Table 3 Performance measurements of developed ensemble models.
Model | Dataset | SSE | MAE | MSE | RMSE | Error | Accuracy | R2 |
---|---|---|---|---|---|---|---|---|
– | kN/m2 | (kN/m2)2 | kN/m2 | % | % | – | ||
GB | Training | 4.23 | 0.12 | 0.02 | 0.15 | 0.06 | 0.94 | 0.98 |
Validation | 0.68 | 0.09 | 0.01 | 0.12 | 0.05 | 0.95 | 0.99 | |
CN2 | Training | 11.41 | 0.13 | 0.06 | 0.25 | 0.11 | 0.89 | 0.94 |
Validation | 0.68 | 0.09 | 0.01 | 0.12 | 0.05 | 0.95 | 0.99 | |
NB | Training | 771.86 | 1.60 | 4.06 | 2.02 | 0.87 | 0.13 | 0.17 |
Validation | 186.07 | 1.51 | 3.72 | 1.93 | 0.86 | 0.14 | 0.41 | |
SVM | Training | 13.62 | 0.14 | 0.07 | 0.27 | 0.12 | 0.88 | 0.94 |
Validation | 1.68 | 0.11 | 0.03 | 0.18 | 0.06 | 0.94 | 0.97 | |
SGD | Training | 123.27 | 0.59 | 0.65 | 0.81 | 0.35 | 0.65 | 0.35 |
Validation | 26.68 | 0.57 | 0.03 | 0.73 | 0.33 | 0.67 | 0.51 | |
KNN | Training | 3.41 | 0.11 | 0.02 | 0.13 | 0.06 | 0.94 | 0.99 |
Validation | 0.68 | 0.09 | 0.01 | 0.12 | 0.05 | 0.95 | 0.99 | |
Tree | Training | 8.96 | 0.13 | 0.05 | 0.22 | 0.09 | 0.91 | 0.95 |
Validation | 0.68 | 0.09 | 0.01 | 0.12 | 0.05 | 0.95 | 0.99 | |
RF | Training | 43.54 | 0.21 | 0.23 | 0.48 | 0.21 | 0.79 | 0.78 |
Validation | 4.56 | 0.15 | 0.09 | 0.30 | 0.13 | 0.87 | 0.93 |