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Prediction model for spinal cord 
injury in spinal tuberculosis 
patients using multiple machine 
learning algorithms: a multicentric 
study
Sitan Feng 1, Shujiang Wang 2, Chong Liu 1, Shaofeng Wu 1, Bin Zhang 1,3, Chunxian Lu 4, 
Chengqian Huang 1, Tianyou Chen 1, Chenxing Zhou 1, Jichong Zhu 1, Jiarui Chen 1, Jiang Xue 1, 
Wendi Wei 1 & Xinli Zhan 1*

Spinal cord injury (SCI) is a prevalent and serious complication among patients with spinal tuberculosis 
(STB) that can lead to motor and sensory impairment and potentially paraplegia. This research aims 
to identify factors associated with SCI in STB patients and to develop a clinically significant predictive 
model. Clinical data from STB patients at a single hospital were collected and divided into training 
and validation sets. Univariate analysis was employed to screen clinical indicators in the training 
set. Multiple machine learning (ML) algorithms were utilized to establish predictive models. Model 
performance was evaluated and compared using receiver operating characteristic (ROC) curves, area 
under the curve (AUC), calibration curve analysis, decision curve analysis (DCA), and precision-recall 
(PR) curves. The optimal model was determined, and a prospective cohort from two other hospitals 
served as a testing set to assess its accuracy. Model interpretation and variable importance ranking 
were conducted using the DALEX R package. The model was deployed on the web by using the Shiny 
app. Ten clinical characteristics were utilized for the model. The random forest (RF) model emerged 
as the optimal choice based on the AUC, PRs, calibration curve analysis, and DCA, achieving a test 
set AUC of 0.816. Additionally, MONO was identified as the primary predictor of SCI in STB patients 
through variable importance ranking. The RF predictive model provides an efficient and swift approach 
for predicting SCI in STB patients.

Keywords  Spinal tuberculosis, Spinal cord injury, Machine learning, Predictive model, Model interpretation, 
Model deployment

Tuberculosis (TB), a global public health emergency, remains a significant threat to human health, and has a high 
mortality rate among infectious diseases1,2. Spinal tuberculosis (STB), the most common form of extrapulmonary 
tuberculosis, accounts for 50–70% of osteoarticular tuberculosis cases3. STB occurs when Mycobacterium tuber-
culosis travels through the bloodstream to the spine4. The early clinical signs of spinal tuberculosis are atypical, 
and as the condition progresses, it results in the destruction of bone and the spinal cord, leading to spinal cord 
injury and kyphosis5,6. Spinal cord injury (SCI) is one of the most common and serious complications in STB 
patients, and cause motor and sensory dysfunction, and even paraplegia, significantly affecting the physical and 
mental health of individuals7. Despite substantial efforts in diagnosing and treating spinal tuberculosis6, the 
prevention of complications in STB patients, especially those with SCI, remains challenging due to the presence 
of drug-resistant bacteria and late-stage detection8. An effective and concise prediction of SCI in STB patients 
is essential for establishing appropriate treatment plans and helping family members make informed decisions. 
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However, predicting SCI in STB patients is challenging due to the complexity and variability of the syndrome, 
which involves various risk factors.

Machine learning (ML) algorithms are becoming increasingly crucial in various scientific domains9. The ML 
model, a subset of artificial intelligence, found applications in fields such as medicine, pharmacy, biology, and 
others10–13. Recently, there has been growing interest in using ML algorithms to study STB. For instance, Shuo 
D et al. accurately distinguished STB and spinal metastases on the basis of deep learning algorithms14. Li Z et al. 
developed a diagnostic model of STB from CT images and spinal metastases using deep learning algorithms15. 
They also developed a diagnostic model for STB using CT image features and deep learning. Moreover, several 
risk factors associated with STB have been identified through ML algorithms16–18. While several ML models have 
been employed to predict STB and identify risk factors, there is a lack of predictive models for SCI relying on 
ML algorithms. Therefore, there is an urgent need to establish a predictive model that healthcare professionals 
can trust to effectively predict SCI in patients with STB.

