Table 4 Diagnostic performance of combined models based on radiomic and clinicoradiological variables applied to 4 different ML algorithms and MLP.
Models | AUC | 95% CI | Sensitivity | Specificity | Accuracy | PPV | NPV | |
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
LR | ||||||||
 Training set | 0.909 | 0.869 | 0.950 | 0.798 | 0.922 | 0.861 | 0.908 | 0.826 |
 Validation set | 0.805 | 0.708 | 0.901 | 0.7381 | 0.800 | 0.770 | 0.775 | 0.766 |
RF | ||||||||
 Training set | 0.972 | 0.954 | 0.990 | 0.919 | 0.903 | 0.911 | 0.901 | 0.921 |
 Validation set | 0.833 | 0.742 | 0.925 | 0.810 | 0.733 | 0.770 | 0.739 | 0.805 |
SGD | ||||||||
 Training set | 0.500 | 0.500 | 0.500 | 1.000 | 0.000 | 0.490 | 0.490 | 0.000 |
 Validation set | 0.500 | 0.500 | 0.500 | 1.000 | 0.000 | 0.483 | 0.483 | 0.000 |
SVM | ||||||||
 Training set | 0.889 | 0.843 | 0.934 | 0.727 | 0.932 | 0.832 | 0.911 | 0.781 |
 Validation set | 0.797 | 0.699 | 0.895 | 0.667 | 0.822 | 0.747 | 0.778 | 0.726 |
MLP* | ||||||||
 Training set | 0.927 | 0.893 | 0.955 | 0.991 | 0.380 | 0.671 | 0.592 | 0.979 |
 Validation set | 0.835 | 0.719 | 0.929 | 0.935 | 0.333 | 0.655 | 0.617 | 0.818 |