-to-noise ratio, the same value of α(α = 2 ) is 
used in Eqs. (10) and (12), the main reason for setting α to 2 is to balance the brightness and contrast of 
the image. When α = 2 , the threshold is set to twice the mean value of the image. This means that pixels 
lower than the mean value will be considered as background and pixels higher than the mean value will be 
considered as foreground.

Different values of α lead to different thresholding choices and segmentation results. A smaller α value (e.g. 
1) will result in a threshold close to the image mean, which may result in too many pixels being classified as 
foreground, resulting in a higher false alarm rate. A larger value of α (e.g. 3) moves the threshold away from 
the image mean, which may result in more pixels being classified as background, thus producing a higher false 
alarm rate. Therefore, choosing α = 2 is a compromise that balances the effect of foreground and background 
segmentation to some extent.

The final candidate points for overall threshold segmentation are derived as follows:

Figure 5.   Ideal stellar point source.

Figure 6.   Framework for calculating the symmetry factor.
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Figure 3 depicts the image preprocessing sequence. First, median filtering is used to denoise the star map. 
Second, image quality enhancement is performed using an improved multi-exposure image pyramid fusion 
method. Finally, threshold segmentation separates the target from the star atlas background to simplify subse-
quent analysis and processing.

Improved target detection with multistage hypothesis testing
Blostein’s15 MHT technique correlates each frame using a tree structure, adds the grey values of each frame, 
and thresholds them appropriately to filter the nodes at each level of the discriminant tree and to determine the 
trajectory of the target. The method is effective for detecting faint targets with unknown positions and veloci-
ties. However, the presence of a large number of stars in the background of a star atlas geometrically increases 
the computational effort as the number of images and pixels increases, thereby increasing the complexity of 
the algorithm and the rate at which detections are missed. In response to this problem, this study proposes an 
improved MHT method for pinpointing stars by measuring local asymmetries within a small region surround-
ing each pixel in a single star atlas.Fig. 4 shows the overall flowchart of the algorithm, this method effectively 
removes background stars while also generating high-resolution and high-contrast images.

Stellar removal
As seen in Fig. 5, background stars on a star chart often form excellent point sources in images. The spread 
function is based on the fact that the intensity gradient differential around stars is approximately zero, and it 
has the form20

where a is the asymmetry factor, S is the local stop function, exp
(

Iavg
Bavg

− 1
)

 is the enhancement factor, Iavg is the 
local average intensity, and Bavg is the average background intensity of the whole image.

The framework for calculating the symmetry factor is shown in Fig. 6. The local symmetry of the star atlas 
is calculated using a . The diffusion function C

(

x, y, t
)

 is inversely proportional to a ; the smaller the value of a , 
the stronger the symmetry. The diffusion function smooths symmetric regions, while regions with asymmetric 
edges are not affected. The formula for a is

where p indicates the initial window size and q is the maximum value of the window.The range of q values usually 
depends on the maximum target size in the star atlas.

When the target features are smoothed, the value of S converges to ∞ , following which the diffusion function 
C converges to 0. This ensures that the spatial target information is preserved during the processing of the star 
atlas. The function S is defined as

(14)B
(

x, y
)

= BG
(

x, y
)

· BL
(

x, y
)

(15)C(x, y, t) =
1

1+ a · S · exp
(

Iavg
Bavg

− 1
)

(16)
a =

q
∑

p=1

(∣

∣∇B(xi , yj+p)−∇B
(

xi , yj−p

)∣

∣+
∣

∣∇B(xi+p, yj)−∇B
(

xi−p, yj
)∣

∣

)

q

(17)S =
∣

∣Bn − Bn−1
∣

∣

Figure 7.   Search interval.
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where Bn represents the nth repetition of image B
(

x, y
)

.
In the improved MHT algorithm, the diffusion function eliminates stars from the star atlas and also the 

suspected spatial target, thus eliminating the need to process every pixel in the star atlas. The test conditions are 
then assigned to form the suspected target into a tree structure based on the trajectory feature information on 
the motion of the target. The motion trajectory is then pruned on each node of the tree structure.

