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Detection and mitigation of DDoS 
attacks based on multi‑dimensional 
characteristics in SDN
Kun Wang 1,2, Yu Fu 1*, Xueyuan Duan 3,4 & Taotao Liu 1

Due to the large computational overhead, underutilization of features, and high bandwidth 
consumption in traditional SDN environments for DDoS attack detection and mitigation methods, 
this paper proposes a two-stage detection and mitigation method for DDoS attacks in SDN based 
on multi-dimensional characteristics. Firstly, an analysis of the traffic statistics from the SDN switch 
ports is performed, which aids in conducting a coarse-grained detection of DDoS attacks within the 
network. Subsequently, a Multi-Dimensional Deep Convolutional Classifier (MDDCC) is constructed 
using wavelet decomposition and convolutional neural networks to extract multi-dimensional 
characteristics from the traffic data passing through suspicious switches. Based on these extracted 
multi-dimensional characteristics, a simple classifier can be employed to accurately detect attack 
samples. Finally, by integrating graph theory with restrictive strategies, the source of attacks in SDN 
networks can be effectively traced and isolated. The experimental results indicate that the proposed 
method, which utilizes a minimal amount of statistical information, can quickly and accurately detect 
attacks within the SDN network. It demonstrates superior accuracy and generalization capabilities 
compared to traditional detection methods, especially when tested on both simulated and public 
datasets. Furthermore, by isolating the affected nodes, the method effectively mitigates the impact 
of the attacks, ensuring the normal transmission of legitimate traffic during network attacks. This 
approach not only enhances the detection capabilities but also provides a robust mechanism for 
containing the spread of cyber threats, thereby safeguarding the integrity and performance of the 
network.
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Software Defined Network (SDN), by decoupling the network’s logical control and data forwarding functions, 
enables the centralized and flexible configuration of network forwarding rules, allowing the network to evolve 
independently of hardware1. With its open interface model, programmable forwarding policies, and scal-
able network size, it is gradually becoming a popular network architecture in cloud computing and big data 
environments2.

In fact, at the beginning of SDN design, it mainly focused on how to schedule and allocate network resources, 
so that people could realize automatic control of network services through software, but there were not many 
considerations about its security. Taking the mainstream OpenFlow protocol as an example, when a new flow 
(one that has no matching rules in the switch flow table) arrives at the switch, the switch will send a Packet-in 
packet to the upper controller to ask about the processing method of the flow. The controller receives the request 
message, analyzes the forwarding request, calculates the forwarding path, and sends the flow processing strategy 
to the switch it is connected to. The switch updates its flow table according to the received policy information and 
then processes all subsequent actions according to the rules in the flow table without consulting the controller 
again. This open network architecture can dynamically allocate network resources and improve the efficiency 
of network link utilization. However, the openness of SDN also makes it more susceptible to cyber-attacks. For 
instance, flood attacks launched by malicious actors can lead to the exhaustion of the controller’s computational 
resources, congestion of shared links, and overflow of the switch’s buffer area. Additionally, attackers could exploit 
the open API interfaces to steal or tamper with non-public data within the system, resulting in the leakage or 
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loss of critical system information. Among various attacks targeting SDN, Distributed Denial of Service (DDoS) 
attacks are a common, easily organized, and highly impactful type of cyber attack. Attackers typically use forged 
IP addresses or control a large number of zombie hosts to continuously send attack packets from any termi-
nal connected to the forwarding device, causing the switch or controller to become overloaded and unable to 
respond to normal network service requests promptly. This can lead to a degradation or even paralysis of the 
SDN network’s service quality3. Therefore, the detection of DDoS attacks and the mitigation of their effects are 
gradually becoming a hot issue in the field of SDN application research.

DDoS attack detection in an SDN environment refers to the use of certain technical means to inspect and ana-
lyze traffic data within the SDN to uncover potential attack behaviors within the network. Traditional detection 
methods include: Statistical-based methods4, Information theory-based methods5, Clustering-based methods6, 
Machine learning-based methods7–9. However, these methods generally face several issues:

•	 Redundancy in data features, which complicates the analysis process.
•	 High computational overhead, as the models require significant processing power and time to analyze data.
•	 Insufficient extraction of feature information, leading to suboptimal detection accuracy.
•	 The need for improved accuracy in detection methods.

Attack mitigation primarily involves using certain means or strategies to reduce the impact and damage of 
DDoS attacks on SDN networks. There are typically two methods of implementation: One is to reduce the entry 
of attack traffic into the network, mitigating the shock effect of DDoS attacks on the network. The other is to 
divert the traffic from the network devices under attack to devices with lighter loads, ensuring the overall service 
quality of the SDN does not significantly deteriorate through load balancing. However, neither of these methods 
can eliminate the impact of DDoS attacks on SDN networks.

Deep learning can leverage neural networks to extract high-order features from unstructured data10, enabling 
an end-to-end working model from raw data input to result in output. It has a wide range of applications in fields 
such as natural language processing, medical image analysis, and financial data forecasting.

In response to the issues associated with traditional DDoS attack detection methods in SDN, we propose a 
two-stage attack detection and mitigation method based on deep learning by analyzing the organization form 
and traffic characteristics of DDoS attacks in SDN. In the attack detection phase, we first use the changes in 
statistical information from switch ports to make a preliminary judgment on the location of the attack source. 
Then, we conduct feature extraction based on the traffic data output from the suspicious switches, and further 
extract feature information in the “time, frequency, and spatial” domains of the input feature data using wavelet 
decomposition and convolutional neural network technology to classify the feature data with a classification 
function. In the mitigation phase, we utilize graph theory and dynamic deletion strategies to trace and isolate 
the attack source to mitigate the further adverse impact of the attack on the SDN.

Contributions
The main contributions of our work are:

•	 A two-stage attack detection mechanism was designed, which achieves a preliminary detection of attack 
behaviors in the network by collecting statistical feature information from switches without adding extra 
blocks; further detection of traffic features from suspicious switches is conducted to achieve fine-grained 
detection of attack traffic.

•	 A multi-scale anomaly detection module was designed, utilizing wavelet transform and convolutional neural 
networks to extract multi-dimensional feature information from traffic data, and using a simple classifier to 
complete the identification and detection of anomalous traffic.

•	 Utilizing graph theory knowledge and restriction-based mitigation strategies, trace and isolate the attack 
source host, thereby preventing new attack traffic from entering the network, mitigating the impact of net-
work attacks on SDN, and ensuring the normal operation of the network.

The rest of this paper is organized as follows. “Related work” section introduces the main organizational 
forms of DDoS attacks targeting SDN and provides a review of current research on DDoS attack detection and 
mitigation in SDN; “Deep learning-based attack detection and mitigation” section provides a detailed introduc-
tion to the attack detection and mitigation method based on deep learning; “Experimental results and analysis” 
section conducts detection experiments and analysis on the proposed method; Finally, “Conclusion” section 
concludes the paper.

