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Data imbalance in cardiac health 
diagnostics using CECG‑GAN
Yang Yang 1,2, Tianyu Lan 1,3, Yang Wang 1,3, Fengtian Li 1,3, Liyan Liu 1,3, Xupeng Huang 1,3, 
Fei Gao 2, Shuhua Jiang 1, Zhijun Zhang 4,5 & Xing Chen 5*

Heart disease is the world’s leading cause of death. Diagnostic models based on electrocardiograms 
(ECGs) are often limited by the scarcity of high‑quality data and issues of data imbalance. To address 
these challenges, we propose a conditional generative adversarial network (CECG‑GAN). This strategy 
enables the generation of samples that closely approximate the distribution of ECG data. Additionally, 
CECG‑GAN addresses waveform jitter, slow processing speeds, and dataset imbalance issues through 
the integration of a transformer architecture. We evaluated this approach using two datasets: MIT‑
BIH and CSPC2020. The experimental results demonstrate that CECG‑GAN achieves outstanding 
performance metrics. Notably, the percentage root mean square difference (PRD) reached 55.048, 
indicating a high degree of similarity between generated and actual ECG waveforms. Additionally, 
the Fréchet distance (FD) was approximately 1.139, the root mean square error (RMSE) registered at 
0.232, and the mean absolute error (MAE) was recorded at 0.166.

Keywords Heart disease, Generative adversarial networks, Unbalanced data, Multi-class classification, 
Electrocardiogram

Heart disease has become the leading cause of death globally, with a notable increase in its prevalence among 
younger populations in recent years. Furthermore, significant global demographic shifts, such as population 
aging and growth, have been observed over the past three decades. According to the World Heart Report 2023 
published by the World Heart Federation, cardiovascular disease (CVD) fatalities have escalated from approxi-
mately 12.1 million in 1990 to about 20.5 million in 2021. Sudden cardiac death and ischemic heart disease 
constitute 85% of these deaths worldwide. Diagnosis and treatment of such diseases predominantly depend on 
professional analysis of electrocardiograms (ECGs), which record the heart’s electrophysiological activity over 
time through skin-placed electrodes. ECGs are increasingly recognized as vital in cardiology therapeutics. How-
ever, the medical field faces notable challenges: (1) Human cardiac activity is constantly and rapidly changing, 
making manual data analysis by medical professionals highly challenging; (2) Machine learning-based detection 
algorithms necessitate extensive datasets for effective modeling, and manual data labeling incurs substantial time 
costs and raises patient privacy concerns.

Machine learning algorithms are now gradually making a difference in the field of medical diagnostics with 
their automatic modelling benefits, such as BP neural networks, decision trees, temporal memory networks and 
other methods. However, these methods necessitate extensive ECG data for training purposes. The classifica-
tion and labeling of ECGs involve considerable time and resources from medical professionals. For instance, 
constructing a cardiac disease classification model requires a substantial dataset of ECG samples. This need con-
trasts sharply with the prevalent scarcity of medical data, a factor that has impeded progress in related research.

In recent years, the advent of generative adversarial networks (GANs) has significantly expanded dataset 
diversity across various fields. GANs have found widespread application in image generation for producing 
high-resolution images and other uses. In the medical domain, Delaney et al.1 have both qualitatively and 
quantitatively shown that GAN architectures can effectively generate diverse time-series signals. Hazra D et al.2 
introduced SynSigGAN, an innovative GAN model for creating various synthetic biomedical data, demonstrat-
ing high correlation coefficients to aid healthcare system development and automation. Zhu F et al.3 developed 
a GAN model based on bi-directional long and short term memory networks and convolutional neural network 
(BiLSTM-CNN GAN), capable of generating ECG data closely resembling actual ECG recordings. Li X et al.4 
introduced the transformer-based model called TTS-GAN, utilizing transformer architecture in both generator 
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and discriminator. This model employs visualization and dimensionality reduction techniques to show the simi-
larity between real and generated time series data. Adib E et al.5 combined a conditional GAN with WGAN-GP 
for data augmentation in arrhythmia classification, validating their model with recall, confusion matrix, and 
accuracy metrics. However, there are still some key issues in these studies:

(1) The imbalance in current heart rate abnormality datasets significantly hampers the effectiveness of existing 
classification methods. The current imbalance in heart rate anomaly datasets severely impacts the validity 
of existing classification methods. This leads to low actual accuracy of scarcity types when assessing heart 
rate metrics.
(2) Existing generative ECG model effects still suffer from the problem of imbalance, which exacerbates the 
negative impact of model performance when training the classification model, resulting in the existing heart 
rate classification algorithms being heavily biased towards the majority class results, making it difficult to 
differentiate between new anomalous data.
(3) Predominantly, existing heart rate generation models utilize recurrent neural networks (RNNs) and 
convolutional neural networks (CNNs), with a primary focus on sequential output. This approach is both 
time-intensive and inefficient, leading to cumulative generation errors and resulting in jittery waveforms.