Our research aimed to create a practical model for predicting SCI in STB patients. To achieve this goal, 
multiple machine learning algorithms were utilized to develop a predictive model based on clinical data from 
patients with STB across three different hospitals.

Materials and methods
Patients
A review and analysis of pertinent medical data from 373 patients with STB at the First Affiliated Hospital of 
Guangxi Medical University, spanning from June 2012 to June 2021 were conducted to construct and validate 
the prediction model. Additionally, data from 100 STB patients at Bai Se People’s Hospital, Bei Jing Ji Shui Tan 
Hospital Gui Zhou Hospital, from July 2021 to January 2023 were collected to form a prospective cohort to test 
the prediction model. The inclusion criteria were as follows: (1) Patients with a confirmed diagnosis of STB. (2) 
Patients with no history of SCI resulting from other diseases. (3) Patients with no history of hematological system 
diseases. (4) Patients with complete clinical information. The exclusion criteria included were as follows: (1) 
Post-operative pathological diagnosis that did not confirm STB. (2) Complications with other diseases leading 
to SCI. (3) Complications with tumors, hematological system diseases, or immune system disorders. (4) Avail-
ability of only fragmentary information. Ethical approval for this study was obtained from the Ethics Committee 
at the participating hospitals (Supplementary Materials).

Data gathering
The data, which included clinical characteristics and results from laboratory examinations, were gathered from 
patients who were admitted for the first time. General information about the patients, such as their age, gender, 
body mass index (BMI), presence of diabetes and hypertension, American Spinal Injury Association (ASIA) 
grade, oswestry disability index (ODI) scores, Japanese Orthopedic Association (JOA) score, and visual analog 
scale (VAS) rating, were collected. ASIA, ODI, JOA, and VAS scores were evaluated by two experienced spe-
cialists. The laboratory parameters consisted of the white blood cell (WBC)count, neutrophil count (NEU), 
lymphocyte count (LYM), monocyte count (MONO), C-reactive protein (CRP), erythrocyte sedimentation rate 
(ESR), hemoglobin (HGB), platelet(PLT), albumin (ALB), total protein(TP), aspartate aminotransferase (AST), 
alanine transaminase (ALT), urea, serum creatinine (Scr), and uric acid (UA) levels.

Prediction model development, validation, and testing
After exclusions, a total of 329 patients from the First Affiliated Hospital of Guangxi Medical University were 
included in a retrospective cohort to create and validate the predictive model. Additionally, 80 patients from two 
other hospitals were included in a prospective cohort to test the model. In each cohort, all patients with com-
plicated SCI (ASIA: A, B, C, D) were categorized as the SCI group, while the rest were classified as the No-SCI 
group. To further assess the severity, ODI, JOA, and VAS score were compared between groups.

The detailed processes of model construction were as follows: Dataset Partitioning and Data Imbalance 
Assessment: 329 patients were randomly divided in the retrospective cohort into a training set (n = 246) and a 
validation set (n = 83). Additionally, a total of 80 patients were defined in the prospective cohort as the test set. 
The ratio of the SCI group (n = 141) to the NO-SCI group(n = 105) in the training set was 1.34:1, indicating the 
absence of data imbalance issues19. Screening of characteristic indicators: Clinical characteristics and laboratory 
parameters with significant statistical differences were identified (p < 0.05) between groups through univariate 
analysis conducted in the training set. Systematic Analysis of multiple machine learning classifiers: Using the 
selected indicators, ten supervised ML classifiers were employed to construct prediction models. These classifiers 
included decision tree (DT), random forest (RF), Xtreme Gradient Boosting (XGBoost), least absolute shrinkage 
and selection Operator (LASSO) regression, support vector machine (SVM), multilayer perceptron (MLP), light 
gradient boosting machine (LightGBM), K-nearest neighbor (KNN), logistic regression, and stacking ensemble 
learning. To enhance the models, we performed hyperparameter tuning using grid search for each classifier. Grid 
search, a hyperparameter tuning technique, systematically explores a predefined set of hyperparameter values 
to identify optimal combinations for machine learning models. This process entailed creating a grid of hyper-
parameter values, where each point represents a unique combination. Subsequently, the model was trained and 
evaluated for each combination, with recorded performance metrics.The model was then trained and evaluated 
for each combination of hyperparameters, and the performance metrics were recorded20. To account for varia-
tions in model performance due to random data splits, a fivefold cross-validation procedure was performed in the 
training cohort21. Model Performance Evaluation and Optimal Model Selection: Model performance was evalu-
ated using the receiver operating characteristic (ROC) curves, area under the curve (AUC), and precision-recall 
(PR) curves for each model22,23. Additionally, calibration curve analysis and decision curve analysis (DCA) were 
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conducted to assess the robustness and clinical applicability of each model24,25. Based on the AUC, calibration 
curve analysis, and DCA results, the optimal model was determined. Subsequently, the AUC result was calcu-
lated for the test set to assess the performance of the optimal model. Model Agnostic Language for Exploration 
and Explanation (DALEX) Package: The DALEX package was used to explain the optimal model, quantify the 
contribution of each indicator to the predictive model and rank the importance of each feature. Moreover, the 
SHapley Additive eXplanation (SHAP) method was employed for single-sample prediction and interpretation26,27. 
Finally, the model was deployed on the web by an R Shiny app.