Related work
The SDN architecture consists of three main components: the application plane, the control plane, and the for-
warding plane, as shown in Fig. 1. The application plane primarily serves users and typically includes network 
services and applications such as traffic control, load balancing, and intrusion detection. The control plane, 
which is composed of controllers, is responsible for establishing forwarding rules and managing the forward-
ing devices. It connects to the application plane via a northbound interface and responds to the application 
plane’s requests. The forwarding plane, composed of network devices such as switches and routers, connects to 
the control plane via a southbound interface and executes the forwarding rules defined by the control plane. It 
also regularly reports network status information back to the control plane. An SDN network can have a single 
controller or multiple controllers, which are interconnected through an east-west interface. A single controller 
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can manage multiple forwarding devices, and a single forwarding device can be controlled by multiple control-
lers. The open design of SDN offers broad application prospects, but it also faces the threat of emerging and 
ever-changing network attacks. Research teams from both domestic and international sources, in response to the 
characteristics of DDoS attacks on SDN, have proposed some targeted detection and mitigation methods. This 
section primarily combs and summarizes the common forms of DDoS attacks in current SDN environments, as 
well as some of the more popular methods for attack detection and mitigation. Open design of SDN offers broad 
application prospects, but it also faces the threat of emerging and ever-changing network attacks. Research teams 
from both domestic and international sources, in response to the characteristics of DDoS attacks on SDN, have 
proposed some targeted detection and mitigation methods. This section primarily combs and summarizes the 
common forms of DDoS attacks in current SDN environments, as well as some of the more popular methods 
for attack detection and mitigation.

Organizational forms of DDoS attacks in SDN
The OpenFlow protocol is currently the most widely used southbound interface technology in the field of SDN. 
Typically, an OpenFlow switch always sends the relevant information of any new flow it receives to the control-
ler for instructions on how to handle it. As a result, most DDoS attacks in SDN exploit vulnerabilities in the 
OpenFlow protocol11. Firstly, since the control plane is situated between the application plane and the forwarding 
plane, providing a programming interface to the upper layer and controlling hardware devices to the lower layer, 
if the control plane is compromised, the entire SDN can be affected. Therefore, the controller is the preferred 
target for DDoS attacks. Attackers often send a large number of new flows with random headers to the switch. 
Because these flows lack matching rules in the switch’s flow table, the switch continuously queries the controller 
for a handling method. This causes the controller’s query queue to grow continuously, resulting in the control-
ler remaining constantly busy and unable to provide services to legitimate users12. Secondly, SDN switches are 
also a primary target for network attacks. According to the protocol, the controller generates a matching rule 
for each new flow request sent by the switch, and this rule is appended as a flow table entry to the flow tables of 
all switches that the packets from the source host to the destination host pass through, facilitating subsequent 
forwarding operations. However, due to the limited storage space of the switch, an excess of forwarding rules 
can cause the switch’s flow table to overflow, preventing the switch from providing forwarding services for new 
legitimate flows13. Additionally, when a large number of packets flood the switch, exceeding its processing capac-
ity, "packet loss" can occur, which affects the normal transmission of traffic data in the network4. Finally, because 
OpenFlow lacks the security protection mechanisms of the traditional network transport layer, the controller 
and the switch can establish a connection merely through an address. Therefore, attackers can also paralyze the 
SDN by modifying rules to reconfigure downstream switches and carry out more granular malicious attacks14.

Detection of DDoS attacks in SDN
Current detection methods for DDoS attacks in SDN are largely adapted from those used in traditional networks, 
but they often perform unsatisfactorily when faced with the SDN environment. For instance, although statistical-
based detection methods do not require prior knowledge and can perform detection, they necessitate appropriate 
distribution assumptions for traffic data beforehand, which does not adapt well to the dynamic network model of 

Figure 1.   SDN architecture schematic diagram.
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SDN. Information theory-based methods, while not requiring distribution assumptions, demand a large num-
ber of stable and reliable samples to ensure detection accuracy, which contradicts the random dynamic nature 
of SDN; Clustering-based detection methods are straightforward to implement but time-consuming, failing 
to meet the SDN’s demand for timely detection. Therefore, against the backdrop of current big data, there is a 
growing interest in research on machine learning-based detection methods, such as Random Forests, Bayesian 
Networks, Support Vector Machines, and Multilayer Perceptrons.

Alduailij et al.15 utilized a combination of information gain and the Random Forest method to select the main 
features of traffic data, enhancing the accuracy of the model in detecting DoS attacks within an SDN environment 
in the cloud. Luo Zhiyong et al.16 proposed a Bayesian Attack Graph-based method for recognizing intrusion 
intentions in SDN. They first employed the PageRank algorithm to determine the criticality of devices, then com-
bined attributes such as vulnerability value, attack cost, benefit, and preference to construct an attack intention 
table, using a risk assessment model to predict intrusion paths. Santos et al.17 used the Mininet program to set up 
an SDN environment, simulated DDoS attacks with the Scapy tool and IP lists, and compared the effectiveness 
of four machine learning algorithms—Support Vector Machine, Decision Tree, Random Forest, and Multilayer 
Perceptron—in detecting DDoS attacks, concluding that the Decision Tree-based detection method was the 
most effective. However, when facing large-scale network traffic, the detection capabilities of machine learning-
based methods are not always satisfactory. Elsayed et al.18, through comparative analysis of several machine 
learning-based detection methods, found that the lack of labeled samples and weak feature correlation were the 
main reasons for the poor detection performance. They believe that deep learning, capable of reconstructing the 
unknown distribution of input data using multi-layer neural networks, has a good representational ability for 
large-scale network traffic. Therefore, an increasing number of scholars are beginning to focus on research into 
deep learning-based detection technologies.

Deep learning is a form of machine learning that supports neural network algorithms and is also a quintes-
sential representation learning technique. It has a strong capacity for representing raw data and has been exten-
sively applied in fields such as natural language processing, machine vision, and financial data analysis. There 
are also numerous practical applications in the realm of attack detection for SDN. ElSayed and colleagues19 have 
improved regularization methods for Convolutional Neural Networks (CNN), developing a novel SDN intrusion 
detection system that effectively mitigates the issue of overfitting that is common in deep learning models. Gadze 
and others20 have put forward an adversarial detection and defense approach for DDoS attacks within the SDN 
environment. This approach combines Generative Adversarial Networks, Deep Belief Networks, and Long Short 
Term Memory networks (LSTM) to effectively reduce the sensitivity of the detection model to adversarial attacks 
and to expedite the feature extraction process. Kachavimat et al.21 constructed a DDoS attack detection model 
that adapts to various deep learning architectures and conducted experiments on the InSDN22, the SDN-dataset, 
and DDoS attack data generated from the Mininet Ryu network. They concluded that the detection method based 
on Long Short-Term Memory (LSTM) outperforms Convolutional Neural Networks (CNN) and Multilayer 
Perceptrons in terms of overall effectiveness. Interestingly, in the same year, Lee et al.23, in their designed attack 
detection framework, compared the effectiveness of four deep learning detection models: Multilayer Percep-
trons, CNN, LSTM, and Stacked Autoencoders. They believe that the detection effect of Multilayer Perceptrons 
is the best. However, current deep learning-based attack detection methods in SDN mostly inherit the detection 
ideas and methods from traditional networks. There is redundancy in the selection of feature data, which brings 
additional costs to the detection computation. This is because some features used in the detection, such as the 
number and size of packets, can be directly obtained by the controller from the forwarding layer. Moreover, most 
current detection methods are based on a single architecture and do not fully exploit and utilize the higher-order 
information of feature data, leading to suboptimal detection performance.