To address these issues, we propose a novel heart rate generation strategy utilizing conditional generative 
adversarial networks. This model integrates a transformer architecture with conditional constraints, enabling the 
generative adversarial network to more accurately approximate real data distributions. This approach not only 
captures a broader range of scarce data distributions but also preserves data diversity. Consequently, it mitigates 
the performance degradation of classification models caused by data imbalances and addresses the issues related 
to prolonged output times and subpar results in existing models.

Methods
Analyses of imbalanced data distribution
The MIT-BIH arrhythmia dataset, widely utilized in arrhythmia classification research, comprises recordings 
from 47 individuals, each contributing a roughly 30 min arrhythmia recording. This dataset encapsulates a total 
of 109,500 cardiac beats, with approximately 30% classified as abnormal beats. It includes five types of cardiac 
beats: normal beats (N), atrial premature beats (A), ventricular premature beats (V), left bundle-branch block 
(L), and right bundle-branch block (R). Its validity has been established, making it a benchmark dataset in the 
study of cardiac arrhythmias.

In this experiment, all cyclic waveforms collected were referenced to the R-peak identified within the dataset. 
One hundred time points were captured before the R-peak, and two hundred time points were captured following 
the R-peak. Thus, a complete cyclic waveform was constructed through these three hundred time points.

In our study, we applied wavelet transform techniques to denoise signals in the MIT-BIH arrhythmia database, 
aiming to enhance the quality of the electrocardiogram (ECG) signals. We chose the fifth-order Daubechies 
wavelet as the mother wavelet function due to its excellent signal processing characteristics in biomedical signal 
analysis. By setting the decomposition level to nine, we obtained nine levels of detail coefficients (cD9 to cD1) 
and one level of approximation coefficient (cA9), allowing for a more refined analysis of the signal’s frequency 
characteristics and noise components. For determining the threshold in the denoising process, we adopted the 
VisuShrink threshold calculation formula, a method capable of adaptively adjusting the threshold size based on 
the characteristics of the data itself, effectively removing noise while preserving important signal features. This 
adaptive approach is suitable for processing signals with various noise levels, demonstrating good results in ECG 
signal denoising, where the average signal-to-noise ratio improved to 23.59031. We also compiled the SNR for 
each patient in Table 1, detailing the effectiveness of our denoising process across individual cases.

Additionally, our threshold calculation formula is as follows:

� = σ
√
2lnN ,

Table 1.  SNR for patients in the MIT-BIH dataset.

Patient ID SNR Patient ID SNR Patient ID SNR Patient ID SNR Patient ID SNR

100 17.4781 113 21.0052 200 23.2893 215 19.9525 232 20.0286

101 20.3131 114 23.1419 201 23.2442 217 25.8016 233 29.3282

103 21.6856 115 21.1164 202 24.2503 219 28.4727 234 25.3131

105 25.5353 116 24.9867 203 23.6702 220 18.7853

106 21.8475 117 22.8157 205 20.0399 221 22.9026

107 27.7311 119 26.3884 208 24.5882 222 17.6617

108 22.5713 121 27.3271 210 22.7814 223 26.2516

109 28.8873 122 24.3446 212 19.1808 228 23.6449

111 22.9275 123 21.7020 213 29.4519 230 24.5426

112 23.3215 124 29.5289 214 25.9638 231 20.5810
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where MAD represents the median of the absolute deviations from the median of the wavelet coefficients across 
all high-frequency subbands.

Figure 1 presents a detailed analysis of the MIT-BIH dataset. Following preprocessing, abnormal heart rates 
constituted 23% of the entire dataset. Notably, the premature atrial beat category represented a notably smaller 
portion, comprising only 2.006% of the total sample size.

We employed the ResNet50 algorithm for classifying heart rate data within the dataset. Given the charac-
teristics of heart rate data, the unique residual units of ResNet allow gradients to propagate directly to earlier 
layers, effectively preventing the vanishing gradient problem often encountered when training deep networks. 
This architecture comprises 16 residual blocks in total, with each block containing three residual units and one 
additional residual unit attached to both the input and output of each block. This design ensures rapid training 
speeds while maintaining high training efficiency. The test results of the ResNet50 we designed are shown in 

σ =
MAD

0.6745

Figure 1.  Plot of the original dataset analysis. (a) Original dataset distribution. (b) Percentage of scarcity data. 
(c) Original data bar graph distribution.

Table 2.  Former MIT-BIH classification results.

Serial
number Label Precision Recall F1 score

1 Normal heartbeat 99.3120 99.4103 99.3611

2 Premature atrial beat 85.9823 84.6154 85.2934

3 Premature ventricular beat 94.1332 96.8598 95.4770

4 Left bundle branch block 95.9455 95.3329 95.6382

5 Right bundle branch block 96.7275 92.8327 94.7401

Avg 94.4201 93.8102 94.1020



4

Vol:.(1234567890)

Scientific Reports |        (2024) 14:14767  | https://doi.org/10.1038/s41598-024-65619-8

www.nature.com/scientificreports/

Fig. 2 and Table 2. The structure diagram of ResNet50 is shown in Fig. 3. The model parameters and hyperpa-
rameters of the ResNet50 algorithm are detailed in Table 3, and the loss curves and metric curves during the 
training process are shown in Fig. 4. Results, indicate poor performance of scarce samples in the dataset during 
classification. Specifically, there is a significant variance in classification accuracy among four types of anomaly 
data, with the lowest at 85.982% and the highest at 96.727%. This notable variation underscores deficiencies in 
the classification outcomes, leading to decreased precision, recall, and F1 scores. Hence, particularly in cases of 
limited sample size, the presence of anomalous data in unbalanced datasets increases the risk of misdiagnosis 
or oversight (Supplementary Information).