Statistical analysis
The data analysis was conducted using SPSS (IBM version 26.0) and R statistical software (version 4.2.2). For con-
tinuous variables with a normal distribution, the t test was utilized, and the results are presented as mean ± stand-
ard deviation (SD). Continuous variables with a non-normal distribution were assessed using the Mann–Whitney 
U test, and the results are displayed as the medians (percentiles). Categorical variables were examined using 
either the chi-square test or Fisher’s exact test, and the outcomes are expressed as numbers (percentages). We 
considered statistical significance at a p-value less than 0.05.

Ethics statement
Approval has been attained for the studies involving human respondents by the Ethics Department of Guangxi 
Medical University’s First Affiliated Hospital, the Ethics Department of Beijing Ji Shui Tan Hospital Guizhou 
Hospital and the Ethics Department of Baise People’s Hospital.

Consent form
Informed consent was obtained from all patients icluded in this study and/or their legal guardians. Following 
the requirements of national legislation and institution, informed consent was obtained from all participants 
and/or their legal guardians. All experiments and methods were performed in accrodance with relevat named 
guidelines and regulations.

Result
Patient clinical characteristics and laboratory results
A total of 473 patients with STB were included from three medical institutions. After exclusions, we obtained 
a retrospective cohort consisting of 329 cases, including 246 cases in the training cohort and 83 cases in the 
validation cohort. Additionally, 80 patients in the testing cohort were included in the prospective cohort (Fig. 1). 
As demonstrated in Table 1, significant differences were found in age (p = 0.0003), complicated hypertension 
(p = 0.0006), CRP (p = 0.002), NEU (P = 0.0002), LYM (p = 0.0006), MONO (p = 0.0009), HGB (p = 0.0007), PLT 
(p = 0.0003), ESR (p = 0.0004), ALB (p = 0.0005) in the training set, while most indicators in validation and testing 
set had no difference (Supplementary Tables 1, 2). Notably, significant differences in MONO were observed in 
all the sets. Furthermore, as shown in Fig. 2, in the retrospective cohort and the prospective cohort, the ODI and 
VAS scores were significantly greater in the SCI group, while the JOA score was lower. These findings indicated 
that patients in the SCI group had a greater disease severity.

Feature screening
To enhance the models’ performance, univariate analysis was employed to examine the variables. As depicted in 
Table 1, significant differences in age, complicated hypertension, NEU, LYM, MONO, CRP, ESR, HGB, PLT, and 
ALB were identified between the SCI group and the No-SCI group in the training set. These 10 clinical features 
were subsequently utilized to construct the predictive model.