Mitigation of DDoS attacks in SDN
After detecting a DDoS attack, how to eliminate or mitigate the impact of the attack on network service quality 
is another issue of concern for cybersecurity professionals. Overall, there are currently two main approaches to 
solving this issue: restricting the transmission capabilities of the attacking host and load balancing on network 
devices. Specifically, restricting the transmission capabilities of the attacking host does not mean completely 
discarding the data sent by the host, but rather assigning a higher forwarding priority to legitimate normal traffic 
and a lower forwarding priority to illegitimate traffic. This approach reduces the intensity and volume of DDoS 
attack traffic entering the SDN network, thereby ensuring that normal network services are not severely affected. 
However, this method cannot completely prevent attack traffic from entering the SDN network. Yungaicela et al.24 
proposed an attack mitigation scheme based on deep reinforcement learning, which prioritizes data flows accord-
ing to the controller’s response time to users. This allows legitimate data flows to receive high-quality routing 
and forwarding, while malicious data flows are directed to special forwarding paths or are discarded outright. 
However, this method may inadvertently affect legitimate traffic with longer durations. Cao et al.25, on the other 
hand, combined the white list with the dropping strategy, discarding traffic that falls outside the white list directly. 
This approach reduces the load on the southbound interface and CPU overhead, but it may also inadvertently 
injure unknown normal traffic.

Additionally, load balancing on network devices involves dynamically adjusting the task distribution between 
controllers and switches, migrating network tasks from heavily loaded devices to lightly loaded ones to mitigate 
the impact of DDoS attacks on SDN service quality26. Filali et al.27 utilized game theory concepts, transforming 
the controller and switch allocation problem into a many-to-one matching game problem. They dynamically 
assign switches to controllers, ensuring that each controller meets a specified minimum quota, thus achieving a 
balance in network load. Although load balancing methods can alleviate the impact of DDoS attacks by equalizing 
the load on controllers, these methods cannot prevent switches from continuing to be subjected to DDoS attacks.
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Deep learning‑based attack detection and mitigation
System overview
The system we designed for DDoS attack detection and mitigation in SDN based on deep learning belongs to the 
application layer services and can be deployed on devices within the application plane or on the server where 
the SDN controller resides. The system consists of a traffic information collection module, a two-stage attack 
detection module, and an attack source tracing and mitigation module, as shown in Fig. 2.

The system monitors the traffic data in the SDN in real time and performs a preliminary detection of network 
attacks based on the statistical information from the switch ports. It then utilizes wavelet decomposition and 
convolutional neural network technology for depth analysis of the traffic data from suspicious switches, enabling 
fine-grained detection of attack traffic. Finally, by employing graph theory and dynamic deletion strategies, the 
system tracks and restricts the source of the attack, preventing the attack traffic from entering the network, and 
thereby ensuring the normal operation of the SDN.

The purpose of the information collection module is to periodically collect relevant information on the 
traffic data passing through the switch ports, transform it into the required format, and then send it to the two-
stage detection module. The first stage of detection only requires extracting some rough count information of 
the data packets and flows passing through the switch. The second stage of detection, however, requires the use 
of specialized traffic analysis tools to extract traffic information that has been aggregated based on the five-tuple 
characteristics (source IP, source port number, destination IP, destination port number, protocol) of the flows.

The two-stage attack detection consists of attack detection based on switch statistics and attack detection 
based on multi-dimensional traffic features. In the first stage, which is the attack detection based on the statisti-
cal information of switch port traffic, the primary task is to perform a preliminary detection of DDoS attacks 
within the network segment controlled by the switch. We know that when a DDoS attack is launched, the switch 
connected to the attacking host will receive a large number of forwarding requests for new flows. Since there 
are no matching flow entries in the switch’s flow table, the switch will send a large number of PacketIn messages 
to the controller to obtain disposition methods for these new flows. Therefore, the ratio of the number of flows 
received by the switch to the number of forwarded packet messages within a unit of time will suddenly decrease 
compared to normal conditions, and the ratio of the number of normal forwarding flows to the number of 
received flows will also decrease. Additionally, under normal network conditions, the number of incoming and 
outgoing data packets is relatively balanced, with not much difference between them. However, when a switch is 
under a DDoS attack, a large volume of packets arrives at the switch in a short period and cannot be forwarded 

Figure 2.   Overall architecture of the attack detection and mitigation system.
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promptly, leading to temporary storage in the buffer. If the buffer space is exhausted, a "packet loss" phenomenon 
occurs28 at which point the network exhibits a significant discrepancy between the number of incoming and 
outgoing packets. When several traffic characteristic indexes exceed the critical value, it can be judged that there 
is an attack behavior in SDN, and at the same time, the rough location of the attack source can be completed.

The second stage is an attack detection based on multi-dimensional traffic characteristics, which is initiated 
when the first stage detects certain switches exhibiting attack behaviors. Initially, a traffic collection program 
captures all the traffic data passing through the suspicious switch. Then, data analysis tools are used to extract 
the characteristics of the traffic. Subsequently, wavelet transform is utilized to extract the time–frequency charac-
teristics of the traffic data at different scales, and a Convolutional Neural Network (CNN) is employed to extract 
the spatial characteristics of the data. Finally, a classifier is used to categorize these rich feature data, thereby 
achieving the detection of attack traffic.

The attack mitigation module is started after detecting the attack flow in the second stage. It locates the attack 
source according to the state information of the attack source host provided by the attack detection module, 
formulates the data packet filtering rules including IP address, port number, effective time, execution action, etc., 
and sends them to all switches under its control through the controller. The switch updates its flow table according 
to the new rules issued by the controller, deletes the attack flow entries in the flow table, and introduces all new 
flows without matching rules sent by the attack host to the default port for discarding within the set effective time, 
to achieve the goal of preventing the spread of network attacks. At the end of the set time, if no new restriction 
rule is received, the host is restored to send a new stream. In this process, the attack detection module continu-
ously monitors the network state and transmits the detected new attack information to the attack mitigation 
module in time, and the attack mitigation module continuously generates new packet filtering rules and sends 
them to the switch; The switch updates its flow table according to the new rules, and handles the traffic data in 
the network according to the new flow table, thus realizing the uninterrupted detection and protection of SDN.

Two‑stage attack detection
Two-stage attack detection is the basis of attack mitigation and the key to maintaining the safe operation of SDN. 
As the core content of this paper, before describing two-stage attack detection in detail, the symbols used in this 
section are explained, as listed in Table 1.