Figure 2.  Classification model confusion matrix.

Figure 3.  Structural diagram of the ResNet50 classification algorithm.

Table 3.  ResNet50 model parameter settings.

Block Layer Kernel Padding Input size Output size

Preprocess

PCA / 256 × 300 × 1 256 × 16 × 1

Conv1 3 1 256 × 16 × 1 256 × 16 × 64

BatchNorm / 256 × 16 × 64 256 × 16 × 64

Relu / 256 × 16 × 64 256 × 16 × 64

Layer1
ResBlock1 5 2 256 × 16 × 64 256 × 16 × 128

ResBlock2 ~ 8 5 2 256 × 16 × 128 256 × 16 × 128

Layer2
ResBlock1 3 1 256 × 16 × 128 256 × 16 × 256

ResBlock2 ~ 8 3 1 256 × 16 × 256 256 × 16 × 256

Classify
Conv2 3 1 256 × 16 × 256 256 × 16 × 256

Fc / 256 × 1024 256 × 5

Parameter Value Parameter Value Parameter Value

Batch size 256 Learning rate 1e-4 epochs 100

Optimizer Adam Loss function BCELoss Conv per block 3

Train rate 0.8
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In the medical domain, achieving high accuracy in recognizing abnormal heart rate data is of paramount 
importance, given that missed detections could gravely affect a patient’s life and health. Consequently, addressing 
the dataset imbalance and thereby enhancing the recognition accuracy of abnormal data represents the central 
issue and challenge of this study.

Solution strategy of abnormal heart rate dataset based on CGAN
Building upon our thorough analysis of the unbalanced dataset, we propose a solution centered around CECG-
GAN for addressing the imbalance in heart rate data, as illustrated in Fig. 5. This approach specifically targets 
the issue of scarce anomalous data. The network’s design is inspired by the training methodology of  TimeGAN1, 
which involves mapping high-dimensional data to a lower-dimensional space, thereby facilitating more effective 
model learning.

H = {(H[n]
data,H

[n]
label)}

N
n=1 , Hdata ∈ R

n×l×f  in Fig. 5a represents the original data in the high-dimensional 
space, where l  represents the length of the sample sequence and f  represents the number of features, and since 
the heart rate data is a one-dimensional time-series data, f = 1.Hlabel ∈ R

n×classes denotes original data labels in 
high dimensional space, E = {(E[n]data,E

[n]
label)}

N
n=1 denotes original data and labels in low dimensional space, and 

R = {(R[n]
data,R

[n]
label)}

N
n=1 denotes synthetic data and labels in low dimensional space.

As illustrated in Fig. 5b, the CECG-GAN framework encompasses four essential modules: the encoder, 
decoder, generator, and discriminator. The comprehensive execution process of the model’s algorithm is methodi-
cally detailed in Table 4. The primary objective of training this algorithm is to generate a synthetic dataset specifi-
cally designed to augment the sparse samples present in dataset S = {(S(m)

data, S
(m)

label)}
M
m=1. 

The encoder and decoder within the model are utilized to establish an invertible mapping between the high-
dimensional Hdata and low-dimensional Edata representations of the ECG signal H ⇔ E . This configuration 
enables the model to more effectively capture the signal’s characteristics Edata in a low-dimensional space. Addi-
tionally, it facilitates the decoding and recovery of Edata back to Hdata , allowing for the accurate reconstruction 
of the original ECG signal.

The generator in the CECG-GAN model initiates by sampling from Gaussian noise and learns the signal 
characteristics Edata of the original high-dimensional data Hdata within a low-dimensional space. Concurrently, 
the discriminator’s objective is to maximize its accuracy in identifying real data while minimizing its accuracy 
on the synthetic data generated by the generator. Through multiple iterations, the discriminator develops the 
capability to distinguish between real and synthetic data effectively. Simultaneously, the Generator refines its 
strategy, progressively producing results more closely resembling the actual data.

To address the slow training speed characteristic of existing models, all four modules in the CECG-GAN—
encoder, decoder, generator, and discriminator—are built using transformer architectures. This design enables 
parallel data output, a significant departure from the sequential output typical of traditional recurrent neural 
networks. As a result, the model achieves substantially faster processing speeds.

Initially, the data undergoes positional encoding to integrate positional information, which is essential for 
context-aware processing. Subsequently, local and global features are extracted through multi-scale convolution, 
effectively capturing different aspects of the data. To optimize computational efficiency while preserving key data 
characteristics, maximum pooling is employed. Furthermore, the integration of a multi-attention mechanism 
enhances the model’s capacity for comprehending and representing the input data, concentrating on both local 
and global features. Additionally, the incorporation of residual connectivity within the model ensures that global 
features are retained while learning specific local features, thereby maintaining a balance between detailed and 
overarching data characteristics.

