Table 2 Numerical simualtion for \({\mathcal {R}}({\omega },{\xi })\) at \(\beta =1\) of Example 4.1.

From: The fractional analysis of thermo-elasticity coupled systems with non-linear and singular nature

ine \({\xi }\)

\({\omega }\)

\(|{\mathcal {R}}_{exact}-{\mathcal {R}}^{(4)}|\)

\(|{\mathcal {R}}_{exact}-{\mathcal {R}}^{(5)}|\)

\(|{\mathcal {R}}_{exact}-{\mathcal {R}}^{(6)}|\)

ine

0.2

3.4807 \(\times \; 10^{-6}\)

6.93 \(\times \;10^{-8}\)

1.1 \(\times \;10^{-9}\)

0.4

2.8499 \(\times \; 10^{-6}\)

5.69 \(\times \; 10^{-8}\)

1.0 \(\times \; 10^{-9}\)

0.1

0.6

2.3332 \(\times \; 10^{-6}\)

4.65 \(\times \; 10^{-8}\)

8.0 \(\times \; 10^{-9}\)

0.8

1.9103 \(\times \; 10^{-6}\)

3.81 \(\times\; 10^{-8}\)

7.0 \(\times\; 10^{-9}\)

1

1.5640 \(\times \; 10^{-6}\)

3.12 \(\times \; 10^{-8}\)

5.0 \(\times \; 10^{-9}\)

ine

0.2

1.40208 \(\times \; 10^{-4}\)

6.951 \(\times \; 10^{-6}\)

2.88 \(\times \; 10^{-7}\)

0.4

1.147924 \(\times \;10^{-4}\)

5.6908 \(\times\; 10^{-6}\)

2.357 \(\times \;10^{-7}\)

0.25

0.6

9.39840 \(\times \;10^{-5}\)

4.6592 \(\times\; 10^{-6}\)

1.930 \(\times \;10^{-7}\)

0.8

7.69477 \(\times \; 10^{-5}\)

3.8147 \(\times \; 10^{-6}\)

1.581 \(\times \; 10^{-7}\)

1

6.29993 \(\times \; 10^{-5}\)

3.1231 \(\times \; 10^{-6}\)

1.293 \(\times \; 10^{-7}\)