Table 1 Accuracy comparisons between our proposed STG-NODE model and other methods on NTU RGB+D 60 and Kinetics Skeleton 400. Significant values are in bold.

From: Spatial-temporal graph neural ODE networks for skeleton-based action recognition

Method

X-Sub

X-View

Kinetics Top1

Kinetics Top5

Years

Deep LSTM13

60.7

67.3

16.4

35.3

2016

TCN11

74.3

83.1

20.3

40.0

2017

ST-GCN27

81.5

88.3

30.7

52.8

2018

DS-LSTN43

75.5

84.2

-

-

2020

STD+RGB-DI44

79.4

84.1

-

-

2020

GFNet45

82.0

89.9

-

-

2020

STA46

72.4

79.7

-

-

2021

CNN+LSTM47

81.9

88.7

-

-

2021

PoT2I48

83.9

90.3

-

-

2021

C-CNN+HTLN49

83.5

86.8

-

-

2022

Custom ST-GCN41

82.7

90.2

32.3

54.5

2023

STG-NODE (ours)

84.0

91.1

32.6

55.0

2023