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A deep learning‑based approach 
for axle counter in free‑flow tolling 
systems
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Roberto Zanetti Freire 3 & Gabriel Villarrubia Gonzalez 4

Enhancements in the structural and operational aspects of transportation are important for achieving 
high‑quality mobility. Toll plazas are commonly known as a potential bottleneck stretch, as they tend 
to interfere with the normality of the flow due to the charging points. Focusing on the automation 
of toll plazas, this research presents the development of an axle counter to compose a free‑flow toll 
collection system. The axle counter is responsible for the interpretation of images through algorithms 
based on computer vision to determine the number of axles of vehicles crossing in front of a camera. 
The You Only Look Once (YOLO) model was employed in the first step to identify vehicle wheels. 
Considering that several versions of this model are available, to select the best model, YOLOv5, 
YOLOv6, YOLOv7, and YOLOv8 were compared. The YOLOv5m achieved the best result with precision 
and recall of 99.40% and 98.20%, respectively. A passage manager was developed thereafter to 
verify when a vehicle passes in front of the camera and store the corresponding frames. These frames 
are then used by the image reconstruction module which creates an image of the complete vehicle 
containing all axles. From the sequence of frames, the proposed method is able to identify when a 
vehicle was passing through the scene, count the number of axles, and automatically generate the 
appropriate charge to be applied to the vehicle.
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Guaranteeing efficient human mobility in cities brings economic benefits and improves the quality of life, both 
individually and  collectively1. The development in transportation considering both structural and operational 
aspects is important for achieving high-quality mobility. In light of these improvements, the Intelligent Transpor-
tation System (ITS) is a concept that has been refined in recent  years2. The ITS can be represented by a software 
and hardware system that uses information and communication technology in mobility to improve transporta-
tion efficiency from a strategic standpoint. Mobility improves due to its use in terms of security, punctuality, 
and real-time  information3.

Advances in image processing considering embedded devices have resulted in significant improvements in 
image collection, storage, and sharing. This technological development is being exploited in a variety of applica-
tions, such as image and video capture where cameras are frequently used to perform analysis, identification, 
and tracking of objects in real-time4. This progress allows for the exploration of solutions in areas that are now 
getting attention, such as urban mobility and smart  cities5.

Several examples show how technology applications are relevant components of innovation in urban mobil-
ity. There are currently applications in operation, such as traffic light  control6, smart  parking7, and traffic flow 
 optimization8. Other opportunities for image and video processing are the current toll plaza systems. The pos-
sibility of the installation of free-flow tolling would allow transportation managers to perform more efficient 
operations. In addition to providing benefits from automatic tariff collection, this type of system eliminates the 
need to stop the vehicle at the toll, reduces both traffic conflicts and traffic jams, and improves the security of 
the tolling system.

Nowadays, the transport sector has been looking for ways to implement electronic toll collection systems 
in their most advanced configuration, such as the free-flow electronic toll  systems9. Free-flow systems are an 
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evolution of electronic systems for automatic vehicle identification, in which gantries installed along a toll road 
recognize vehicles that cross them and charge them electronically and automatically. The implementation of 
this system brings productivity gains in toll collection. In addition, it is a viable alternative for the reduction of 
tariffs since operating costs are reduced. In commercial free-flow tolling systems usually more than one sensor 
is considered, assuming a multi-sensor  approach10.

To ensure that the axle counting system works correctly, it is necessary that both the positioning of the objects 
in the scene and the camera are adequately set up. Given this need, an ideal scenario was defined for the applica-
tion based on the project requirements of a Brazilian company that develops solutions for mobility on highways 
and urban environments, where this study was applied.

In this solution proposal, this scenario is composed of a portico that must cross the road 6 m over the ground. 
The number of cameras installed on the gantry should be equal to the number of lanes on the highway, as each 
camera is responsible for analyzing vehicles passing through one of the lanes. The cameras must be positioned 
on the gantry so that the captured image contains the vehicle axles. A 45-degree positioning is ideal for the 
highway’s requirements. Figure 1a represents an application scenario on a dual carriageway, while Fig. 1b shows 
an example of the desired image.