Comprehensive analysis of multiple machine learning algorithms
We trained ten different models, namely, DT, RF, XGBoost, LASSO regression, SVM, MLP, LightGBM, KNN, 
logistic regression, and stacking ensemble learning. Subsequently, the models were evaluated using AUC val-
ues. The results indicated that in the training cohort, LightGBM, RF, and the stacking ensemble learning model 
performed the best22, with RF achieving the highest AUC in the validation cohort (Fig. 3A and B). The results 
of the precision-recall curves demonstrated that in the training cohort, the LightGBM, RF, stacking ensemble 
learning, and KNN models outperformed the other models, while in the validation cohort, the LightGBM, SVM, 
stacking ensemble learning, and RF models outperformed the other models (Fig. 3C and D). Moreover, deci-
sion curve analysis (DCA) and calibration curve analysis were conducted to assess the clinical efficacy of each 
machine learning model. DCA revealed that RF, LightGBM, and KNN were better suited for clinical application 
(Fig. 3E). Consistently, RF, LightGBM, and KNN demonstrated higher accuracy according to the calibration 
curves (Fig. 3F). Based on these results, we conclude that RF can be considered as the best performing model.

Optimal model establishment and assessment
The prediction model was constructed using the random forest (RF) algorithm. In Fig. 4A, the AUC values for 
the training set (AUC = 0.858), the validation set (AUC = 0.769), and the testing set (AUC = 0.816) are displayed. 
The model was considered successful since the AUC value in the testing set was higher than that in the validation 
set. Furthermore, the learning curve indicated a favorable fit and stability between the training and validation 
sets (Fig. 4B)28. In addition, based on our calibration procedures, we observed consistent performance of the 
RF model’s probability outputs across different probability levels, with the calibration curve closely resembling 
the ideal 45-degree diagonal line (Fig. 3F). The results of statistical metrics indicated that the RF model’s Brier 
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score (0.193) reached reasonable levels, further confirming the effectiveness of our model’s probability calibra-
tion. Therefore, the RF model is a useful approach for predicting SCI in patients with spinal tuberculosis (STB).

Prediction model interpretation and deployment
We employed the DALEX R package to elucidate how the selected parameters predict the progression of spinal 
tuberculosis and assess their importance in the model. In Fig. 5A and B, the rankings of importance of the ten 
features are presented, with MONO emerging as the most significant factor for SCI in STB patients. To enhance 
the interpretability of the model, two representative samples were provided using the SHAP model. One sample 
was from an STB patient without SCI (Fig. 5C), while the other belonged to the SCI group (Fig. 5D). Finally, 
Fig. 6 shows the predictive model constructed via the web (http://​127.0.​0.1:​7806).

Discussion
STB tends to affect younger individuals and is not uncommonly associated with SCI, which can lead to disability 
and even death29,30. The progression of STB is a major contributor to severe spinal complications and poses a 
significant challenge for achieving positive outcomes in STB patients. Therefore, timely identification of patients 
at risk of experiencing spinal cord injury and identification of key factors involved in disease progression are cru-
cial in clinical practice. In this study, we identified important clinical and laboratory examination characteristics 
and employed a beneficial ML-based model to predict the occurrence of SCI in STB patients. We believe that 

Figure 1.   The flowchart of this study.

http://127.0.0.1:7806
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Table 1.   Baseline characteristics of STB patients with and without SCI in training set.

Characteristics

No. (%)

pTotal SCI (n = 141) No-SCI (n = 105)

Age, years, median (IQR) 54 (37–66) 57 (41–67) 48 (34–61) 0.0003

BMI, Mean ± SD 20.9 ± 3.09 20.85 ± 2.85 20.89 ± 3.39 0.695

Sex, n (%) 0.079

 Male 147 (59.8%) 83 (33.7%) 64 (26.1%)

 Female 99 (40.2%) 58 (23.6%) 41 (16.6%)

Diabetes, n (%) 0.413

 Yes 47 (19.1%) 24 (9.8%) 23 (9.3%)

 No 199 (80.9%) 117 (47.6%) 82 (33.3%)

Hypertension, n (%) 0.0006

 Yes 84 (34.1%) 61 (24.8%) 23 (9.3%)

 No 162 (65.9%) 80 (32.5%) 82 (33.4%)

CRP, median (IQR) 14.3 (5.96–39.3) 21.9 (7.43–52.2) 10.8 (5.3–29.87) 0.002

WBC*10^9/L, median (IQR) 7.08 (5.8–8.34) 7.2 (6.04–8.66) 6.9 (5.56–7.96) 0.06

NEU*10^9/L, median (IQR) 4.53 (3.53–5.77) 4.73 (3.81–6.07) 4.08 (3.19–5.32) 0.0002