In our approach, both the generator and discriminator integrate data labels Hlabel into the feature matrix, 
serving as conditional constraints for controlled generation of the target waveform. The retention of the dropout 
module not only prevents model overfitting but also facilitates increased diversity in the synthetic data Hdata . 
The inclusion of Hlabel significantly enhances the generator’s effectiveness and directs its generation process 

Figure 4.  ResNet-50 classification metric curves.
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towards optimal data fitting. Through numerous iterations, the Encoder and decoder modules progressively 
learn the reversible mapping Edata from high-dimensional to low-dimensional space. Meanwhile, the generator 
and discriminator gradually approach a Nash equilibrium state. Ultimately, the generator is capable of producing 
an ECG signal Sdata that closely resembles the original data Hdata.

The selection of synthetic ECG samples
The screening process of synthetic samples is shown in Fig. 6, the original dataset is filtered out the noise by 
wavelet transform, subsequently, the high dimensional data is mapped to the low dimensional space represen-
tation. After the model is trained, the synthetic data captured by the model is mapped to the high dimensional 
space and is given to the classification judgement model, if there is an improvement in the precision rate, recall 
rate, F1-score, etc. as compared to the original dataset, it is judged to be a valid sample and is saved.

Figure 5.  CECG-GAN-based strategy for addressing sparse anomaly in heart rate datasets. (a) General model 
diagram. (b) CECG-GAN specific model diagram.
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Ethics approval and consent to participate
This study utilizes two publicly available medical datasets: the MIT-BIH arrhythmia database and the China 
physiological signal challenge 2020 (CPSC 2020) dataset.

The MIT-BIH arrhythmia database was created through a collaboration between the Massachusetts Institute 
of Technology (MIT) and the Boston Beth Israel Hospital (BIH). It is recognized as the standard reference in 
the study of arrhythmias and electrocardiography (ECG). The database comprises ECG recordings from 47 
individuals, thoroughly annotated and made publicly available for academic and research purposes. The creation 
and use of the MIT-BIH database complied with the ethical standards of the time, with all participants being fully 
informed and consenting to the use of their data for scientific research prior to their involvement.

The China physiological signal challenge 2020 (CPSC 2020) dataset is provided by the organizing committee 
of the China physiological signal challenge, aimed at advancing research in the field of arrhythmia detection. 
This database contains a substantial number of ECG records from various individuals, standardized for academic 

Table 4.  CECG-GAN model implementation flow.

Algorithm: CECG-GAN

Input: ECG Training Set H = {(H[n]
data ,H

[n]
label)}

N
n=1 , the maximum number of iterations T

1. repeat
2. for n = 1 · · ·N do
3. Step1. Training Data H[n]

data to Develop Reversible Mapping Capability from High-Dimensional to Low-Dimensional Space
4. Step2. Training the Generator to Minimize Discrepancies Relative to the Encoder
5. Step3. Training generator and discriminator to improve generation effectiveness
6. Step4. Combining conditional constraints to generate scarce datasets S = {(S(m)

data , S
(m)

label)}
M
m=1

7. PRD ←
√

∑

N
n=1(H

[n]
data−S

[n]
data)

2

∑N
n=1(H

[n]
data)

2

8. FD ← min
n=1,...N

{max(H
[n]
data , S

[n]
data)}

9. RMSE ←
√

1
N

∑

N
n=1(H

[n]
data − S

[n]
data)

2

10. MAE ← 1
N

∑

N
n=1|H

[n]
data − S

[n]
data|

11. t = t + 1
12. until t = T break
Output: Synthetic dataset S = {(S(m)

data , S
(m)

label)}
M
m=1

Figure 6.  The screening process for synthetic samples.
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research purposes. The collection, organization, and dissemination of this database adhered to the relevant 
ethical guidelines and procedures, with all participants being informed and consenting to the use of their data 
for scientific purposes prior to data collection.

In our study, we strictly abide by the usage regulations set by the providers of these datasets, ensuring that 
the data is used solely for non-commercial scientific research. Moreover, we respect the confidentiality and 
anonymity of all data, ensuring that no personally identifiable information is disclosed in the course of our 
research.

Results and discussion
Experimental environment and parameter settings
The computer system is Windows 10.The software conditions include python3.7 and pytorch1.13 as the 
experimental framework, and the hardware conditions include Intel(R) Core (TM) i9-10920X CPU@3.50 GHz, 
equipped with 128 G of operating memory, NVIDIA Geforce RTX 3090 GPU.

In the training process, each network of the model adopts the transformer structure, using the multi-head 
attention mechanism in conjunction with the feed-forward network, fusing the residual connection network, 
so that the data combines the global information with the local information and output in parallel, in order to 
increase the depth of the model at the same time do not lose the data information, take the LayerNorm layer to 
normalise low-dimensional data, the specific model parameter table is shown in Table 5.