Given this task, this paper proposes an axle counter based on only one sensor, focusing on improving the effi-
ciency of the toll collection system. The proposed approach interprets images through deep learning algorithms 
to determine the number of axles in the vehicles present in the scene. The main contributions of this paper can 
be summarized as follows.

• A hybrid method that combines a deep learning structure for classification and a slice image reconstruction 
process is proposed. The proposed method reduces the necessary number of cameras to be used and auto-
matically generates the charge in a continuous flow toll.

• A dataset, consisting of real and synthetic images, was created and made available in this paper. This dataset 
was used to train and evaluate the object detector model presented in this research and can be applied in 
other studies on the subject.

• To achieve the best possible results, the proposed method is based on the most suitable deep learning models, 
to ensure this outcome, several versions of You Only Look Once (YOLO) are evaluated.

The remainder of this paper is organized as follows: “Related works” describes previous work on computer 
vision, object detection, and new tolling systems. In “Proposed method”, the proposed method is detailed and 
the considered dataset is explained. The results of the computations are discussed in “Results and discussions”. 
Conclusions and also some suggestions for future work are given in “Conclusions and future work”.

Related works
Automatic toll collection plays an important role in improving highway efficiency and user  satisfaction11. With 
the increasing adoption of automatic toll systems worldwide, it is relevant to ensure that vehicle counting is 
accurate and  reliable12. Errors in counting can lead to a range of issues, such as incorrect charges, discrepancies 
in traffic data, and user  dissatisfaction13. In the case of free-flow tolling, it is important that vehicles and their 
axles can be correctly detected for the proper functioning of the system.

A promising way to detect objects in images is through the use of computer vision  techniques14. These tech-
niques can be classical, such as the use of feature detection algorithms like the histogram of oriented  gradients15, 
the viola-jones feature  descriptor16, and texture  descriptors17, which have been widely used for computer vision 
tasks and object detection applications.

Figure 1.  Proposed scenario for axle identification and counting.
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The use of artificial intelligence-based models is increasing over  time18, these applications can be focused 
on  classification19–21, time series  forecasting22–24, among  others25–27. Deep learning approaches are becoming 
 popular28, mainly because of their ability to deal with non-linearities29–31. As presented by Moreno et al.32 the 
use of hybrid methods can be an outstanding approach in this regard.

Deep learning architectures like Convolutional Neural Networks (CNNs) have promising results for several 
 applications33, such as  navigation34, fault  detection35,  security36, image  classification37, and object  detection38. 
The CNNs have proven to be effective in learning high-level representations directly from input data, giving 
them greater generalization ability and superior performance in object detection  tasks39. Studies  like40,41 prove 
that these applications are promising to be embedded.

Regarding embedded systems, Ref.42 presented a power-efficient optimizing framework for field-program-
mable gate array-based acceleration of the YOLO algorithm. Their framework incorporates efficient memory 
management techniques, quantization schemes, and parallel processing to enhance performance and reduce 
energy consumption. In the work of Ge et al.43, the YOLOv3 is applied for monitoring full-bridge traffic load 
distribution. To determine load distribution, the method considers the vehicle’s position, size, and weight, pro-
viding a more detailed understanding of the stress distribution on the bridge.

Also using YOLOv3, Rajput et al.44 presented an approach for automatic vehicle identification and classifica-
tion in a toll management system. This approach offers real-time, accurate, and efficient toll collection, thereby 
enhancing the overall effectiveness and user experience of toll facilities. The system’s adaptability and potential 
for security enhancements make it a valuable asset for transportation infrastructure.

Deep learning models are becoming increasingly popular in mobility applications. In Ref.45, the authors 
employ YOLOv3 in their vehicle detection and counting system on highways. Similarly, in Ref.46, the authors 
propose an optimized version of YOLOv4 for vehicle detection and classification. Moreover, other applications, 
such  as47,48, demonstrate different uses of object detection, including license plate detection, road crack detection, 
and traffic light recognition respectively.

