Table 1 Numerical simualtion for \({{\mathcal {P}}}({\omega },{\xi })\) at \(\zeta =1\) of Example 4.1.

From: The fractional analysis of thermo-elasticity coupled systems with non-linear and singular nature

ine \({\xi }\)

\({\omega }\)

\(|{{\mathcal {P}}}_{exact}-{{\mathcal {P}}}^{(4)}|\)

\(|{{\mathcal {P}}}_{exact} -{{\mathcal {P}}}^{(5)}|\)

\(|{{\mathcal {P}}}_{exact}-{{\mathcal {P}}}^{(6)}|\)

ine

0.2

1.00 \(\times \; 10^{-7}\)

2.0 \(\times \; 10^{-9}\)

0

0.4

1.22 \(\times \; 10^{-7}\)

2.0 \(\times \; 10^{-9}\)

0

0.1

0.6

1.49 \(\times \; 10^{-7}\)

3.0 \(\times \; 10^{-9}\)

0

0.8

1.83 \(\times\; 10^{-7}\)

2.0 \(\times \; 10^{-9}\)

1.0 \(\times \; 10^{-9}\)

1

2.22 \(\times \; 10^{-7}\)

5.0 \(\times \; 10^{-9}\)

1.0 \(\times \; 10^{-9}\)

ine

0.2

9.5399 \(\times \; 10^{-6}\)

3.999 \(\times\; 10^{-7}\)

1.43 \(\times \; 10^{-8}\)

0.4

1.1653 \(\times \; 10^{-5}\)

4.88 \(\times \; 10^{-7}\)

1.8 \(\times \; 10^{-8}\)

0.25

0.6

1.4231 \(\times \; 10^{-5}\)

5.97 \(\times \; 10^{-7}\)

2.10 \(\times \; 10^{-8}\)

0.8

1.7382 \(\times \;10^{-5}\)

7.29 \(\times\; 10^{-7}\)

2.6\(\times 10^{-8}\)

1

2.1231 \(\times \; 10^{-5}\)

8.90 \(\times \; 10^{-7}\)

3.2 \(\times \; 10^{-8}\)