Comparison of experimental results with comparable models
In the training process, CECG-GAN adopts the strategy of alternately training the generator and the 
discriminator, in order to ensure the dynamic balance between the generator and the discriminator, in each 
iteration, the number of times the generator and the discriminator are trained in relation to each other is 2:1, 
and by splicing the inputs of the generator and the discriminator with the conditional vectors Hlabel , the model 
is capable of generating the corresponding types of waveform curves under the given conditional constraints. 
The Adam optimiser is also chosen to optimise the model parameters and after several rounds of iterations, the 
model will converge and reach a stable region. Theoretically, at this point the generator of the model will have 
the ability to generate a distribution similar to the real data and map it to a higher dimensional space using the 
decoder, and the discriminator will have difficulty in distinguishing between the real data and the synthetic data.

As shown in Fig. 7, the model gradually reaches stability after 100 epochs, at which point the network model 
structure achieves relatively excellent training results. In principle, at this time, the generator generated by the 
“fake” samples are no longer quickly identified, the samples have a similar distribution to the real samples, at 
this time to save the model network parameters, to facilitate the subsequent call at any time and generate the 
distribution of imbalance of the data, so as to effectively expand the dataset, so that the network model has the 
ability to ensure the authenticity of the samples and the expansion of the efficiency. Meanwhile, in order to verify 
the feasibility and validity of our proposed model, the experiment adopts the K-fold validation method, where 

Table 5.  List of model specific parameters.

Model Layer Kernel/head Input size Output size Model Layer Kernel/head Input size Output size

Encoder

Conv1 1 128 × 100 × 1 128 × 100 × 64

Decoder

Conv1 1 128 × 100 × 512 128 × 100 × 512

Maxpool1 1 128 × 100 × 64 128 × 100 × 64 Maxpool1 1 128 × 100 × 512 128 × 100 × 512

Conv2 3 128 × 100 × 64 128 × 100 × 128 Conv2 3 128 × 100 × 512 128 × 100 × 512

Maxpool2 3 128 × 100 × 128 128 × 100 × 128 Maxpool2 3 128 × 100 × 512 128 × 100 × 512

Conv3 5 128 × 100 × 128 128 × 100 × 512 Conv3 5 128 × 100 × 512 128 × 100 × 512

Norm1 – 128 × 100 × 512 128 × 100 × 512 Norm1 – 128 × 100 × 512 128 × 100 × 512

Multi-Head Atten 8 128 × 100 × 512 128 × 100 × 512 Multi-Head Atten 8 128 × 100 × 512 128 × 100 × 512

Norm2 – 128 × 100 × 512 128 × 100 × 512 Norm2 – 128 × 100 × 512 128 × 100 × 512

Fc1 – 128 × 100 × 512 128 × 100 × 1024 Fc1 – 128 × 100 × 512 128 × 100 × 1024

Norm3 – 128 × 100 × 1024 128 × 100 × 1024 Norm3 – 128 × 100 × 1024 128 × 100 × 1024

Fc2 – 128 × 100 × 1024 128 × 100 × 512 Fc2 – 128 × 100 × 1024 128 × 100 × 1

Generator

Conv1 1 128 × 100 × 512 128 × 100 × 512

Discriminator

Conv1 1 128 × 100 × 1 128 × 100 × 64

Maxpool1 1 128 × 100 × 512 128 × 100 × 512 Maxpool1 1 128 × 100 × 64 128 × 100 × 64

Conv2 3 128 × 100 × 512 128 × 100 × 512 Conv2 3 128 × 100 × 64 128 × 100 × 128

Maxpool2 3 128 × 100 × 512 128 × 100 × 512 Maxpool2 3 128 × 100 × 128 128 × 100 × 128

Conv3 5 128 × 100 × 512 128 × 100 × 512 Conv3 5 128 × 100 × 128 128 × 100 × 512

Norm1 – 128 × 100 × 512 128 × 100 × 512 Norm1 – 128 × 100 × 512 128 × 100 × 512

Multi-Head Atten 8 128 × 100 × 512 128 × 100 × 512 Multi-Head Atten 8 128 × 100 × 512 128 × 100 × 512

Norm2 – 128 × 100 × 512 128 × 100 × 512 Norm2 – 128 × 100 × 512 128 × 100 × 512

Fc1 – 128 × 100 × 512 128 × 100 × 1024 Fc1 – 128 × 100 × 512 128 × 100 × 1024

Norm3 – 128 × 100 × 1024 128 × 100 × 1024 Norm3 – 128 × 100 × 1024 128 × 100 × 1024

Fc2 – 128 × 100 × 1024 128 × 100 × 512 Fc2 – 128 × 100 × 1024 128 × 5
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multiple rounds of testing and validation of the model are carried out using different data subsets, where the 
model is trained on each of the K data subsets and a comprehensive assessment of the model performance is 
obtained. As shown in Table 6, the model performs best in the nine-fold validation, achieving PRD of 21.138, FD 
of 0.695, and RMSE of 0.071, which are results that indicate that our model is able to show stable convergence 
during iterations, further confirming its validity.

