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Removal of oxytetracycline 
from pharmaceutical wastewater 
using kappa carrageenan hydrogel
Muhammad Afzaal 1*, Rab Nawaz 2,3, Saddam Hussain 1, Mahnoor Nadeem 1, 
Muhammad Atif Irshad 2, Ali Irfan 4*, Hafiz Abdul Mannan 5, Aamal A. Al‑Mutairi 6, 
Atif Islam 5,7, Sami A. Al‑Hussain 6, Mehwish Rubab 8 & Magdi E. A. Zaki 6*

This study investigated the adsorption of Oxytetracycline (OTC) from pharmaceutical wastewater 
using a kappa carrageenan based hydrogel (KPB). The aim of the present study was to explore the 
potential of KPB for long-term pharmaceutical wastewater treatment. A sustainable adsorbent 
was developed to address oxytetracycline (OTC) contamination. The hydrogel’s structural and 
adsorption characteristics were examined using various techniques like Scanning Electron Microscope 
(SEM), Fourier Transform Infrared (FTIR), X-ray powder diffraction (XRD), and kinetic models. 
The results revealed considerable changes in the vibrational modes and adsorption bands of the 
hydrogel, suggesting the effective functionalization of Bentonite nano-clay. Kappa carrageenan 
based hydrogel achieved the maximum removal (98.5%) of OTC at concerntration of 40 mg/L, pH 8, 
cotact time of 140 min and adsorbent dose of 0.1 g (KPB-3). Adsorption of OTC increased up to 99% 
with increasing initial concentrations. The study achieved 95% adsorption capacity for OTC using 
a KPB film at a concentration of 20 mg/L and a 0.1 g adsorbent dose within 60 min. It also revealed 
that chemisorptions processes outperform physical adsorption. The Pseudo-Second-Order model, 
which emphasized the importance of chemical adsorption in the removal process, is better suited to 
represent the adsorption behavior. Excellent matches were found that R2 = 0.99 for KPB-3, R2 = 0.984 
for KPB-2 and R2 = 0.989 for KPB-1 indicated strong chemical bonding interactions. Statisctical 
analysis (ANOVA) was performed using SPSS (version 25) and it was found that pH and concentration 
had significant influence on OTC adsorption by the hydrogel, with p-values less than 0.05. The study 
identified that a Kappa carrageenan-based hydrogel with bentonite nano-clay and polyvinyl alcohol 
(PVA) can efficiently remove OTC from pharmaceutical effluent, with a p-value of 0.054, but weak 
positive linear associations with pH, temperature, and contact time. This research contributed to 
sustainable wastewater treatment and environmental engineering.
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Water is a vital resource that is necessary for maintaining ecosystems, regular human activity, and survival of liv-
ing organisms. Unfortunately, a wide range of pollutants have been released into the environment which pollute 
the water and endangered both human health and aquatic life1. Concern over water pollution has grown across 
the globe, and further materials or technologies are required to properly remove contaminants from water and 
associated hazards. Water contaminants including pesticides, heavy metals, phenols, dyes and antibiotics are 
removed from wastewater by a variety of technologies including adsorption, catalytic degradation, biological 
methods, flocculation, demulsification and filtration2–5.
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Recently, there is increase in pharmaceutical demand due to rapid population growth and technological 
advancements. As a result, pharmaceutical companies have focused on research and development. This has 
led to the development of novel drugs and treatments that have increased the accessibility and affordability of 
healthcare6. In 2018, the market was estimated at 1.2 trillion US dollars, and expected to reach 1.77 trillion US 
dollars by 2030. The pharmaceutical industry uses a significant amount of water, and then turned into wastewa-
ter. This wastewater contains toxic contaminants and antibiotics, which have negative effects on human health 
and aquatic ecosystem. In recent years, the effects of pharmaceutical wastewater on the environment has grown 
especially due to the presence of antibiotics like OTC. Antibiotic-resistant bacteria can arise from the inap-
propriate disposal of pharmaceutical waste containing antibiotics, which poses a major risk to the environment 
and public health7. There is a growing demand for non-biodegradable plastic polymers, such as Carrageenan, a 
flexible polymer from Irish Moss. Pharmaceutical products (PPs) are ubiquitous in environmental compartments, 
making it difficult to identify efficient removal strategies8.