Zarei et al.49 proposed the Fast-YOLO-Rec. This model combines the strengths of the YOLO-based archi-
tecture and recurrent-based prediction networks for vehicle detection in sequences of images. Based on YOLO, 
they localize vehicles in each frame, providing a strong initial detection foundation. In Ref.50 the vehicle detec-
tion is based on a tiny version of YOLOv5 called T-YOLO. An innovation of T-YOLO is its ability to handle tiny 
vehicles, which are often challenging to detect due to their limited spatial presence.

To overcome the challenges of limited and imbalanced data, Dewi et al.51 employed Generative Adversarial 
Networks (GANs) to synthesize additional training samples, expanding the dataset and promoting model gen-
eralization. In their application, the YOLOv4 and multiple GANs are explored. The resulting model exhibits 
promising performance across a wide range of traffic sign types, sizes, and orientations, even in challenging 
environmental conditions.

To perform the axle counting and speed measurement, Miles et al.52 applied the YOLOv3. The model was 
implemented to track the vehicles and assign a wheel to a vehicle if the center point of the wheel bounding box 
fell within the vehicle bounding box. The outputs from the axle detection were then processed to produce axle 
counts for each vehicle, achieving an accuracy of 93% across all vehicles where all axles were visible.

Li et al.53 also employed a tracking-based method for vehicle axle counting. In their work, the YOLOv5s is 
utilized for axle detection and classification into double and single-wheeled vehicles. The obtained results indi-
cate that the axle detector achieved a mean Average Precision (mAP) of 95.2%. To address the issue of vehicles 
sometimes not fitting within a single frame, there are some alternative approaches to the tracking-based method, 
such as utilizing image stitching. However, performing real-time image stitching can be computationally costly, 
especially for online  applications54.

In Refs.55,56, the authors focused on the identification of electrical insulators in images taken by unmanned 
aerial vehicles. They proposed modifications to the base structure of the model to obtain improvements in its 
performance. In these works, in addition to detecting the chain of electrical insulators, classification is also car-
ried out in case of any visually identifiable defect, such as broken or flash-over insulators.

In Ref.57 the application of a modified YOLOv5 model called T-YOLO for vehicle detection was proposed. The 
images in the dataset used were obtained from a camera with a top view of the parking lot scene, and just as in 
the case of insulator detection, the vehicles in question end up being relatively small objects in the image, which 
supports the application of YOLO models for objects which are not necessarily large. In Ref.58 the application 
of a YOLO-v2 for vehicle detection in the Karlsruhe Institute of Technology and Toyota Technological Institute 
dataset was presented with promising results.

Proposed method
The proposed method aims to examine a sequence of frames to determine the vehicle’s axle count. The case study 
scenario consists of a camera installed in a gantry, which will be responsible for analyzing a lane of the highway. 
In the scenario, the vehicles pass through the camera sequentially at different intervals of time.

The first challenge of the proposed task concerns identifying when a new vehicle enters the scene. To accom-
plish this task, a passage manager that uses optical flow techniques in conjunction with axle identification was 
developed to understand when a vehicle is passing through the image. When the system identifies that there is 
a vehicle on the scene, it analyzes whether a given frame corresponds to a new passage or a passage that is in 
progress.

The system must be consistent in identifying which passage each axis belongs to. The system also needs to 
be able to save the frames corresponding to a given passage and, at the end of the passage, use these frames to 
generate a panoramic image, where it is possible to visualize the entire vehicle. The slice reconstruction module 
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performs this process. The last step aims to use the axle identifier in the image generated by the slice reconstructor 
to perform the vehicle axle count. Figure 2 presents a general flowchart of the pipeline of the proposed approach.

Axle identifier
To perform the axis identification task, an object detection YOLO model based on deep learning is applied to 
detect vehicle wheels and axle counting. The YOLO model is a CNN that divides images into grids, with each 
grid cell detecting objects within its  boundaries55. This model has a structure that needs only one shot to detect 
and classify the  objects56. The model falls under the category of single-stage detectors, as it only requires a single 
shot through the image to classify and detect the target  object59.