Since the MIT-BIH dataset has a sampling rate of 360 Hz and a typical cardiac cycle typically lasts 0.6–1 s, 
setting a window size of 200–400 captures a complete heart rate waveform. As shown in Fig. 8, we explored 
the effect of different window sizes on the training results. The experimental design consists of two scenarios: 
either the window size is fixed with different sampling intervals, or the window size is different but the sampling 
intervals are the same. The results show that increasing the sampling interval leads to a decrease in performance 
metrics such as PRD, FD, RMSE and MAE when the window size is kept consistent. However, too high a sam-
pling interval may miss key features of heart rate. Therefore, we believe that a sample interval setting of 3 or 4 
provides the best results.

Figure 7.  Loss function curve of generator and discriminator.

Table 6.  Parameters of the K-fold validation model (for patient 100).

K-fold PRD FD RMSE

K = 5 27.598 0.838 0.096

K = 6 25.347 0.811 0.088

K = 7 25.618 0.904 0.091

K = 8 24.309 0.817 0.102

K = 9 21.138 0.695 0.071

Figure 8.  Metrics results for different length windows.
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At the same time, we visualised the “faked” samples, as shown in Fig. 9, taking into account the effect of 
factors such as resting heart rate between patients. In the experiment, it was found that too many patients par-
ticipated in the training will lead to too poor results, and the single patient dataset is not satisfied to contain all 
the scarce samples, so this result was jointly trained by five patients to generate examples containing all kinds 
of forged samples, and at the same time, they are compared with the real data, and it can be intuitively seen that 
synthetic data and real data visually present a similar signal distribution, and therefore it verifies the validity of 
our proposed model in the perspective of heart rate generation.

At the same time, we compared the model effect with the same kind of model, as shown in Fig. 10. We used 
a combination of multi-scale convolutional kernels to remove a lot of jitter from the generation effect, and com-
pared to the SimGAN model, which synthesises signals with considerable noise, our synthesised signals have 
very little noise and higher synthesis quality.

As shown in Table 7, we performed single-patient testing on all patients in the MIT-BIH dataset, with most 
of them performing well, while at the same time, due to the superimposed effects of physiological differences 
between patients and the type of disease, there were also many patients who did not perform well, with an aver-
age PRD of 55.048, FD of 1.139, RMSE of 0.232, and MAE of 0.166.

Further, we compare and analyse the model with the previous approach with many benchmark models, as 
shown in Table 8, our model is far better than other models in PRD, RMSE, and MAE metrics, which again 
verifies the feasibility of our proposed model and demonstrates the degree of superior performance of our model.

Figure 9.  Visualisation of the results of the MIT-BIH “faked” ECG signal samples (in patients 100, 105, 109, 
124 combined training).

Figure 10.  Comparison of the effect of CECG-GAN and SimGAN in synthesising lead ECG signals (compared 
with patient 100).
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Comparative experiment of MIT‑BIH dataset expansion effect analysis
In this study, to assess the performance improvements of imbalanced datasets before and after data augmenta-
tion, we have chosen the F1-Score as our primary evaluation metric. The F1-Score, being the harmonic mean 
of precision and recall, serves as a comprehensive indicator that can balance the model’s ability to identify and 
cover minority class samples. This is particularly applicable to the context of imbalanced datasets, as using 
either precision or recall alone may lead to biased evaluation results. For instance, a high precision rate might 
overlook the model’s capability to recognize minority classes, whereas a high recall rate could ignore the false 
positives generated by the model. Therefore, by balancing these two metrics, the F1-Score provides us with a 
more thorough and fair means to evaluate the effect of data augmentation on enhancing the performance of 
processing imbalanced datasets. In the comparative analysis before and after data augmentation, utilizing the 
F1-Score allows us to more precisely identify and validate the contribution of data augmentation techniques to 

Table 7.  MIT-BIH dataset single patient experiments. Significant values are given in bold.

Patient id PRD FD RMSE MAE Patient id PRD FD RMSE MAE

100 20.938 0.572 0.077 0.059 202 49.455 1.219 0.165 0.125

101 42.739 0.691 0.16 0.124 203 119.831 1.362 0.435 0.329

103 30.728 1.338 0.116 0.142 205 31.498 1.031 0.11 0.109

105 64.104 0.949 0.182 0.123 208 100.531 1.419 0.45 0.372

106 56.183 1.528 0.211 0.203 210 62.536 0.906 0.162 0.13

107 48.712 1.061 0.181 0.141 212 81.061 0.855 0.19 0.171

108 87.942 0.836 0.237 0.178 213 73.774 1.778 0.345 0.226

109 31.194 0.594 0.167 0.116 214 54.817 0.89 0.217 0.147

111 59.451 0.737 0.148 0.101 215 72.422 0.907 0.205 0.123

112 14.183 0.542 0.115 0.092 217 66.492 1.509 0.541 0.401

113 62.017 1.357 0.262 0.124 219 45.519 2.095 0.362 0.212

114 50.356 1.271 0.192 0.125 220 18.887 1.156 0.115 0.136

115 52.908 1.341 0.295 0.151 221 59.768 0.825 0.191 0.134

116 37.726 2.516 0.431 0.274 222 71.066 0.512 0.133 0.103

117 22.429 1.009 0.185 0.128 223 33.821 1.647 0.181 0.161

119 30.779 1.661 0.32 0.176 228 124.582 0.76 0.442 0.27

121 36.419 0.741 0.298 0.225 230 58.559 1.614 0.211 0.188

122 13.799 0.853 0.126 0.087 231 32.088 0.665 0.104 0.094

123 13.427 0.877 0.108 0.064 232 61.878 0.625 0.131 0.165

124 31.361 1.871 0.38 0.183 233 129.516 1.617 0.493 0.333

200 85.26 1.335 0.347 0.174 234 56.235 1.163 0.185 0.155

201 70.093 0.744 0.102 0.098 Avg 55.048 1.139 0.232 0.166

Table 8.  Comparison of metric validation of different heart rate generation models. Significant values are 
given in bold.