Water from pharmaceutical plants contains biodegradable organic matter, including antibiotics, lipid regula-
tors, and anti-inflammatory chemicals that lead to bacterial resistance, allergies, and the growth of aquatic plants9. 
Antibiotics account for 70% of all drugs produced annually, with a significant amount found in the South China 
Sea reservoir10. The discovery of penicillin in 1928 marked the peak of antibiotic discovery in the mid-1950s11,12. 
Scientists and researchers have been investigating long-term ways to remove antibiotics from pharmaceutical 
effluent in order to solve this critical issue. The adsorption of oxytetracycline using hydrogels based on kappa 
carrageenan has generated considerable interest as a promising method13,14. Carrageenan has potential bioac-
tive properties and is used in various sectors like wound healing, medication delivery, tissue engineering, and 
aqueous pollutants removal. Thermo-reversible gels are created through two phases involving gel-inducing 
chemicals and temperature15,16. OTC a widely used antibiotic due to its low cost and antimicrobial properties, is 
found in human excretion, animal products, hospital waste, pharmaceutical industries, and manure-fertilized 
soil17,18. Human life is endangered by excessive concentrations of OTC in water and when it translocates to plants 
also deteriorate the quality of water. However, poor absorption and metabolism in the digestive system can lead 
to antibiotic resistance, disrupting ecosystems19,20. The increasing amount of OTCs poses a global concern for 
removing them from pharmaceutical wastewater21. Adsorption is a promising technique for removing OTCs 
from pharmaceutical wastewater due to its economic viability, eco-friendliness, and efficacy22,23. Carrageenan, a 
high-biodegradable, non-toxic, and biocompatibility adsorbent, is suitable for hydrogel adsorption. Hydrogels, 
three-dimensional, cross-linked polymeric networks, can store large amounts of water and are hydrophilic24,25.

Carrageenan has potential bioactive properties and is used in various sectors like wound healing, medica-
tion delivery, tissue engineering, and aqueous pollutants removal. Thermo-reversible gels are created through 
two phases involving gel-inducing chemicals and temperature15,16. The present study was conducted to develop 
biocompatible aerogel microparticles using commercial carrageenan as a precursor. Supercritical carbon diox-
ide extraction transforms the gel into an aerogel, with analyzed FTIR, SEM, particle density and particle size 
distribution26.

In addition to its high hydrophilicity, Kappa carrageenan (KC) exhibits poor stability and low gel strength, 
which make it less suitable for pharmaceutical wastewater treatment than other hydrogels. Kappa carrageenan 
has been blended with other resilient polymers like agar, gelatin and Polyvinyl Alcohol (PVA)27. In this study, 
kappa carrageenan hydrogel along with PVA gel is used to remove antibiotics from pharmaceutical wastewater. 
The objectives include eliminating OTC, characterizing the hydrogel’s physical and chemical properties, and 
analyzing its ability to remove contaminants from the wastewater.

Material and methods
Chemical reagents
Different chemical reagents were used in the experiment. These include Kappa-carrageenan (22048-100G-F) a 
sulphated plant polysaccharide, Polyvinyl Alcohol (PVA) 87–90% hydrolyzed (average mol wt. 30,000–70,000), 
γ-Aminopropyltriethoxysilane (C9H23NO3Si) CAS.NO: 919-30-2, Bentonite Nano clay AL-SIAT-02NCLAY 
(Al2O3.2SiO2.H2O) CAS # 1302-78-9, distilled water and the Oxytetracycline salt (C22H24N2O9).

Study area
Present study focused on a renowned pharmaceutical firm in Faisalabad, Pakistan, known for its expertise in 
producing antibiotics, antidepressants, syrups, and analgesics, making it an ideal location for pharmaceutical 
industrial research.