YOLO models have exhibited promising results for object detection in different areas, for example in Ref.60 
where the models were used in the health area, or in Refs.61,62 where it is used for safety and urban mobility 
respectively. Since its first version, YOLO has evolved and gained improvements in its architectures, leading to 
different  versions63.

The YOLOv5 is integrated with an algorithm known as AutoAnchor. This algorithm assesses and refines 
anchor boxes that do not suit the dataset and training parameters, such as image  dimensions64. In September 
2022 the YOLOv6 was introduced with a new network structure composed of an efficient backbone employing 
Re-parameterization Very Deep Convolutional Networks (RepVGG) as its  backbone65. This novel backbone 
introduces enhanced parallelism compared to earlier YOLO backbones. Another key improvement was the loss 
for classification and a loss based on Scylla Intersection over Union (SIoU) or Generalized Intersection over 
Union (GIoU) for  regression66.

In the YOLOv7 an extended efficient layer aggregation network was proposed. This enables the models to 
learn more efficiently by managing the shortest longest gradient  path67. The YOLOv8 proposes a new solution 
for diverse visual tasks, spanning object detection, segmentation, pose estimation, tracking, and  classification68. 
Drawing inspiration from its predecessor YOLOv5, the YOLOv8 retains foundational elements while imbuing 
the CSPLayer with new attributes, now called the C2f  module69.

For a complete evaluation, in this paper, the YOLOv5, YOLOv6, YOLOv7, and YOLOv8 versions are com-
pared. Since there is a trade-off between computational effort and the desired result the medium variation of 
each model is considered. Considering that YOLOv7 doesn’t have this variation the YOLOv7x is considered. 
The pseudocode to perform predictions using YOLO is presented in Algorithm 1.

Figure 2.  Flowchart of the proposed method.
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1: Load pre-trained weights of the CNN model.
2: Load input image.
3: Preprocess image (resize, normalization, etc.).
4: Pass the preprocessed image through the CNN.
5: Obtain predictions, class probabilities, and confidence scores.
6: Apply non-maximum suppression to filter out overlapping boxes.
7: Select boxes with confidence scores above a certain threshold.
8: Save the final bounding boxes with associated class labels.

Algorithm 1.  You Only Look Once

Slice reconstructor
The image slice reconstructor module is responsible for creating an image containing all the vehicle axles present 
in a given passage. To perform its function, the slice reconstructor takes as input a sequence of frames.

Assuming a scenario in which a vehicle passes through a camera, with horizontal displacement in a single 
direction, a sequence of frames is obtained where it is possible to get visual information of the complete vehicle. 
To be able to select the parts necessary to rebuild the vehicle automatically, it was selected the slice from the 
center of each frame. Since it is considered that the sequence of frames has a complete vehicle passage, which 
indicates that every part of the vehicle will at some point be located in the center of the image.

Concerning the width of the selected slice, given a sequence of frames, it is possible to consider that the 
vehicle has a displacement in pixels at each frame. To select the information to rebuild the vehicle without 
redundancy of information, the ideal scenario is that the width of the slice should be equal to the displacement 
of the vehicle in pixels.

For the best operation of the algorithm, the theoretical scenario corresponds to a vehicle moving at a con-
stant speed, otherwise, the reconstruction of the slices may show some deformation. However, as this cannot be 
controlled, the passage manager module performs a speed estimation to select the slice.

During the passage of the vehicle, the average distance of displacement of the object between the frames is cal-
culated. This average distance indicates how many pixels an object moved at each passing frame and corresponds 
to the slice width. After defining the slice width, the central slice of each frame is concatenated horizontally, creat-
ing a complete image of the vehicle. Figure 3 presents how this approach is applied to building the final image.

Dataset
The dataset created for this project is based on mixed image data, containing real and synthetic images. The 
dataset was generated and annotated considering its use in different projects, because of this, different classes 
of vehicles were considered in the annotation stage. Only the wheel category labels will be considered in this 

Figure 3.  Slice reconstruction process.
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research. To have the database for training the object detection model, the company under evaluation installed 
a camera on a highway to simulate the real scenario of the application. With this, the acquisition of images of 
vehicles that passed in front of the camera was carried out.