(1)	 Attack detection based on switch statistics

We periodically collect statistics at the switch’s ports on the number of network flows and data packets 
entering and exiting the switch, as well as the number of PacketIn messages forwarded by the switch to the con-
troller. Under normal circumstances, flows with corresponding matching rules in the switch’s flow table can be 
processed normally, while flows without matching rules need to inquire with the controller for handling meth-
ods. However, the number of such flows is generally not high. Therefore, there are NFI >  > NPi in SDN switches, 
and the ratio between them is a relatively large value. However, when a DDoS attack is launched, a large number 
of new flows will arrive at the switch to request forwarding operation in a short time. Because these flows are all 
new, and there is no corresponding matching rule in the switch flow table, each incoming new flow will gener-
ate a PacketIn message sent to the controller, so the switch will send a large number of PacketIn messages to the 
controller to ask how to deal with them. At this time, the ratio of the number of network flows flowing into the 
switch to the number of PacketIn forwarded from the switch to the controller will be much smaller than normal, 
and RPi can be expressed as follows:

In addition, even if there is a DDoS attack in the network, those normal flows with matching rules in the 
switch can still be forwarded correctly before the switch is completely blocked, and their proportion in all net-
work flows flowing into the switch is:

(1)RPi =
NFI

NPi

Table 1.   List of common symbols.

Symbol Meaning

NFI Number of network traffic flowing into the switch

NFO Number of network traffic flowing out of the switch

NPi Number of PacketIn packets forwarded from the switch to the controller

NPI number of packets into the switch

NPO Number of packets out of the switch

RPi
The ratio of the number of network traffic flowing into the switch to the number of PacketIn forwarded from the switch to the 
controller. (inflow-forwarding ratio)

RFI
The ratio of the number of network traffic out of the switch to the number of normal network flows flowing into the switch. 
(normal forwarding ratio)

�NP Difference in the number of input and output switch packets
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After the attack is launched, the RFI metric of the switch will experience a very noticeable decline.
Furthermore, when a DDoS attack occurs, a large number of data packets arrive at the switch in a short time 

and cannot be forwarded in time, so they can only be temporarily stored in the cache of the switch; However, 
the buffer space of the switch is limited, and once it is filled, a large number of packets will be lost, which will 
lead to the difference between the number of packets flowing into and out of the switch

Compared with the normal network situation, it has a significant increase.
To sum up, when both RPi and RFI of a switch are reduced to a certain threshold and �NP is increased to 

a certain extent, it can be preliminarily determined that there is DDoS attack in the network; And the switch is 
the transmission node of the attack flow in SDN, and the attack source must be on the link to which the switch 
is connected.

(2)	 Attack detection based on multi-dimensional traffic characteristics

The detection in this phase relies on the Multi-Dimensional Deep Convolution Classifier (MDDCC) to 
complete, which is initiated when an anomaly is detected in a certain switch during the first phase. Initially, the 
traffic capture program Wireshark is used to intercept all the traffic data passing through the suspicious switch. 
Subsequently, the CIC-FlowMeter analysis tool is utilized to extract the characteristics of the traffic. After the 
data is preprocessed, it is then sent to the MDDCC to achieve precise detection of the abnormal traffic. MDDCC 
is a traffic classification model that combines wavelet transform technology with deep learning. It is capable of 
using wavelet transform to extract the time–frequency characteristics of traffic data and using CNN to extract 
the spatial characteristics of the data. The model conducts a comprehensive analysis of the traffic data from 
three dimensions: "time, frequency, and space". Finally, the classification of the data type is completed by the 
SoftMax classification function, and its structure is shown in Fig. 3. Due to the adoption of parameter sharing, 
local perception, and pooling operations, the training parameters and training time of CNN are significantly 
reduced compared to traditional multi-layer perceptrons.

We know that the temporal correlations hidden within sequential data are closely related to frequency. Corre-
lations of information on larger time scales, such as the long-term trends inherent in the data, are typically found 
in the low-frequency range. In contrast, correlations of information on smaller time scales, such as the char-
acteristic information resulting from short-term disturbances or sudden random events, are usually located in 
the high-frequency range. To thoroughly explore the correlations within traffic sequences, we apply wavelet 
decomposition to the input sequence x = {x1,x2, . . . , xk} , which allows us to obtain its low-frequency component 
xl(i) at the ith level and its high-frequency component xh(i) . They are respectively as follows:

(2)RFI =
NFO

NFI

(3)�NP = |NPI − NPO|

(4)x
l
(i) =

{

xl1(i),x
l
2(i), . . . ,x

l
k(i)

}

(5)x
h
(i) =

{

xh1 (i),x
h
2 (i), . . . x

h
k (i)

}

Figure 3.   Attack detection process based on multi-dimensional traffic characteristics.
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Because we only use the decomposition sequence of the original sequence, we don’t need wavelet reconstruc-
tion, so we don’t need to adopt downsampling when we decompose again. After decomposition for n times, the 
n+ 1 subsequence with the same dimension as the original sequence can be finally obtained, and the sequence 
set can be expressed as follows:

Each subsequence is converted into a two-dimensional graphic format and input into n + 1 independent 
CNN for spatial feature extraction, and each subsequence is subjected to a series of convolution operations to 
obtain the results.

Here, xi represents the subsequence obtained after the ith level of wavelet decomposition, which is also the 
input to the ith CNN. zi is the output subsequence after the CNN transformation. ω and b represent the weights 
and biases, respectively, g(·) is the nonlinear activation function, and ⊗ denotes the convolution operation. We 
use the mean squared error as the loss function. Additionally, since traditional L1 and L2 regularization methods 
only focus on individual feature weight values without considering the intrinsic connections between feature 
values, we employ a regularization method based on the standard deviation constraint operator to prevent 
overfitting issues.

k represents the number of rows in the weight matrix, i denotes the ith row of the weight matrix, and n is the 
number of columns in the weight matrix, which is the size of the weight vector. The value of the weight matrix 
is controlled by � , so the loss function L can be expressed as follows:

Therefore, we minimize the loss function related to ω by standard deviation.
Finally, the output subsequences are linearly superimposed and expanded, then inputted into a fully con-

nected layer for computation. Subsequently, the SoftMax classification function is used to complete the clas-
sification of the input sample data.

Attack traceability mitigation module
Before mitigating the attack effect, the attack path discovery strategy based on graph theory and switch and its 
port identification is used to locate the entrance switch of the attack host accessing the SDN network according 
to the transmission path of the attack stream. The path of network traffic in SDN can be expressed as follows:

Among them, Ei,j represents the transmission path of the network flow, si , sj are the node switches on the 
transmission path of the network flow, and pi , pj are the port numbers of the switches, respectively. When the 
network attack traffic passes through the two switches si , sj the edge connecting si and sj is considered to be the 
attack path, and pi , pj are the interfaces through which the attack traffic enters and exits. By combining this with 
the controller’s grasp of the SDN’s global topology, the attack can ultimately be located at the edge switch and 
the access port through link tracing. It can be seen that this traceability method does not use information such 
as IP address and Mac address inside the packet, so even if the attacker uses forged address information, it can 
still be accurately traced to the interface port position.