Detection of space‑based targets
Test conditions are defined according to the trajectory characteristics of the potential target points as follows:

where H1 represents the candidate target point on the trajectory; H2 represents the candidate target point not 
on the trajectory; za , zb , and zk are points on three distinct frames inside a frame set; their centre-of-mass coor-
dinates are (xa, ya) , 

(

xb, yb
)

 , and 
(

xk , yk
)

 ; ka , kb , and k represent the frame indices (in that order); and d is the 
distance threshold (with various velocities for spatial targets at various orbital heights). The distance threshold 
d is determined adaptively based on the interframe relative velocity of the target (given that real measurements 
include errors) with ε as the error factor.

The variable z1 is assigned to the presumed spatial target point in the first frame of the image sequence, and 
a range search is conducted using z1 as the centre point. Figure 7 depicts the search interval. There are two types 
of detection results:

①	 If a point fulfilling the interval range cannot be identified in the search result of the second frame, the point 
discovered in the second frame is utilised as the new centre point for the range search.

②	 The search result in the second frame indicates that a point satisfying the interval range has been identified, 
and the point is subsequently labelled z2 . Using the centre point z1 as the starting point, a ‘vector-to-vector’ 
multistage parallel discriminant tree for hypothesis testing is formed using the points in the successive 
frames.

The suspected spatial target sites discovered in the detection phase are integrated into candidate trajectories, 
which are then assessed according to

where K is the number of image sequence frames necessary for a search assessment, Pk is the k-point trajectory 
evaluation score, and D1 and D2 are two thresholds defined according to the value of K (in this study, K = 5, 
D1 = 4 , and D2 = 2).

The reason for choosing D1 and D2 is to determine whether the detected target is a real trajectory. Simply 
speaking, suppose K = 5 means there are 5 frames of images; D1 = 4 means there are more than 4 frames of 5 
frames of images containing targets; D2 = 2 means there are only less than 2 frames of 5 frames of images con-
taining targets. Therefore, we can judge that D1 belongs to real trajectory and D2 belongs to false trajectory. In 
another case, when 3 frames out of 5 are detected, we cannot judge whether they are real or false trajectories, 
and these trajectories belong to suspected trajectories. The judgment of the suspected trajectory depends on D3 
(Eq. 22), the value of D1 and D2 depends on the detection accuracy of the target, the ideal detection accuracy is 
100% and does not contain false alarms and clutter, then the value of D1 = 5, D2 = 0. In practice, in order to ensure 
that the detection algorithms in different environments is usually taken as the effectiveness of the D1 = 4, D2 = 2.

Next, the suspected track is retained, the next frame set is considered, a second assessment is conducted, 
and then the criteria

are applied, where K2 = 2× K = 10 and D3 = 6.
Figure 8 depicts the method used for differentiating between spatial target trajectories. All real trajectories 

are recorded and all candidate points constituting the real trajectories on each frame are retained as real target 
points. False trajectories are deleted and the corresponding candidate points on each frame are eliminated to 
finish detecting all candidate targets in the image sequence.

(18)


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(
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(21)
K
∑

k=1

Pk

{

≥ D1 ⇒ true trajectory
≤ D2 ⇒ false trajectory

∈ (D1,D2) ⇒ suspected trajectory

(22)
K2
∑

k=1

Pk

{

≥ D3 ⇒ true trajectory
< D3 ⇒ false trajectory
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Experimental evaluation
The detection method was validated using simulated and actual star atlases. The simulated star atlas was con-
structed by adding background stars without image shifts, spatial targets with varying streak lengths, and noise 
to each batch of simulated images. The actual star atlas dataset contained images captured by ground-based 
telescopes operating in the star tracking mode.

