Table 1 Comparison of existing research for skin cancer analysis.

From: A precise model for skin cancer diagnosis using hybrid U-Net and improved MobileNet-V3 with hyperparameters optimization

References

Method

Dataset

Outcome

Hyperparameter optimization

1

ResNet50, VGG-16, MobileNet

HAM10000 dataset

Precision 83.97% and 88.25%

Grid search

2

DenseNet and Xception

ISIC 2018

Precision 84.37% and 87.17%

Random search

3

Shuffle-Net, GoogleNet, MobileNet-V2

ISIC 2020

Precision 89.37%, 90.24% and 89.07%

Hyper-opt

4

VGG-19, Res-Net 50, Resnet-152v2

PH-2

Precision 85.08 and 87.62%

Scikit optimize

5

VGG-16, VGG-19

ISIC 2020

Precision 83.75% and 84.92%

Optuna

6

EfficientNet-V2,

VGG-19

Melanoma Skin Cancer Dataset

Precision 86.24% and 87.91%

Search space

7

DenseNet, MobileNet-V3

DERMIS Dataset

Precision 91.47% and 89.78%

Grid search

8

Efficient-Net, ResNet-50

ISIC 2020

Precision 90.77% and 89.64%

Random search

9

Inception-V3, Xception

ISIC-2019 and ISIC-2020

Precision 89.81% and 87.54%

Hyper-opt

10

VGG-16 and VGG-19

ISIC 2016

Precision 86.22% and 89.38%

Scikit optimize

11

GoogleNet, Efficient-Net

ISIC 2018

Precision 88.74% and 90.51%

Optuna

Proposed Model

Standard U-Net and MobileNet-V3

HAM10000

Precision of 97.84%

Bayesian optimization and grid search