LYM*10^9/L, median (IQR) 1.46 (1.09–1.79) 1.38 (1.03–1.66) 1.62 (1.24–1.91) 0.0006

MONO*10^9/L, median (IQR) 0.61 (0.48–0.77) 0.63 (0.52–0.81) 0.58 (0.44–0.69) 0.0009

HGB g/L, median (IQR) 123 (111–133) 117 (106–131) 126 (117–135) 0.0007

PLT *10^9/L, median (IQR) 291 (247–351) 310 (261–371) 269 (237.6–309) 0.0003

ESR, median (IQR) 40 (23.2–60) 44 (30–67) 34 (17–55) 0.0004

ALB g/L, median (IQR) 38.6 (35.2–41.4) 37.7 (33.3–39.9) 39.3 (37.2–42) 0.0005

TP g/L, median (IQR) 71.3 (67–74.9) 71.3 (66.6–75.9) 71.3 (67.6–74) 0.919

AST u/L, median (IQR) 20 (17–26) 20 (17–26) 20 (17–27) 0.715

ALT u /L, median (IQR) 16 (12–23) 16 (12–22) 17 (12–24) 0.482

Ure u/L, median (IQR) 4.26 (3.35–5.21) 4.32 (3.36–5.44) 4.23 (3.34–5.13) 0.554

Scr u/L, median (IQR) 67 (56–77.8) 67 (55–77) 67 (57–79) 0.858

UA u/L, Mean ± SD 401 ± 166 398.16 ± 173.04 404.47 ± 157.01 0.586

Figure 2.   The severity of STB patients between two groups. (A) The differences in ODI, JOA, VAS scores 
between two groups in the retrospective cohort. (B) The differences in ODI, JOA, VAS scores between two 
groups in the prospective cohort. ODI oswestry disability index, JOA Japanese Orthopedic Association, VAS 
visual analog scale, STB spinal tuberculosis, SCI spinal cord injury. ***p-value < 0.001.
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ML-based models are valuable tools in clinical practice because they are noninvasive, rapid, and user-friendly, 
aiding in the prediction of spinal cord injury in STB patients.

SCI results from the progression of STB. Given the low early detection rate and poor prognosis of STB patients, 
there is a growing focus on identifying biomarkers for the occurrence and development of this disease16,17,31,32. 
Several clinical indicators related to the progression and prognosis of STB have been investigated. Immune cells, 
key players in immune function, play a crucial role in the progression of STB. For instance, Yao Y et al. identified 
two subphenotypes of spinal tuberculosis of varying severity using unsupervised machine learning and found 
significant differences in the infiltration levels of immune cells (lymphocytes, monocytes, neutrophils), which 
are related to SCI33. A multicenter study demonstrated that the monocyte-to-lymphocyte ratio (MLR) and 
neutrophil-to-lymphocyte ratio (NLR) were notably greater in patients with active tuberculosis than in those with 

Figure 3.   Comprehensive analysis of mutiple ML algorithms. (A) ROC and AUC value of ML models in 
training set. (B) ROC and AUC value of ML models in validation set. (C) PRs of ML models in training set. 
(D) PRs of ML models in validation set. (E) DCA of ML models in validation set. (F)The calibration curve of 
ML models in validation set. ML machine learning, ROC receiver operating characteristic curves, AUC​ area 
under the curve, PRs precision-recall curves, DCA decision curve analysis, DT decision tree, RF random forest, 
XGBoost Xtreme gradient boosting, LASSO least absolute shrinkage and selection operator, SVM support vector 
machine, MLP multilayer perceptron, LightGBM light gradient boosting machine, KNN K-nearest neighbor, bs 
brier score.
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latent tuberculosis34. Additionally, well-known indicators,such as ESR and CRP concentration, are commonly 
used to evaluate the degree of inflammation in patients with tuberculosis35 and are associated with the prognosis 
of STB36,37. Nutritional status is also a vital factor affecting the progression and prognosis of spinal tuberculosis 
patients, and research has shown that the serum ALB concentration is an important laboratory marker for 
predicting SCI and prognosis in STB patients38. In this study, we ultimately selected ten clinical parameters, 
including age, NEU, LYM, MONO, CRP, ESR, HGB, PLT, ALB, and complicated hypertension, to establish the 

Figure 4.   Random forest model assessment. (A) ROC and AUC value of random forest model in training, 
validation and testing set. (B) Learning curve. ROC receiver operating characteristic curves, AUC​ area under the 
curve, RF random forest.