After tracing the switch and port where the attacking host accesses the SDN, a restriction policy is imple-
mented for the host connected to the switch port, that is, within a certain time, any packet with no matching 
rules sent from the attacking port is discarded while prohibiting this switch from sending the PacketIn to the 
controller. By this method, the new flow request of the attacking source can be isolated, thus preventing the new 
attack flow from entering the network. The implementation process is shown in Algorithm 1.

(6)χ(n) =
{

xh(1), xh(2), . . . , xh(n), xl(n)
}

(7)zi = g(xi ⊗ ω + b) i ∈ [0, n]
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Algorithm 1. Algorithm of DDoS attack mitigation
After the forbidden time exceeds the set time, the forwarding function of the switch is restored. Addition-

ally, although the attack traffic is intercepted, the previous flow table entries are still stored in the switch flow 
table, which will affect the normal forwarding process of the network and always consume the resources of the 
controller and the switch. Therefore, for the flow detected as an attack, the controller uses its host tracking func-
tion to obtain the relevant information of the attacking host, such as MAC address, IP address, TUP or UDP 
port, switch port, etc. At regular intervals, a dynamic deletion policy is generated and sent to the switch, and the 
switch deletes the relevant entries in the flow table entry. This method can effectively restrict the attack flow on 
the attack link without affecting the forwarding of other normal flows.

Experimental results and analysis
Experimental settings
The hardware configuration of the experimental platform is Intel Core i9-12900F, 128 GB RAM, and NVIDIA 
RTX3090. The detection system is written in Python language, adopts Pytorch1.8 deep learning framework and 
runs on the Ubuntu 16.04 LTS operating system. In addition, using the Mininet simulator and POX controller 
to build an SDN environment, the network topology is shown in Fig. 4.

Mininet simulates 4 switches and 4 hosts connected to each switch, which are connected to a POX controller 
to form a star-shaped network structure. The network delay is set to 2 ms, and the IP address information for 
the controller server and each host is shown in Table 2.

Host 1, Host 5, and Host 9 are hosts that launch DDoS attacks, and the attack program is Hping3 network 
tools. When attacking, several attacking hosts send a large number of TCP-SYN packets to the network with ran-
domly generated target IP addresses to simulate DDoS attacks. In addition, other hosts, as normal users, run the 
Distributed Internet Traffic Generator (D-ITG) program to generate background traffic. The data transmission 

Switch 1

Controller

Switch 3

Switch 2

Switch 4

Host 2

Host 3

Host 4

Host 5
(Attacker) Host 6 Host 7 Host 8

Host 9
(Attacker)

Host 10

Host 11

Host 12

Host 14 Host 15 Host 16

Host 1
(Attacker)

Host 13

Figure 4.   SDN network topology diagram.
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rate includes constant distribution, uniform distribution, exponential distribution, Poisson distribution, and 
gamma distribution, and the size of the data packets they generate all obey Poisson distribution.

Data details

1.	 Data characteristic selection

Processing raw data is an advantage of deep learning; however, this advantage requires strong high-perfor-
mance computing power for support, and it will also consume more computational time. To reduce computa-
tional pressure and shorten detection time, based on the research results of Krishnan et al.29, we use Wireshark 
to capture raw traffic data in .pcap format, and then select 48 features from over 80 features obtained from the 
CIC-FlowMeter analysis tool as the experimental data for model training and detection.

2.	 Data preprocessing

Usually, there may be issues such as missing feature values, format errors, and significant differences in units 
of measure in the traffic data, all of which can affect the effectiveness of detection. Therefore, before inputting 
into the attack detection model, it is necessary to perform certain preprocessing operations on the detection data, 
which mainly include data cleaning, feature value encoding, and data normalization. Data cleaning primarily 
eliminates data samples in the dataset that have missing feature values. If the sample missing rate is very high 
(greater than 80%) and of low importance, it is directly deleted; if the missing rate is not significant and the data 
is relatively important, the mean imputation method is used to repair the data, ensuring the completeness of the 
data samples. Feature value encoding mainly involves encoding non-numeric feature values into recognizable 
numerical values for the computer, with text adopting the one-hot encoding method. Numerical standardization 
is mainly conducted to eliminate the adverse impact of excessively large dimensional differences of data on the 
detection results, which involves scaling the data by a certain proportion. In this study, the Min–Max standardi-
zation method is employed. After standardization, all characteristic values are mapped within the interval [0,1], 
with the maximum characteristic value being 1 and the minimum feature value being 0.

Model parameters setting
The MDDCC proposed in the “Two-stage attack detection” section employs a design that integrates wavelet 
transform with convolutional neural networks (CNN). The wavelet basis function utilizes the Daubechies wavelet 
(DB), with a decomposition level of 3. The CNN consists of 3 convolutional layers, using 3× 3 convolutional 
kernels, followed by a 2× 2 max pooling layer after each convolutional layer. Dropout is utilized to prevent 
overfitting. The loss function is the mean-square error (MSE), and the model parameters are updated using the 
mini-batch gradient descent method and the backpropagation (BP) algorithm. The specific hyperparameter 
settings are as shown in Table 3.

Evaluation metrics
To evaluate the performance of the detection method against network attacks, we use five detection metrics as 
references to assess the performance of the detection method: Accuracy, Precision, Recall, F1 score, and False 
Positive Rate. Their calculation methods are as follows.

(12)Accuracy =
TP + TN

TP + FP + FN + TN

(13)Precision =
TP

TP + FP

Table 2.   Controller and host address information.

Name IP address Role

Controller 192.168.100.1 Traffic control

Host 1 192.168.10.1 Attacker

Host 2–4 192.168.10.2-4 Normal user

Host 5 192.168.20.1 Attacker

Host 6–8 192.168.20.2-4 Normal user

Host 9 192.168.30.1 Attacker

Host 10–12 192.168.30.2-4 Normal user

Host 13–16 192.168.40.1-4 Normal user
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Among them, the relationships between TP (True Positives), FN (False Negatives), FP (False Positives), and 
TN (True Negatives) can be represented by the confusion matrix in Table 4.

Experimental results and analysis
The experiment is divided into two phases: The first phase mainly verifies the performance of the attack detec-
tion method based on switch statistics, while the second phase primarily evaluates the detection performance 
of MDDCC on attack traffic.

Attack detection based on switch statistical information
In this attack detection experiment, host 1 is set as the attack host, and Hping3 is used to continuously send SYN 
pulses with the intensity of 20 Mb/s to switch 1, each pulse lasts for 1 s, and then it is silent for 5 s, that is, the 
period of the attack pulse is 6 s. Figure 5 is a schematic diagram of a pulsed DDoS attack.

(14)Recall =
TP

TP + FN

(15)F1 =
2× Precision× Recall

Precision+ Recall

(16)FPR =
FP

FP + TN

Table 3.   MDDCC superparameter.

Parameter name Parameter value

Wavelet basis function DB4

Wavelet decomposition level 3

CNN-convolution kernel 3× 3

CNN-activation function Relu

CNN-convolution layer output 32, 64, 32

CNN-dropout 0.2, 0.3, 0.2

Max-pooling 2× 2

Echo 100

Normalization L2

Learning rate 0.01

Table 4.   Matrix of the relationship between true value and predicted value.