Model BILSTM-CNN GAN RNN-AE GAN LSTM-AE GAN RNN-VAE GAN LSTM-VAE GAN

PRD 66.408 121.877 148.650 146.566 145.978

FD 0.756 0.969 0.996 0.982 0.975

RMSE 0.276 0.506 0.618 0.609 0.607

MAE 0.501 0.795 0.771 0.794 0.714

Model BiLSTM-GRU BiLSTM-LSTM BiLSTM-MLP BiLSTM-CNN GAN BiGridLSTM-CNN

PRD 74.047 84.795 147.732 57.168 66.211

FD 0.853 0.901 0.989 0.817 0.790

RMSE 0.308 0.352 0.614 0.231 0.251

MAE 0.597 0.668 0.751 0.500 0.366

Model TimeGAN TTS-GAN Ours

PRD 66.496 61.524 55.048

FD 1.370 0.991 1.139

RMSE 0.241 0.240 0.232

MAE 0.279 0.268 0.166
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improving the overall performance of the model, especially in terms of enhancing the model’s ability to recognize 
samples from minority classes.

The MIT-BIH dataset contains four types of abnormal heart rates, namely, premature atrial beat, premature 
ventricular beat, left bundle branch block, and right bundle branch block, and after utilising our proposed 
model, the effect of the MIT-BIH dataset expansion is shown in Table 9 and Fig. 11. It is intuitively clear from 
the enlargement rates in the table that the more severe the unbalanced distribution in the original dataset, the 
higher the enlargement rate, which side-steps the necessity of our proposed modelling strategy.

The revised paragraph effectively communicates the key findings as presented in Table 10 and Fig. 12. It high-
lights the substantial improvement in judgment accuracy and other metrics for scarce data within the expanded 
dataset, emphasizing that all category metrics exceed 98%. The paragraph also transparently addresses the trade-
off involved in this enhancement, specifically the slight decrease in metrics for normal heart rate judgment. The 
conclusion that this minor reduction is considered acceptable against the backdrop of significant improvements 
in other areas is well articulated, maintaining a balanced perspective on the outcomes of the dataset expansion.

F1 = 2×
Pr ecision× Recall

Pr ecision+ Recall

Table 9.  Effect of MIT-BIH dataset expansion.

Label Before After Augmentation ratio (%)

Premature atrial beat 1950 68024 3488.41

Premature ventricular beat 6974 70726 1014.13

Left bundle branch block 6578 70180 1066.88

Right bundle branch block 4967 70354 1416.42

Figure 11.  Scale analysis plot of the expanded dataset.
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To further validate the generalizability of the CECG-GAN model, additional experiments were conducted 
using the CSPC2020 dataset. This dataset encompasses three heart rate types: normal beat (N), premature ven-
tricular beat (V), and supraventricular premature beats (S). Figure 13 highlights the dataset’s initial unbalanced 
distribution and the subsequent balancing effect achieved through the application of the CECG-GAN model. 
Comprising data from ten patients, each with approximately 24 h of recorded data, the CSPC2020 dataset is also 
recognized as a significant resource for cardiac arrhythmia research.

The assessment of our model’s classification capabilities, both before and after its expansion, was conducted 
using a convolutional neural network. Table 11 details this comparative analysis, examining the change in met-
rics resulting from the expansion. Furthermore, an individual case study on the CSPC2020 dataset was carried 
out, with Fig. 14 showcasing the confusion matrices corresponding to the pre- and post-expansion stages. This 
approach further confirms the CECG-GAN model’s robustness and its wide applicability.

Simultaneously, we visualized the waveforms generated by the CECG-GAN model, which was trained on 
the CSPC2020 dataset, as depicted in Fig. 15. This figure presents the training outcomes for three distinct types 
of waveforms included in the dataset. The distributions produced by the model closely resemble those of the 
original dataset, thereby further confirming the generalizability and effectiveness of the CECG-GAN model.

In this study, two datasets were analyzed to identify critical issues. Firstly, the model’s primary objective is to 
enhance classification algorithm indices, necessitating the resolution of dataset imbalance. Current dataset expan-
sion methods, predominantly using generative adversarial networks, offer the benefit of diversifying datasets by 
integrating noise with the model, while also safeguarding patient privacy. However, these models primarily focus 
on waveform generation, and the datasets employed (such as MIT-BIH and CSPC2020) typically exhibit signifi-
cant category imbalances (with minimum category proportions at 2% and 1.74%, respectively). This leads to an 
imbalance in the samples synthesized by the model. The “synthetic fake samples” produced are overwhelmingly 

Table 10.  Comparison of multi-classification results before and after the use of CECG-GAN heart rate 
generation model. Significant values are given in bold.