Since detecting axles for large vehicles is part of the scope of this project, the images of bus and truck wheels 
must be available in the dataset. Due to the lower number of heavy vehicles on the highway, few samples were 
obtained. To increase the representativeness of the axles of these vehicles in the dataset, the selected alternative 
was to use synthetic images.

To create the synthetic data Euro Truck Simulator  270 was used. This simulator was used because it focuses on 
heavy vehicles such as trucks and buses. Another factor that led to the choice of this simulator was the possibility 
of camera adjustment. In this simulator is possible to modify the camera’s view, making the captured image at an 
angle similar to the image of the real application. The use of Euro Truck Simulator 2 was considering the results 
presented in Ref.71, where the authors use this simulator for a vehicle detection application and show that the 
use of synthetic data can have a positive impact on the generalization of the detection model. Figure 4a,b show 
real and synthetic samples from the dataset. The division of the dataset is presented in Table 1.

Figure 4.  Representation of the mixed dataset: (a) real samples, (b) synthetic samples.

Table 1.  Data distribution of the dataset.

Images Training set Validation set Test set

Real 968 342 637

Synthetic 3061 685 1163

Total 4029 1027 1800
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Focusing on a project feasibility study, it is necessary to analyze the influence caused by the difference between 
the camera angle of the real installation and the camera angle of the simulator, a fact that also generates a differ-
ence in the final size of the vehicles. Given this, only the axles will be considered in the detection task, and the 
proportion between the vehicles and their respective axles is visually close to the real proportions.

The differences in the proportion of vehicles allow the solution to be analyzed for different camera positions. 
The dataset is composed of the sum of the real and synthetic data, its distribution is presented in Table 2. All 
images (original and synthetic) were resized to 640× 640 pixels to be standardized for the object detection task. 
The original images are not publicly available due to being from a private company. The dataset can be requested 
to the corresponding author on reasonable request. Examples of synthetic data can be found at: https:// github. 
com/ Bru- Souza/ axles_ datas et.

Experiment setup
In the evaluation presented in this paper, an Intel i7-13700K with a graphics processing unit RTX4090 (24GB), 
and 32GB of random-access memory was considered to perform the experiments. The proposed approach was 
written in Python language. In this paper, the precision, recall, and mAP metrics are considered.

Precision is defined by the number of positive detections divided by the total number of  detections72. It is a 
measure of how often the model predicts correctly, and it indicates how much it’s possible to rely on the model’s 
positive predictions, given by:

where TP are the true positives and FP are the false  positives73. The recall is used to evaluate if the model is hav-
ing missing detections and is given by:

where FN are the false  negatives74.
The Intersection over Union (IoU) provides information on the similarity between the region that the algo-

rithm found and the real region of the object present in the image, being defined by the area of the intersection 
divided by the union of the area of the object and the area  detected75.

A true positive detection is defined by IoU> T  , where T is a predefined threshold. In this research, the 
algorithms use T = 0.5 . The mAP is calculated as the weighted mean of precisions at each threshold (given by 
the IoU), and the weight is the increase in recall from the prior threshold. The equation to calculate the mAP 
is according to:

where � is the number of classes.
The mAP incorporates the trade-off between precision and recall. This property makes mAP a suitable met-

ric for most detection applications. Performing the plot of the precision-recall curve is also a way to obtain the 
mAP. The Average Precision (AP) is defined as the area under the curve, and the mAP is defined as the average 
of AP of each  class76. To compare the computational effort of the models the Floating Point Operations (FLOPs) 
are considered. The considered hyperparameters and main definition setup to compute the experiments are 
presented in Table 3.

Results and discussions
In this section, the results will be presented and discussed, the experiments are divided into two parts. The first 
part aims to evaluate and compare the object detection models, while the second part presents the results regard-
ing axle counting, which is the main focus of this paper.

Object detection analysis
The performance evaluation of the models is conducted considering a test set of images for this purpose. Table 4 
presents a comparison of the results obtained after training the models. To evaluate the compared model, it was 

(1)Precison =
TP

TP + FP
.