Positive detection Negative detection

True positive TP FN

True negative FP TN

0 6 12 18

20

10

Figure 5.   Schematic diagram of pulse DDoS attack.
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Other hosts simulate normal users, each sending normal data packets according to the distribution pattern 
preset in the configuration strategy. The traffic information collection module continuously collects informa-
tion from each switch port with a period of 1 s and transforms it into the data pattern required for detection, 
inputting it into the anomaly detection module. The attack experiment lasts for 6 h, during which each switch 
collects 21,600 samples. Specifically, switch 1 has 18,000 normal samples and 3,600 attack samples; Switch 2, 
Switch 3, and Switch 4 all have normal samples only. Calculate the RFI , RPi , and �NP feature values for each 
switch, respectively. Since the network latency is minimal and can be disregarded, it can be determined that 
there is an attack behavior in the network when all feature values exceed their thresholds. Here, the threshold 
refers to the mean and standard deviation of the features RFI , RPi , and �NP calculated after sampling 10,000 
sets when only normal traffic exists in the network. Then, following the "three-sigma (3σ)" rule, the thresholds 
for RFI and RPi are set to the mean minus three times the standard deviation, while the threshold for �NP is set 
to the mean plus three times the standard deviation.

Figure 6 illustrates the attack detection situation for 4 switches. It can be observed that Switch 1 has a large 
number of abnormal samples, which allows us to determine that this switch is abnormal.

The detection method in this phase achieved an accuracy of 99.82%, a precision rate of 99.28%, a recall rate 
of 99.67%, an F1 score of 99.47%, and an FPR of only 0.14% for detecting abnormal samples in the abnormal 
switch. It can be said that the attack detection method based on switch statistics can accurately pinpoint the 
switch connected to the host initiating a DDoS attack in SDN. Additionally, the reason why normal samples are 
judged as abnormal for other switches during detection is that although the traffic data sent by normal hosts 
follows a certain distribution, there may still be a sudden change in communication traffic at a certain moment, 
leading the detection system to mistakenly believe that there is a network attack behavior in the network where 
the switch is located.

In terms of detection time, Table 5 counts the time consumption of detecting each attack sample, and it can 
be found that the detection time is mostly within 100 ms, that is to say, when an attacker launches a DDoS attack, 
the detection system can find the abnormal behavior of the network and locate the location of the problem switch 
within 0.1 s, which can provide support for the real-time security protection research of SDN in the future.

The detection method based on port statistics can quickly locate the switches through which the attack traffic 
passes. However, if protective measures are formulated solely based on such rough detection results, it could 
inadvertently harm other normal hosts connected to the switch and, in severe cases, may lead to partial network 
paralysis. Therefore, a more refined detection approach is necessary to provide accurate information about the 
source of the attack, which is essential for accurately and efficiently protecting the SDN network.

Figure 6.   Results of abnormal detection for each switch.

Table 5.   Detection time of attack samples.

Detection time consumed (ms) Occurrence frequency

< 80 23

80–84 159

84–88 692

88–92 468

92–96 945

96–100 641

100–104 421

104–108 135

108–112 55

> 112 49
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Attack detection based on multi‑dimensional traffic characteristics
In this phase of the experiment, Host 1, Host 5, and Host 9 are set as attackers, running the Hping3 attack pro-
gram to launch intermittent DDoS attacks on the SDN; other hosts continue to send normal TCP or UDP packets 
to the network according to the predetermined distribution pattern. Using the WireShark (v4.2) packet capturing 
tool, raw traffic data in .pcap format is obtained from the established SDN network experimental platform, and 
using the CIC-FlowMeter (v4.0) traffic analysis tool, the traffic data is aggregated and converted into .csv format 
feature data based on the five-tuple information of the flows. The converted dataset contains a total of 77,328 
traffic records, with 36,642 records for normal flows and 40,686 records for attack flows. From each record’s over 
80 features, a subset of 48 features is extracted to form the detection dataset. The training set and the test set are 
formed by randomly sampling from the normal flow samples and attack flow samples in a 7:3 ratio, respectively.

(a)	 Detection performance of MDDCC

Using the training set, we conduct supervised training on the MDDCC, stopping when the loss function 
no longer decreases significantly due to training, and then fixing the model parameters. To eliminate random 
errors during detection calculations, we use the trained model to perform 5 independent detections on the test 
set data, with the test set samples being randomly shuffled before each detection. We calculate the five metrics 
for each detection and take the average values and deviations of the detection metrics as the final results of the 
MDDCC’s detection of network attacks in SDN, as shown in Table 5.

Using the training set, we conduct supervised training on the MDDCC, stopping when the loss function no 
longer decreases significantly due to training, and then fix the model parameters. To eliminate random errors 
during detection calculations, we use the trained model to perform 5 independent detections on the test set data, 
with the test set samples being randomly shuffled before each detection. We calculate the five metrics for each 
detection and take the average values and deviations of the detection metrics as the final results of the MDDCC’s 
detection of network attacks in SDN, as shown in Table 6.

As can be seen from the table, the final detection accuracy of MDDCC is 99.65%, the Accuracy rate is 99.84%, 
the Recall rate of attack samples is 99.72%, and the F1 value is 99.78%. These indicators are above 99% in each 
test, and the deviation of each test result is very small, which shows that our MDDCC detection model based on 
multi-dimensional traffic characteristics can accurately and stably distinguish normal traffic and attack traffic 
in the SDN environment. In addition, the average false positive rate is only 0.66%, which is acceptable from the 
demand of current network system security protection tasks.

(b)	 Detection performance of MDDCC under different decomposition levels

In the previous experiment, MDDCC adopted a detection model with three-level wavelet decomposition. To 
explore the impact of wavelet decomposition on detection performance, the detection performance of MDDCC 
under different decomposition levels such as 0-level, 1-level, 2-level, 3-level, and 4-level wavelet decomposition 
was compared. The specific results are shown in Fig. 7.

It can be observed that as the decomposition level increases, the detection performance of MDDCC gradu-
ally improves. For instance, the precision metric of MDDCC at decomposition levels of 0, 1, 2, and 3, is 97.58%, 
97.88%, 98.68%, and 99.84% respectively, showing a progressive increase; the Accuracy, Recall, and F1 score also 
follow this trend, and the FPR gradually decreases. This is because the higher the levels of wavelet decomposi-
tion, the richer the information that the feature sequence can provide. MDDCC can then discover more subtle 
differences between samples from features of different granularity, which helps to enhance the model’s ability 
to identify attack samples. However, when the decomposition level is four, the precision metric of MDDCC is 
99.62%, which is slightly lower than when the decomposition level is three. This is because the sequence data 
becomes overly decomposed, resulting in information redundancy. The ineffective features in the data, once 
amplified after being extracted by the deep neural network, reduce the performance of the classifier. It is evident 
that persistently increasing the level of wavelet decomposition does not provide additional effective feature infor-
mation, and the improvement in model detection performance is limited, which is mainly determined by the 
amount of information contained within the original sample itself. Since the model achieves the best detection 
effect at a decomposition level of three, a three-level decomposition model is used for all following experiments.

