Table 3 Performance measurements of developed ensemble models.

From: Estimating the strength of soil stabilized with cement and lime at optimal compaction using ensemble-based multiple machine learning

Model

Dataset

SSE

MAE

MSE

RMSE

Error

Accuracy

R2

–

kN/m2

(kN/m2)2

kN/m2

%

%

–

GB

Training

4.23

0.12

0.02

0.15

0.06

0.94

0.98

Validation

0.68

0.09

0.01

0.12

0.05

0.95

0.99

CN2

Training

11.41

0.13

0.06

0.25

0.11

0.89

0.94

Validation

0.68

0.09

0.01

0.12

0.05

0.95

0.99

NB

Training

771.86

1.60

4.06

2.02

0.87

0.13

0.17

Validation

186.07

1.51

3.72

1.93

0.86

0.14

0.41

SVM

Training

13.62

0.14

0.07

0.27

0.12

0.88

0.94

Validation

1.68

0.11

0.03

0.18

0.06

0.94

0.97

SGD

Training

123.27

0.59

0.65

0.81

0.35

0.65

0.35

Validation

26.68

0.57

0.03

0.73

0.33

0.67

0.51

KNN

Training

3.41

0.11

0.02

0.13

0.06

0.94

0.99

Validation

0.68

0.09

0.01

0.12

0.05

0.95

0.99

Tree

Training

8.96

0.13

0.05

0.22

0.09

0.91

0.95

Validation

0.68

0.09

0.01

0.12

0.05

0.95

0.99

RF

Training

43.54

0.21

0.23

0.48

0.21

0.79

0.78

Validation

4.56

0.15

0.09

0.30

0.13

0.87

0.93