(2)Recall =
TP

TP + FN
.

(3)mAP =
1

�

�∑

i=1

APi .

Table 2.  Distribution of classes in the dataset.

Class Training objects Valid. objects Test objects

Bus 300 99 154

Car 1386 419 876

Motorcycle 61 12 35

Truck 2751 570 1163

Total wheel 9755 2417 4693

https://github.com/Bru-Souza/axles_dataset
https://github.com/Bru-Souza/axles_dataset
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considered transfer learning and a fine-tuning process. The transfer learning is based on the pre-trained weights 
of the COCO  dataset77.

All evaluated models were able to achieve values above 0.97 for precision. The best result was obtained by 
YOLOv5m with a precision of 0.994, while the lowest precision was 0.979 achieved by YOLOv7x. The YOLOv5m 
achieved also the best performance regarding the recall which was 0.982. The YOLOv6m had the lowest recall 
in this evaluation.

The YOLOv5m and YOLOv8m models achieved the best mAP result (0.994), and in this measure, the 
YOLOv7x performed the worst (0.975). Taking into account a wider range of confidence thresholds, ranging 
from 0.50 to 0.95, the YOLOv8m model exhibited the best performance, reaching a value of 0.820, followed by 
YOLOv5m with 0.800 and YOLOv6m with 0.792.

The YOLOv5m model showed better performance in most of the metrics. Additionally, it has fewer param-
eters and fewer FLOPs when compared to the other models considered. Based on these results, the YOLOv5m 
was selected for axle identification. YOLO has been applied for several tasks by other researchers, some results 
comparing to our application are presented in Table 5.

When comparing the proposed method with other works that also use versions of the YOLO to detect vehicle 
axes, the camera angle ends up making it difficult to identify all axes since this isometric image ends up caus-
ing the occlusion of some axes, compromising the potential of the application. The lateral view of the vehicle is 
desired because, in addition to facilitating the reconstruction process of the complete vehicle, it generates the 
possibility of using information about the axle position, such as height and distance between axles, so that in 
future applications it can differentiate which axles are image belong to the same vehicle, and whether these axles 
are lowered, raised, or double-wheeled52.

Table 3.  Hyperparameters and model setup.

Definition Specification

Language Python 3

Framework PyTorch

Main libraries cv2, numpy, ultralytics, torch

Image size 640×640

Max number epochs 100

Learning rate 0.01

Momentum 0.937

Warmup bias 0.1

Weight decay 0.0005

Optimizer Stochastic gradient descent

Table 4.  Comparative model results. Best performance values are in bold.

Model Precision Recall mAP @0.50 mAP @0.50:0.95 FLOPs

YOLOv5m 0.994 0.982 0.994 0.800 49.0

YOLOv6m 0.990 0.832 0.989 0.792 82.2

YOLOv7x 0.979 0.923 0.975 0.665 189.9

YOLOv8m 0.992 0.980 0.994 0.820 78.9

Table 5.  Other researchers’ results.

Author Application Model Precision Recall mAP @0.50 mAP @0.50:0.95

Stefenon et al.55 Insulator YOLOv5u 0.981 0.975 0.983 0.905

Souza et al.56 Insulator YOLOv5x 0.983 0.990 0.993 0.957

Han et al.58 Vehicle location O-YOLO-v2 0.940 0.940 0.940 –

Padilla Carrasco et al.57 Vehicle location T-YOLO 0.963 0.996 0.998 0.997

Li et al.53 Vehicle wheels YOLOv3-SPP 0.718 – 0.955 –

Miles et al.52 Vehicle wheels YOLOv3 0.927 – 0.927 –

Our Vehicle wheels YOLOv5m 0.994 0.982 0.994 0.800
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Axle counting analysis
The axle counting analysis concerns the evaluation of the system that receives the sequence of frames and divides 
these frames into individual vehicle passes, the part that receives the separate frames and generates an image of 
the complete vehicle, and also the evaluation regarding the number of axles found on each vehicle.