(c)	 Detection performance in other data sets

Table 6.   MDDCC’s detection performance on the simulation dataset.

Detection serial number Accuracy Precision Recall F1 FPR

1st 0.9962 0.9983 0.9969 0.9976 0.0069

2nd 0.9963 0.9982 0.9972 0.9977 0.0073

3rd 0.9967 0.9985 0.9973 0.9979 0.0058

4th 0.9964 0.9983 0.9972 0.9978 0.0068

5th 0.9967 0.9985 0.9975 0.9979 0.0061

Mean ± standard deviation 0.9965 ± 0.0002 0.9984 ± 0.0013 0.9972 ± 0.0002 0.9978 ± 0.0001 0.0066 ± 0.0006
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To objectively assess the detection performance and generalization capability of MDDCC, comparative experi-
ments were conducted using the public SDN dataset InSDN29. The InSDN dataset features normal and abnormal 
samples stored in separate files, and there is an imbalance in the categories of samples. Therefore, 70% of each 
category of samples was selected to form the training set, with the remaining 30% designated as the test set. 
Additionally, due to the scarcity of U2R samples (only 17 in total), which makes them unsuitable for participa-
tion in training and testing, they were excluded. The distribution of the samples in the re-divided InSDN dataset 
is illustrated in Table 7.

We utilized the divided training sets and testing sets, forming a subset of feature data using the 48 features 
selected as described in the “Data details” section for the model’s training and testing. Due to the class imbalance 
of the samples, to prevent the model from developing a "preference" during training, a tenfold cross-validation 
method was employed for training MDDCC. This involved randomly dividing the training data into 10 groups, 
using 9 groups as the training data and 1 group as the validation data for each iteration. After completing 10 cycles 
of training, the model was fully trained using the complete training set data to achieve its final state. Finally, the 
preprocessed InSDN test set data was input into the well-trained MDDCC model for 5 complete tests, and the 
classification results as shown in Fig. 8 can be obtained.

From the figure, it can be observed that the MDDCC model exhibits varying detection capabilities for dif-
ferent types of attack samples. For instance, the recall rate is highest for DoS attack samples at 99.38%, while it 
is lowest for BotNet at 95.92%. When calculating from the perspective of the binary classification task of dis-
tinguishing between attack and normal samples, the MDDCC model achieves an average accuracy of 99.23%, 
precision of 99.68%, recall of 99.36%, F1 score of 99.52%, and a false positive rate of 1.28% on the InSDN test 
set. Overall, the MDDCC model’s performance on the InSDN dataset is still quite impressive.

To further verify the generalization capability of MDDCC, we conducted experiments on two commonly 
used traffic datasets: CIC-IDS2017 and CIC-DDoS2019. These datasets, published by the Canadian Institute for 
Cybersecurity, simulate real-world network traffic by constructing 25 abstract user behaviors using protocols 
such as HTTP, HTTPS, FTP, SSH, email, etc. The attack traffic is generated by various cyber attack programs. 
Specifically, the abnormal traffic in CIC-IDS2017 is produced by seven types of attack behaviors: DoS, DDoS, Web 
Attack, Botnet, Brute Force, Heartbleed, and internal network penetration. The attack traffic in CIC-DDoS2019, 
on the other hand, is generated by reflection attacks targeting TCP (MSSQL, SSDP) and UDP (CharGen, NTP, 
TFTP) protocols, as well as SYN and UDP flood attacks that exploit vulnerabilities in these protocols. Both 

Figure 7.   Detection performance of MDDCC under different decomposition levels.

Table 7.   Sample distribution of InSDN data set after division.

Sample type Training set Test set

DDoS 85,359 36,583

DoS 37,531 16,085

Probe 68,690 29,439

Brute-force-attack (BFA) 984 422

Web-attack 134 58

BotNet 115 49

Normal 47,897 20,527

Total 240,710 103,163
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datasets provide. pcap format raw files as well as flow files containing more than 80 features generated by the 
FlowMeter traffic analysis tool. The experimental data was prepared following the method described in the “Data 
details” section, selecting 48 features to form the training and testing sets. During the training phase, the models 
were fully trained with their respective training sets until reaching a steady state. Finally, the models were tested 
for attack detection using their respective test sets for 5 trials. Table 8 presents the detection results of MDDCC 
on the CIC-IDS2017 dataset.

Table 9 displays the detection results of MDDCC on the CIC-DDoS2019 dataset.
The experimental results from Tables 8 and 9 indicate that MDDCC has achieved satisfactory outcomes in the 

detection tests on both the CIC-IDS2017 and CIC-DDoS2019 datasets. The detection accuracy for both datasets 
surpassed 99.5%, with the recall rates for anomaly samples reaching 99.65% and 98.71% respectively, and the 
precision rates were also notably high. Additionally, the model exhibited a false positive rate exceeding 8% on 
the CIC-DDoS2019 dataset. The primary cause of this phenomenon is attributed to the class imbalance within 
the CIC-DDoS2019 dataset. Due to the relatively smaller number of normal samples, even a small number of 
misclassifications of normal samples as attack samples can lead to a high FPR.

The detection experiment results of MDDCC on the InSDN, CIC-IDS2017, and CIC-DDoS2019 datasets 
demonstrate that MDDCC not only has good detection ability on simulated traffic data but also shows excellent 

Figure 8.   Classification performance of MDDCC on the InSDN dataset.

Table 8.   Detection performance of MDDCC on the CIC-IDS2017 dataset.

Detection serial number Accuracy Precision Recall F1 FPR

1st 0.9958 0.9987 0.9960 0.9974 0.0052

2nd 0.9964 0.9988 0.9967 0.9978 0.0049

3rd 0.9961 0.9982 0.9969 0.9976 0.0073

4th 0.9957 0.9985 0.9966 0.9976 0.0061

5th 0.9956 0.9983 0.9962 0.9972 0.0068

Mean ± standard deviation 0.9959 ± 0.0003 0.9985 ± 0.0003 0.9965 ± 0.0003 0.9975 ± 0.0003 0.0060 ± 0.0010

Table 9.   Detection performance of MDDCC on the CIC-DDoS2019 dataset.

Detection serial number Accuracy Precision Recall F1 FPR

1st 0.9969 0.9819 0.9855 0.9837 0.0731

2nd 0.9968 0.9806 0.9831 0.9818 0.0783

3rd 0.9978 0.9814 0.9879 0.9846 0.0755

4th 0.9956 0.9780 0.9897 0.9838 0.0897

5th 0.9939 0.9819 0.9855 0.9837 0.0731

Mean ± standard deviation 0.9963 ± 0.0015 0.9798 ± 0.0021 0.9871 ± 0.0028 0.9834 ± 0.0010 0.0818 ± 0.0088
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detection performance on open network data sets, which shows that the MDDCC model has strong generaliza-
tion ability.