Figure 5.   The model interpretation. (A,B) Feature importance ranking contribute to the model. (C) The model 
interpretation in one patient without SCI by SHAP. (D) The model interpretation in one patient with SCI 
by SHAP. NEU neutrophil count, LYM lymphocyte count, MONO monocyte count, CRP C-reactive protein, 
ESR erythrocyte sedimentation rate, HGB hemoglobin, PLT platelets, ALB albumin, Hypertension, combined 
hypertension.
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predictive model. The results consistently indicated that patients in the SCI group were more likely to be older 
and to have complicated hypertension, NEU, MONO, CRP, ESR, and PLT than were those in the No-SCI group, 
while LYM, HGB, and ALB were more common in the No-SCI group.

Moreover, based on the importance ranking of the ten clinical factors, MONO was identified as the most 
significant predictor. Recent studies have suggested a close association between the dysregulation of monocytes 
and disease progression. A retrospective study demonstrated that a high monocyte-to-lymphocyte ratio (MLR) 
was closely linked to the severity and occurrence of SCI in patients with spinal tuberculosis39. Another recent 
study reported that elevated monocyte levels contributed to the progression of tuberculosis40. Furthermore, a 
single-center retrospective study revealed that a high monocyte-to-lymphocyte ratio was a risk factor for clini-
cal progression in patients with pulmonary Mycobacterium avium complex disease41. Additionally, a growing 
body of research indicates that monocytes and macrophages play crucial roles in the prognosis of non-infectious 
diseases34,42. Interestingly, the results of the present study align with the findings of the aforementioned stud-
ies, revealing a markedly elevated level of monocytes in the SCI group. Therefore, monocytes may be a crucial 
factor in the progression of spinal tuberculosis and may be involved in the development of spinal cord injury 
in STB patients.

Monocytes, which originate from monocyte precursors in the bone marrow, are recruited to infection sites. 
These cells differentiate into macrophages when they respond to antigens to defend against infections43. These 
macrophages are part of the mononuclear phagocyte system and play crucial roles in defense mechanisms, tis-
sue development, and maintaining the body’s balance44. The abilities of these bacteria to engulf foreign particles 
and kill bacteria, as well as produce inflammatory cytokines, are important for supporting adaptive immune 
responses. Monocyte-macrophages, acting as a “double-edged sword,” are essential for defending the body against 
pathogenic infections, but their hypersensitive reactions can lead to damage to normal tissues and organs during 
infections45. Additionally, they can play both protective and pathogenic roles in various diseases46, which depend 
on the surrounding environment that regulates their phenotype and function. There are two main subtypes of 
macrophages: (1) Classically activated M1 macrophages, which typically produce pro-inflammatory cytokines 
such as TNF-α, IL-1β, IL-12, and IL-23, promoting local inflammation and helping eliminate pathogens, virus-
infected cells, and transformed cells. (2) M2 macrophages generally produce anti-inflammatory cytokines such 
as IL-10 and TGF-β to reduce local inflammation. They have decreased antigen presentation capability, limited 
oxidant production, and increased production of anti-inflammatory cytokines, which helps prevent excessive 
tissue damage. The balance between M1/M2 macrophages in an organ during inflammation or injury can deter-
mine its fate. When this balance is disrupted, macrophages can contribute to tissue damage and necrosis. STB 
is a chronic infectious disease, and local immune status is a significant factor in Mycobacterium tuberculosis 
survival and tissue destruction. M1 macrophages, which produce high levels of inflammatory cytokines and 
proteolytic enzymes in the context of chronic inflammation, can contribute to spine malformation and SCI. 
Previous studies conducted by our team revealed a significant increase in M1 macrophages in STB patients47. 
Therefore, it is reasonable to consider that monocytes and macrophages may be significant factors contributing 
to SCI in patients with STB.