Passage manager
The passage manager is the module that, through the optical flow algorithm, can identify and separate vehicle 
passages in a sequence of frames. The test was performed on real and synthetic images, and for this purpose, a 
video containing vehicle passages collected in the Euro Truck Simulator  270 simulator was created.

The video that was developed has a total of 30 vehicle passages, of which the system was able to correctly 
separate 26 passages, obtaining a total of 86.67% accuracy. Concerning the real data, 60 passages of different 
types of vehicles, such as cars, trucks, and buses were collected, and the system was able to correctly separate 46 
passages, obtaining a total of 76.67% accuracy.

Reconstruction analysis
Based on the result of the passage manager module, a set of frames is obtained for a specific vehicle passage. 
These vehicle passages are then sent to the module responsible for slice reconstruction. Figure 5 presents exam-
ples where the algorithm can reconstruct the image without deformations that impair the visual analysis of the 
vehicle (using images from the Euro Truck Simulator  270).

Figure 6 presents the results of the slice reconstructor application in a real-world scenario. In this case, for 
the reconstruction algorithm to function properly, a preprocessing step is necessary on the frames to remove 
possible camera distortions.

In these examples, the synthetic images had more sharpness than the real images. This happened because it 
was a cloudy day when the data were recorded, based on this example it is possible to observe that real data have 
additionally the influence of weather conditions, that in some cases may impair axle identification.

Axle counter analysis
The results of applying the trained model to the reconstructed images can be observed in Figs. 7 and 8, where 
examples of application on synthetic and real data are shown, respectively. The object detector was able to suc-
cessfully identify the axles of the vehicles, meeting the needs of this project.

Limitations: After the slice reconstruction process, although the height remains the same as the original, 
the width is defined by the slice width multiplied by the number of frames in the passage. If the image has larger 
dimensions than the images used to train the model, resizing it for inference can lead to errors in detection 
results.

Conclusions and future work
This study has addressed the challenges of implementing an axle counter system based on computer vision. A 
deep learning model was applied to identify axles, and after that, an algorithm for vehicle management and axle 
counting was implemented.

The computer vision-based systems have some limitations compared to the system proposed in this paper 
due to several outliers that may occur in the traffic scenario. The use of deep learning for axle counting proved 

Figure 5.  Results from the reconstruction process.



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:3400  | https://doi.org/10.1038/s41598-024-53749-y

www.nature.com/scientificreports/

capable of identifying vehicle axles. The YOLOv5m was selected after comparing this model to the YOLOv6m, 
YOLOv7x, and YOLOv8m models, where the YOLOv5 family model achieved a precision of 0.994 and a recall 
of 0.982 during the training process. Furthermore, the values of mAP@0.50 and mAP@0.50:0.95 were 0.994 
and 0.800, respectively.

The passage manager module and the slice reconstruction module were developed, enabling the determina-
tion of vehicle passages in the scenario and creating an image containing the complete vehicle for wheel counting. 
Regarding the outcomes of the passage manager obtained during the experiments, the proposed approach had 
an accuracy rate of 86.67% for synthetic data, correctly identifying 26 out of 30 passage samples, and 76.67% 
for real-world images, accurately classifying 46 out of 60 passages. These results underscore the effectiveness of 
the implemented system in reliably managing and processing axle passages, both in synthetic and real-world 
scenarios.

To enhance the performance of the axle counter, in future works, an alternative would be to include images 
of the reconstructed vehicle in the training dataset. It would be promising to incorporate images of vehicles in 
different backgrounds to obtain a more generalizable model. A crucial aspect to improve the robustness of the 
application is to develop a strategy for handling cases in which one vehicle is carrying another, such as tow and 
stork trucks.

Figure 6.  Results from the reconstruction in real images.

Figure 7.  Axle counter inference.
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Future work can also explore other situations, such as traffic congestion, where there is minimal or no dis-
placement of vehicles between two consecutive frames, or scenarios involving a vehicle and a motorcycle passing 
simultaneously in a single lane. The tariff collection for trucks currently has differences for axles that are lowered, 
raised, and double-wheeled, factors that can be approached in future works.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due to being from a 
private company but are available from the corresponding author on reasonable request.
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