Functionalization of bentonite nanoclay
Bentonite nano clay (3 g) and ethanol (250 mL) were dispersed in 500 mL beaker and stirred continuously for 1 h 
with the help of magnetic stirrer. After that 500 µL of APTES (3-Aminopropyltriethoxysilane) was dissolved into 
20 mL of ethanol and then added to Bentonite nano clay mixture. Then in a glass reactor at 60 °C, the suspension 
was mechanically stirred for 2 h. After filtering, the functionalized clay was washed with ethanol. The functional-
ized Bentonite Nano clay (FBNC) was dried into a vacuum oven. For cross linking, varying amounts of FBNC 
(0.5, 0.10, 0.15, 0.20 and 0.25 g) were dispersed in 10 mL water and sonicated for one hr at ambient temperature28.

Preparation of kappa carrageenan/ polyvinyl alcohol/ bentonite nano clay hydrogel film
The preparation of KC-based hydrogel involved the preparation of a PVA solution and a KC solution. The PVA 
solution was prepared by adding 0.3 g of PVA and 25 mL of distilled water in a 250 mL beaker. Solution was 
placed on a hot plate in the laboratory for one hr at a mixing speed of 300 rpm. The temperature was maintained 
at < 50 °C with constant stirring. The KC solution was prepared by adding 0.7 g of KC and 25 mL of distilled 
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water in a 250 mL beaker. The PVA solution was added to the KC solution in a 1:1 ratio, stirring at a mixing 
speed of 300 rpm for 2 h. The hydrogel films were created using functionalized Bentonite nano clay, which was 
added drop by drop to the KC/PVA blend. KP1was a controlled sample that contains PVA/KC but no clay. KPB-
2, KPB -3, KPB -4, KPB-5, and KPB -6 were assigned that had 0.05, 0.1, 0.15, 0.2, and 0.25 g of Bentonite Nano 
clay, respectively (Table 1). Prepared solution was placed on hot plate with 70 °C temperature until the solution 
became viscous. Then, solution was poured to petri dishes and was baked in oven at a temperature of 50 °C. The 
hydrogel films were peeled off from the dishes and were stored in bags for further processing29.

Characterization of hydrogel
Fourier transfer infrared spectroscopy
Fourier Transform Infrared (FTIR) spectroscopy is a cost-effective and non-destructive method for determin-
ing clay mineral composition, structure, and interactions with inorganic or organic molecules. It was used to 
characterize surface functional groups in synthesized hydrogel films30. The study employed FTIR (JASCO, FT/
IR-6600) to characterize the attached surface functional groups and their interactions with the constituents of 
the synthesized hydrogel films.

Scanning electron microscope
Samples of hydrogel were characterized by Scanning Electron Microscope (SEM) that provided information 
about the sample composition and surface topography. The SEM images were also used to compare the proper-
ties of the samples.

X‑Ray diffraction analysis (XRD)
In this study, X-ray diffraction (XRD) was used to analyze the crystalline structure of synthesized hydrogel films 
in according to Bragg’s Law. XRD patterns showed composition of crystalline and amorphous phases of the 
hydrogel films. The crystalline phases were further analyzed to revealed the chemical composition using pKw, 
200 mA, 45 kV radiation, and a 5–70° angle31.

Swelling ratio measurement
Adsorption capacity is influenced by the shrinking and swelling properties of the adsorbent. The pre-weight dry 
hydrogel was submerged in distilled water, and the swelling degree was tested after every 10 min. The swollen 
adsorbent was separated and weighed, with the average value determined after three replicates. The swelling 
behavior of hydrogel was calculated using a given equation.

where, “S” is the swelling ratio, “Ws” is the weight of swelling hydrogel at a particular time and “Wd” is the weight 
of dry hydrogel at t = 0.

Different parameters effects on adsorption
Effect of initial concentration
The impact of initial concentration on OTC was investigated at a predetermined time interval of 40 min on a 
magnetic stirrer at room temperature 25 °C and optimal pH 8 with the adsorbent dose (0.05) at various concen-
tration (10, 20, and 40 mg/L in 25 mL of the pharmaceutical solution. Later, the solution was strained and the 
concentration of OTC in the filtrate residual was examined by using UV spectrophotometer. The similar method 
described above was used to create all samples with various adsorbent dosages.

