Table 1 Numerical simualtion for \({{\mathcal {P}}}({\omega },{\xi })\) at \(\zeta =1\) of Example 4.1.
From: The fractional analysis of thermo-elasticity coupled systems with non-linear and singular nature
ine \({\xi }\) | \({\omega }\) | \(|{{\mathcal {P}}}_{exact}-{{\mathcal {P}}}^{(4)}|\) | \(|{{\mathcal {P}}}_{exact} -{{\mathcal {P}}}^{(5)}|\) | \(|{{\mathcal {P}}}_{exact}-{{\mathcal {P}}}^{(6)}|\) |
---|---|---|---|---|
ine | 0.2 | 1.00 \(\times \; 10^{-7}\) | 2.0 \(\times \; 10^{-9}\) | 0 |
0.4 | 1.22 \(\times \; 10^{-7}\) | 2.0 \(\times \; 10^{-9}\) | 0 | |
0.1 | 0.6 | 1.49 \(\times \; 10^{-7}\) | 3.0 \(\times \; 10^{-9}\) | 0 |
0.8 | 1.83 \(\times\; 10^{-7}\) | 2.0 \(\times \; 10^{-9}\) | 1.0 \(\times \; 10^{-9}\) | |
1 | 2.22 \(\times \; 10^{-7}\) | 5.0 \(\times \; 10^{-9}\) | 1.0 \(\times \; 10^{-9}\) | |
ine | 0.2 | 9.5399 \(\times \; 10^{-6}\) | 3.999 \(\times\; 10^{-7}\) | 1.43 \(\times \; 10^{-8}\) |
0.4 | 1.1653 \(\times \; 10^{-5}\) | 4.88 \(\times \; 10^{-7}\) | 1.8 \(\times \; 10^{-8}\) | |
0.25 | 0.6 | 1.4231 \(\times \; 10^{-5}\) | 5.97 \(\times \; 10^{-7}\) | 2.10 \(\times \; 10^{-8}\) |
0.8 | 1.7382 \(\times \;10^{-5}\) | 7.29 \(\times\; 10^{-7}\) | 2.6\(\times 10^{-8}\) | |
1 | 2.1231 \(\times \; 10^{-5}\) | 8.90 \(\times \; 10^{-7}\) | 3.2 \(\times \; 10^{-8}\) |