(d)	 Performance comparison with other detection methods

To objectively evaluate the performance of the MDDCC model, it was compared with other similar detec-
tion models, specifically including CNN-Softmax19 and CNN-LSTM30, DNN-LSTM31, GAN32, and 1D-CNN & 
2D-CNN33, which are traditional classic detection models. Since some literature does not list the false positive 
rate as a performance metric, only four detection indexes, namely accuracy, accuracy, recall, and F1 value were 
selected for comparison, with the results shown in Table 10.

MDDCC achieved an accuracy of 99.24% on the InSDN dataset, which is an improvement of 0.75% and 
3.03% over the accuracies of the CNN-Softmax and CNN-LSTM detection methods, respectively. The preci-
sion rate of MDDCC is 99.68%, marking an increase of 1.43% and 2.13% compared to the two methods. The 
recall rate stands at 99.37%, which is an enhancement of 1.13% and 2.2% respectively. Additionally, the F1 score 
for MDDCC is 99.53%, showing an improvement of 1.28% and 2.17% when compared to CNN-Softmax and 
CNN-LSTM. Additionally, on the CIC-IDS2017 dataset, MDDCC achieved an accuracy of 99.59%, which is a 
0.27% improvement over the accuracy of DNN-LSTM. Although it is 0.14% lower than the 99.77% accuracy of 
1D-CNN & 2D-CNN, MDDCC achieved higher precision and recall rates. Furthermore, MDDCC demonstrated 
a significant advantage over GAN on the CIC-DDoS2019 dataset. This indicates that the MDDCC model we 
designed has higher detection accuracy compared to traditional detection models.

DDoS attack mitigation test
The attack mitigation experiment uses the new flow rate arriving at the SDN controller (Kf/s, Kilo-flows per sec-
ond) as the detection metric. Host 1 runs the Hping3 attack program to simulate the DDoS attack source host. At 
the initiation of the attack, Host 1 sends a large number of packets with random target IP addresses into the SDN 
network. Once the detection system identifies the network attack, it activates the attack mitigation mechanism 
to restrict the power of the attacking host to send new flows. Figure 9 illustrates the changes in new flows in the 
network before and after the DDoS attack, which can be roughly divided into three stages.

Table 10.   Performance comparison with different detection models.

Model Dataset Accuracy Precision Recall F1

CNN-Softmax InSDN 0.9850 0.9827 0.9827 0.9827

CNN-LSTM InSDN 0.9632 0.9760 0.9724 0.9742

DNN-LSTM CIC-IDS2017 0.9932 0.993 0.993 0.993

GAN CIC-DDoS2019 0.9438 0.9408 0.9789 0.9594

1D-CNN&2D-CNN CIC-IDS2017 0.9977 0.98 0.97 0.98

MDDCC InSDN 0.9924 0.9968 0.9937 0.9953

MDDCC CIC-IDS2017 0.9959 0.9985 0.9965 0.9975

MDDCC CIC-DDoS2019 0.9963 0.9798 0.9871 0.9834

Figure 9.   Changes of new flows before and after DDOS attacks and during mitigation.
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(a)	 Before the attack is initiated, in the first 30 s, Host 1 continuously sends traffic data containing some new 
flows into the network at a rate of 20Kf/s. During this phase, the switch forwards the new flow requests from 
Host 1 to the controller for processing instructions, while other legitimate flows are forwarded normally; 
hence, there is a certain gap between the number of flows sent by Host 1 and the number of new flows 
received by the controller.

(b)	 During the attack, Host 1 stops sending normal data packets and gradually increases the sending rate of 
new flows, reaching a maximum rate of 95Kf/s at 55 s, then gradually decreases, and stops the attack at 
65 s. In the initial stage of the attack, the switch tries to accommodate the forwarding requests from Host 
1, therefore the controller receives a large number of new request packets. However, once the system detects 
the attack, the mitigation mechanism is activated, and the controller restricts the new flow requests from 
the attacking host, completely blocking the new flow requests from reaching the controller to prevent the 
attack from further consuming SDN resources. During this period, the detection system continuously 
monitors the network status. Additionally, although the attack stops at 65 s, due to the restriction period 
not being over, it is not until approximately 75 s that Host 1 regains the ability to send new flows, and the 
controller gradually starts receiving new flow request data again.

(c)	 After the attack concludes, Host 1 resumes its data transmission state 65 s later, and the flow rate received 
by the controller maintains a normal gap with the flow rate sent by Host 1, as it was before the attack.

Furthermore, during the period when Switch 1 was under attack, Host 2 and Host 3 continued to send traffic 
data of random intensity as usual. Figure 10 shows the packet reception rate at the port of Switch 1 connected to 
Host 2 and Host 3, as well as the packet transmission rate from other ports except the controller, with the rates 
measured in Kilopackets per second (Kp/s). It can be observed that the switch maintains an overall relative bal-
ance between receiving and transmitting data packets when forwarding normal data packets, and this balance 
is consistently maintained even during the initiation and progression of the attack. This indicates that the attack 
detection and mitigation system we have designed is not only capable of effectively detecting attacks present 
within the network, but it can also autonomously mitigate the effects of these attacks, ensuring that other hosts 
in the network can continue to send data normally.

The aforementioned experiments demonstrate that the attack mitigation mechanism we designed can imple-
ment restriction strategies on the attack source within a short time after identifying the source of the net-
work attack, thereby ensuring that the SDN has sufficient available resources to provide normal services for the 
network.

Conclusion
SDN, as a trend in the development of future networks, urgently requires a fast and efficient anomaly detection 
method to maintain its own security. We propose a two-stage attack detection approach. First, attack detection 
based on switch statistics can quickly achieve a coarse-grained detection of network attacks by calculating the 
statistical information of switch ports, without adding network components and communication volume. Second, 
attack detection based on multi-dimensional traffic features uses wavelet transform and deep learning technol-
ogy to perform multi-dimensional and in-depth feature extraction on traffic feature data, which is conducive 
to accurately classifying traffic samples. Additionally, the traceability method based on graph theory and the 
identifiers of switches and ports, along with the forwarding restriction-based mitigation strategy, can prevent 
excessive consumption of SDN resources. The experimental results show that the detection method we proposed 
can fully utilize the statistical information of switches and the characteristic data of traffic to achieve rapid detec-
tion of DDoS attacks and accurate identification of attack samples, achieving higher detection accuracy than 
traditional methods. Finally, the mitigation mechanism can effectively prevent the SDN controller from being 
overloaded and maintain the normal operation of the network. Future research will focus on how to apply the 

Figure 10.   Rate statistics of normal traffic received and sent by switch 1.
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proposed method to large-scale SDNs, with an emphasis on addressing the intelligent collaboration issues of 
multiple controllers in the detection and mitigation process of DDoS attacks.

Data availability
The InSDN dataset analysed during the current study is publicly available on https://​asead​os.​ucd.​ie/​datas​ets/​
SDN/​InSDN_​Datas​etCSV.​zip. The CIC-IDS2017 and CIC-DDoS2019 datasets are available in the Canadian 
Institute for Cybersecurity webpage: https://​www.​unb.​ca/​cic/​datas​ets/​index.​htm.
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