Despite numerous key factors being associated with SCI in patients with spinal tuberculosis, no predictive 
model has been developed. ML-based predictive models are gaining popularity due to their precision and are 

Figure 6.   The model deployment. NEU neutrophil count, LYM lymphocyte count, MONO monocyte count, 
CRP C-reactive protein, ESR erythrocyte sedimentation rate, HGB hemoglobin, PLT platelets, ALB albumin, 
Hypertension, combined hypertension.
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increasingly applied in spinal diseases treatment48. In this study, ten meticulously chosen features were employed 
to construct predictive models. To establish the reliability of our findings, ten machine learning algorithms were 
utilized in the creation of these models. Our comprehensive evaluation of the results, considering measures such 
as the AUC, precision-recall curves, decision curve analysis, and calibration curves, indicated that the random 
forest (RF) model outperformed the other nine models. The learning curve also indicated that the RF model 
exhibited effective performance, underscoring the clinical value of ML models in predicting spinal cord injury 
in patients with spinal tuberculosis. Furthermore, additional clinical data were collected to validate the model 
externally, ensuring its generalizability and reproducibility, which are essential for translating our results into 
clinical practice.

In recent years, the introduction of advanced machine learning models, particularly black box models, has 
significantly propelled the state-of-the-art in various domains49. Models like deep neural networks and ensemble 
methods have demonstrated unparalleled performance in tackling complex tasks. However, their widespread 
adoption has given rise to a critical concern—the inherent opacity in comprehending their decision-making 
processes. This opacity results from the intricate interplay of features and parameters, posing a challenge for 
human comprehension. Not only does this opacity hinder interpretability, but it also raises crucial issues related 
to trust, accountability, and ethical considerations. In response to these challenges, there has been a growing 
emphasis on the development and adoption of explainable artificial intelligence (XAI) methods, such as Local 
Interpretable Model-agnostic Explanations (LIME) or SHapley Additive exPlanations (SHAP)50. In our study, 
to provide a more comprehensive understanding of the predictive model and address the opacity of black-box 
models, we employed the DALEX R package to assess feature importance. This analysis revealed key indicators 
associated with spinal tuberculosis. Additionally, we utilized SHAP to interpret single-sample predictions of the 
model, aiming to enhance transparency and interpretability in our findings.

While the results show promise, it is important to acknowledge several limitations in this study. First, despite 
being a multicenter study, the sample size was relatively small, which could introduce bias into several of the 
results. One potentially effective strategy is the application of generative methods for data augmentation. By 
employing techniques such as rotation, scaling, and flipping, we aim to artificially create additional training 
samples, thereby expanding the dataset. This approach has been widely utilized in the literature, as evidenced by 
the work mentioned in reference51,52, while other approaches include transfer learning, active learning, adversarial 
training, and so on. Second, to enhance the accuracy and performance of the model, it would have been beneficial 
to include more favorable clinical indicators related to the prognosis of spinal tuberculosis, such as radiomic 
features. Third, even though prospective studies were conducted to enhance the reliability and generalizability of 
our findings, data collection uncertainties in prospective cohorts from different regions may lead to unavoidable 
bias. Finally, the potential molecular mechanisms underlying the key factors for determining the prognosis of 
spinal tuberculosis patients have not been elucidated.

Conclusions
In summary, this study successfully developed a valuable predictive model for spinal cord injury in patients with 
spinal tuberculosis. This model was created using a combination of multiple machine-learning algorithms and 
data from multiple clinical centers. Furthermore, we established a personalized risk assessment tool for spinal 
cord injury in spinal tuberculosis patients. Finally, we deployed the model on the web. Notably, monocytes may 
play a key role in the development of spinal cord injury in these patients, according to the variable importance 
ranking. This research offers an efficient and rapid approach for frontline clinicians and patients to predict 
the risk of spinal cord injury in patients with spinal tuberculosis and provides valuable guidance for clinical 
decision-making.

Data availability
The original data utilized herein in the study are included in the article. Further inquiries can be directed to the 
corresponding author.
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