Simulations of star atlas
As depicted in Fig. 9, four sets of star atlases were used to conduct faint and small space-based target detection 
experiments. Each set of simulated images contained five consecutive frames, and the number of tested space-
based targets was three. The experiments were conducted for four different target signal-to-noise ratios, and after 
star atlas preprocessing, the improved MHT algorithm was used to detect faint targets. The reason for choosing 
SNRs of 1, 2, 3, and 5 is that this manuscripts mainly focuses on the detection of dark and weak small targets. 
The signal strength of dark and weak small targets is relatively low, and the SNR may be lower, so the signal-to-
noise ratio is chosen to be below 5.

Figure 10 depicts the results of the spatial target trajectory identification for various signal-to-noise ratios; the 
red circles in the figure represent the putative spatial target sites that are identified. The simulated image had five 
test frame groups; space-based targets T1 and T3 occurred in four frames of the test frame group, while T2 was 
correctly recognised in all five frames. The decision criteria identified T1, T2, and T3 as legitimate space-based 
targets. Due to occlusion by a star, the target point T4 appeared in just three frames and its potential trajectory 
was unknown. The succeeding findings demonstrated that the point was identified in all five frames of the sub-
sequent test frame group and in a total of eight frames in the first and second test frame groups, indicating that 
the candidate point was a genuine spatial target.

Five metrics were used to measure the detection performance: detection rate Pd , false alarm rate Pf  , the 
receiver operating characteristics (ROC) curve, the precision recall (PR) curve, and the area under the curve 
(AUC). The AUC is the integral of the area under the ROC curve and is a joint measurement of the detection 
probability and false alarm rate. The detection rate and false alarm rate are respectively calculated as

where Ntarget represents the number of spatial targets discovered, Ttarget represents the number of true spatial 
targets, Npixel represents the total number of false detections, and Tpixel represents the the total number of nega-
tive pixels.

In order to validate the detection performance of the improved MHT algorithm, its performance was com-
pared to that of the optical flow algorithm (OFA)21, MHT algorithm16, and time-index multistage quasi-hypoth-
esis testing (TMQHT)22 algorithm using the same simulated image dataset. As demonstrated in Figs. 11 and 
12, as the desired signal-to-noise ratio decreases, the detection rate of all four detection methods decreases. For 
signal-to-noise ratios of 1, 2, 3, and 5, the ROC-AUC values of the improved MHT algorithm are 82.21%, 89.43%, 
97.46%, and 98.84%, respectively. The PR-AUC​23–25 values of the improved MHT algorithm are 75.64%, 83.56%, 
89.42%, and 93.21%. As demonstrated in Table 1, when the signal-to-noise ratio is greater than or equal to 3, 
the improved MHT algorithm can detect all spatial targets with a detection rate of 100% and a false alarm rate 
of 0%. At a signal-to-noise ratio of 2, the algorithm has a detection rate of 99.4% and a false alarm rate of 2.2%. 
For image datasets with signal-to-noise ratios between 1 and 5, the proposed technique provides superior target 
identification and false alarm suppression compared to the other detection algorithms.

(23)Pd =
Ntarget

Ttarget

(24)Pf =
Npixel

Tpixel

Figure 8.   Process for differentiating between spatial target trajectories.
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Real target detection tests
To further validate the detection capability of the proposed algorithm, we conducted experiments on real images 
of stars that contained multiple spatial targets. Because live in-orbit images of space-based surveillance sys-
tems are currently unavailable, the performance of the algorithm was validated on a dataset composed of real 
ground-based images. To detect the differences between the target morphology, target brightness, and image 
background, the proposed detection algorithm primarily determines the search area of the target in the next 
frame based on the target motion characteristics, which prevents the morphological changes of the target from 
affecting the algorithm. Furthermore, when detecting the differences between the target brightness and image 
background, ground-based images are affected by atmospheric interference and other influences that result in 
lower target brightnesses and more complex background noise. Thus, the combination of ground-based images 
and simulated space-based images was used to verify the ability of the algorithm to detect faint and small targets 
and to improve the reliability of the detection results, which are shown in Fig. 13.