Serial number Label Precision Ours-precision Recall Ours-recall

1 Normal Beat 99.3120 99.1092 99.4103 98.5582

2 Premature atrial beat 85.9823 97.9610 84.6154 99.0237

3 Premature ventricular beat 94.1332 98.9481 96.8598 98.7442

4 Left bundle branch block 95.9455 99.0396 95.3329 98.4156

5 Right bundle branch block 96.7275 98.5488 92.8327 98.9171

6 Avg 94.4201 98.7213 93.8102 98.7318

Serial Number Label F1 score Ours-F1 score Ori count Expanded count

1 Normal Beat 99.3611 98.8329 71,732 71,732

2 Premature atrial beat 85.2934 98.4965 1950 68,024

3 Premature ventricular beat 95.4770 98.8460 6974 70,726

4 Left bundle branch block 95.6382 98.7266 6578 70,180

5 Right bundle branch block 94.7401 98.7326 4967 70,354

6 Avg 94.1020 98.7255

Figure 12.  Confusion matrix analysis for the classification of the expanded dataset.
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representative of normal heart rates, further aggravating the dataset’s imbalance issue. Additionally, existing 
models are largely based on recurrent neural networks, which are not optimal for long sequence tasks, resulting 
in prolonged training durations and high noise levels in the “synthetic fake samples”.

To address these issues, our proposed CECG-GAN model achieves parallel output based on the transformer 
architecture, which outputs all time steps at once with a short elapsed time, and also maps the data to the latent 
space learning through the invertible mapping technique, which effectively reduces the model noise and solves 
the problem of waveform jitter. In addition, we use conditional constraints to make the model controllably 
generate the specified type of heart rate, which successfully accomplishes the purpose of improving the index 
of the classification algorithm.

During our analysis, we encountered a significant challenge due to individual differences in baseline heart 
rates and disease conditions. A large training set hinders the model’s convergence, whereas a smaller set may not 
adequately represent all fundamental disease cases in the dataset. To mitigate this, we opted for a strategy where 
scarce heart rate data is generated by combining records from three to four individuals. This approach ensures 
the inclusion of all essential disease cases in the training set, thus enabling the model to accurately reflect the 

Figure 13.  Comparison of CSPC2020 dataset analysis and expansion effect. (a) Distribution of the original 
CSPC2020 dataset; (b) effect of expanding the dataset using the CECG-GAN model.

Table 11.  Comparison of multiclassification results before and after expansion of the CSPC2020 dataset with 
accompanying single-patient experiments. Significant values are given in bold.

Serial number Label Precision Ours Recall Ours F1 score Ours Ori count
Expanded 
count

1 Normal beat 0.9939 0.9810 0.9633 0.9836 0.9784 0.9823 945,187 945,187

2 Premature ventricular beat 0.6324 0.9854 0.9405 0.9794 0.7563 0.9824 42,075 942,075

3 Supraventricular premature beats 0.3943 0.9809 0.5880 0.9842 0.4720 0.9825 17,535 947,535

ID PRD FD RMSE MAE ID PRD FD RMSE MAE

1 55.407 0.841 0.09 0.061 6 48.712 0.709 0.155 0.113

2 32.114 0.54 0.074 0.058 7 98.335 1.054 0.224 0.099

3 31.877 0.498 0.116 0.042 8 27.994 0.688 0.149 0.088

4 81.203 0.904 0.165 0.117 9 74.109 0.507 0.114 0.067

5 48.227 0.661 0.167 0.085 10 14.183 0.305 0.055 0.049
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heart rates present in the dataset. However, it’s crucial to note that both datasets used in our study include only 
five main diseases. Consequently, the model’s performance in handling more complex disease scenarios has not 
been determined, presenting a potential limitation in its broader applicability.

Conclusions
In conclusion, our study addresses the challenges of highly unbalanced datasets and prolonged computation 
times in heart disease research. We introduce a generative adversarial network algorithm that integrates low-
dimensional space representation with a Transformer architecture. This innovation enables parallel output during 
model training, significantly reducing runtime. The model effectively synthesizes ECG data that closely mirrors 
the distribution of original ECG data. Furthermore, the implementation of conditional constraints allows for the 
generation of specific waveforms as required. In metric evaluations, our model surpasses existing algorithms in 
performance, particularly in mitigating the issue of jittery heart rate waveforms. The overall experimental results 
affirm the CECG-GAN’s viability and effectiveness in expanding heart rate datasets.

Figure 14.  Comparison of confusion matrix before and after CSPC2020 expanded dataset, (a) confusion matrix 
before classification, (b) confusion matrix after dataset expansion.

Figure 15.  Visualization of ‘synthetic’ ECG signal samples with patient 04 as an example.
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Data availability
The MIT-BIH and CSPC2020 datasets mentioned in this paper are both public datasets. They can be down-
loaded from the following addresses: https:// www. physi onet. org/ conte nt/ mitdb/1. 0.0/ and http:// 2020. icbeb. 
org/ CSPC2 020.
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