Effect of pH
The adsorption process is influenced by pH, which can alter the surface charge of adsorbents and the separation 
of functional groups. This study examined the effect of pH on the adsorption of OTC at different pH levels. The 
pH of the solutions was maintained by using 0.1 M NaOH and 0.1 M HCl. At room temperature, 25 mL of an 
antibiotic solution was taken with a 0.05 g adsorbent dose for 40 min. The decrease in H+ ion concentration by 
pharmaceutical ions raises pH, while the increase in hydroxyl ions and negatively charged active sites between 
the adsorbent and the medicinal solution results in a minor pH shift.

(1)S =

Ws−Wd

Wd
× 100

Table 1.   Different concentrations of BNT.

Sr. no Sample code K-carrageenan (KC) (g) Polyvinyl alcohol (PVA) (g) Bentonite nano-clay (BNT) (g)

1 KPB-1 0.7 0.3 –

2 KPB-2 0.7 0.3 0.05

3 KPB-3 0.7 0.3 0.10

4 KPB-4 0.7 0.3 0.15

5 KPB-5 0.7 0.3 0.20

6 KPB-6 0.7 0.3 0.25
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Effect of temperature
The study examined the effect of temperature on OTC adsorption at different temperatures (10, 15, 20 and 25 °C). 
The pH of the solution was maintained using 0.1 M NaOH and 0.1 M HCl. The solution was filtered and the 
amount of OTC in the filtrate residual was analyzed using a UV spectrophotometer.

Effect of contact time
OTC adsorption was examined at various contact times ranging from 5 to 240 min, whereas the remaining 
parameters (temperature 25 °C, adsorbent dosage 0.05, and pH 8) remained unchanged. The pH of the solu-
tion was maintained using 0.1 M NaOH and 0.1 M HCl. After that, the solution was filtered and the amount of 
OTC in the filtrate residual was analyzed with the help of UV spectrophotometer. All the samples with different 
adsorbent dose were prepared by same procedure mentioned above. Because there are so many active sites on 
the adsorbent’s surface the pharmaceutical compounds adsorbed immediately. The specific adsorpent dose, pH 
and temperature conditions were set on the basis of preliminary experiments and economical considerations to 
ensure representative results with optimimum sample size.

Adsorption experiment
Antibiotic removal efficiency
A study was conducted to evaluate the synthetic hydrogel film’s ability to absorb 40 ppm of OTC from phar-
maceutical effluent. The drug was ingested in a 50 mL Erlenmeyer flask, and 0.05 g of the adsorbent dosage 
remained in contact with it. The mixture was shaken in an incubator for 240 min at 25 °C and 120 rpm. The 
residual amount of OTC was examined using a UV spectrophotometer to confirm the concentration change 
was due to the adsorbent.

Then the adsorption ability and removal efficacy of OTC was estimated through the variation in the con-
centration before and after the adsorption. The OTC concentration at equilibrium was calculated using Eqs. (2) 
and (3):

where, “qe” is the adsorption capacity at equilibrium, “Co” is the initial concentration of Oxytetracycline, “Ce” is 
equilibrium in concentration of Oxytetracycline (mg/L), “m” is the mass of adsorbent (g) and “V” is the volume 
of the solution (L).

Statistical analysis
SPSS (version 25) was used to statistically analyze the data obtained from the experiments. The data was subjected 
to analysis of variance (ANOVA) for the level of significance of difference. Correlation analysis between pH, 
temperature, contact time and swelling was also carried out for data interpretation.

Results and discussion
Functionalization of bentonite nano clay
The FTIR analysis of Bentonite nano-clay’s functionalization revealed significant changes in the clay’s vibrational 
modes and absorption bands, indicating the effective attachment of functional groups, as shown in Fig. 1. These 
findings demonstrate the efficiency of the functionalization method in improving the clay’s surface qualities and 
reactivity, which is crucial for industrial applications like adsorption, catalysis, and nano-composite materials.