As shown in Table 2, the improved MHT method exhibits the best overall performance, with a detection rate 
of 98.6%, a false alarm rate of 4.8%, and a computation time of 0.85 s. The traditional MHT method requires 
every pixel in the sequence image to be processed, which necessitates a longer computation time. In contrast 
to the traditional MHT algorithm, the TMQHT algorithm introduces a priori information on the spatial target 

Figure 9.   Simulation of experimental image data with various signal-to-noise ratios.
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and prunes the MHT search tree by using the hypothesis testing conditions associated with the candidate target 
trajectory, thus improving the processing efficiency and the detection performance of the algorithm by a certain 
extent. Moreover, the OFA method requires the estimation of the trajectory information on all the targets in the 
image sequence, resulting in a higher computational complexity and a lower detection efficiency.

The proposed algorithm is free from stellar interference during detection and only needs to search for the 
suspected spatial target, which overcomes the disadvantage of the traditional MHT algorithm in needing to 
search all pixel points of the image sequence, resulting in a longer computation time. Additionally, in contrast 
to the TMQHT algorithm, the proposed algorithm uses the relative interframe motion distance of the target to 
determine the area in which the suspected spatial target is located in the next frame of the image. As a result, 
the proposed algorithm can effectively detect spatial targets travelling at different speeds, effectively overcom-
ing the inability of the TMQHT algorithm to detect spatial targets with changing speeds (which is caused by its 
application of a fixed search radius to all targets).

Conclusion
This study proposed an improved MHT method by which space-based surveillance systems can detect faint and 
small space-based targets in the star tracking mode. An improved multi-exposure pyramidal weighted fusion 
technique was used in the image preprocessing stage to improve the overall clarity of the target image, highlight 

Figure 10.   Results of spatial target trajectory identification for various signal-to-noise ratios.
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image details, and provide additional information for effective target detection. The target detection stage utilised 
an improved MHT method, in which a diffusion model was built to smooth the stars in the star atlas, significantly 
reducing the computational complexity of the algorithm and improving its detection performance. Finally, the 
performance of the improved MHT algorithm was verified using simulated and real star atlases. The results 
showed that the proposed algorithm could more efficiently detect faint and small space-based targets even under 
low signal-to-noise ratio conditions, as demonstrated by its higher target detection rates, lower false alarm rates, 
and faster computation time compared to other algorithms. Thus, the proposed method improves space object 
detection capability to help prevent collisions with other space objects, including important facilities such as 
satellites. Simultaneously, this research also provides improved technical support for space target tracking and 
identification. We emphasise that the method is predominantly designed for deep space target detection. For 
ground observation use, it has no advantage over other methods, and for cluster target detection, the method 
will require a long computation time but provide a reduced detection accuracy. Finally, future research could 
focus on integrating the proposed method with correlation filtering or multi-sensor combination methods for 
improved cluster target detection capability.

Figure 11.   ROC curve measured by simulation data set for various SNRs.
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Figure 12.   PR curve measured by simulation data set for various SNRs.

Table 1.   Statistical results of space-based target detection in simulated image data set.

Methods

Detection rate (%) False alarm rate (%)

SNR = 5 SNR = 3 SNR = 2 SNR = 1 SNR = 5 SNR = 3 SNR = 2 SNR = 1

OFA 90.2 70 51 32 8 14.2 22.3 36.7

MHT 96.4 91.2 79 66 2.7 3.6 19.8 24.1

TMQHT 96.5 96.4 92.1 89.1 0 1.3 4.1 6.2

Ours 100 100 99.4 92.8 0 0 2.2 6.4
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Figure 13.   Target detection results for ground-based images.
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Data availability
The datasets generated and/or analysed during the current study are not publicly available due confidentiality 
agreement for the Space-based target photoelectric detection system in our laboratory, but are available from 
the corresponding author on reasonable request.
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