Hydrogel characterization
Fourier transform infrared spectroscopy (FTIR)‑test
The study used Fourier Transform Infrared Spectroscopy (FTIR) to investigate the surface functionalization and 
chemical properties of nano-composite films made of Carrageenan-based hydrogel, Bentonite Nano-clay, and 
Polyvinyl Alcohol (PVA) as shown in, Table 2 and Fig. 2. Interestingly, almost all the hydrogels have exhibited 
prominent peaks around 3690 cm−1 indicating O–H stretching. These hydroxyl groups on the designed hydrogels 
can form hydrogen bonding with hydroxyl and amine groups present in OTC pollutant. Therefore, it is antici-
pated that the designed gydrogels will have higher adsorption capacity due to the presence of these bonding 
sites. In addition, the carboxyl groups (C=O) at 1581.6 cm−1 and 1352.1 cm−1, alcohol groups (C–O) present at 
at 1382.9 cm−1 and 1027.4 cm−1 and siloxane groups (Si–O) present at around 1004.9 cm−1 and 914.2 cm−1 can 
also form hydrogen bonding or van der Waal interactions with OTC, thereby providing more active sites for 
the adsorption.

SEM analysis of hydrogel
The study used Scanning Electron Microscopy (SEM) to analyze the surface shape of hydrogel films, as shown 
in Fig. 3, which affects their adsorption capacity. The hydrogel’s higher surface area allows for better interac-
tions with contaminants. The addition of nano fillers increased the mechanical strength of the nano-composite 
films, demonstrating the power of hydrogen bonding between oxygen-containing groups and hydroxyl groups 
of chitosan and polyvinyl alcohol. Findings of our study are crucial for applications like adsorption, medication 
administration, and tissue engineering.

(2)qe =
Co− Ce

m
× V

(3)Removal(%) =
Co− Ce

Co
× 100
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Hydrogel X‑ray diffraction analysis
The X-ray Diffraction (XRD) technique was used to evaluate the crystallinity of K-carrageenan (KC)-based 
hydrogel. The results showed a semi-crystalline structure, with higher crystallinity correlated with higher intensi-
ties, as shown in Fig. 4. Modifications with Nano clay and cross-linker reduced crystallinity, affecting the mate-
rial’s crystalline structure. As crystallinity increases, these characteristics also tend to increase.

Properties of hydrogel
Swelling behavior of K‑carrageenan (KC) hydrogel in distilled water
Hydrogels grow gradually over time, with swelling occurring at later periods. Increased PVA concentrations 
increase swelling percentages, indicating PVA’s water-absorbing ability, as shown in Fig. 5. Stability and equi-
librium occurs after 70–80 min, allowing hydrogels to absorb as much water as possible. Understanding these 
tendencies is crucial for modifying hydrogel properties. Table 3 displays the swelling behavior of K-carrageenan 
hydrogel in distilled water at different time intervals and polyvinyl alcohol concentrations. The swelling per-
centage, indicates water absorption and is crucial for evaluating its effectiveness in drug delivery and tissue 
engineering applications.

Figure 5 shows the equilibrium swelling, which stabilizes after 70–80 min, indicating that the hydrogel has 
decomposed. This information assists the researchers in better understanding the kinetics and properties of the 
hydrogel’s swelling behavior, which is useful for applications like as medication delivery, wound dressings, and 
tissue engineering. Overall, the Table 3 is useful for comprehending the swelling behavior of kappa carrageenan 
hydrogels and their prospective applications in various disciplines.

Table 3 shows the swelling ratio (Ws–Wd) of kappa carrageenan KC hydrogel with time compared to distilled 
water. The table comprises columns for time intervals (minutes) and distinct KC hydrogel compositions, each 
with differing PVA concentrations or formulations. The table’s key findings include time-dependent swelling, 
which normally rises with time, and the influence of PVA concentration on swelling ratios. Larger PVA concen-
trations result in larger swelling ratios, demonstrating that PVA improves the hydrogel’s ability to absorb water.

Effect of pH on adsorption capacity
The effect of pH on the adsorption capacity of KC hydrogel is shown in the Fig. 6. The ability of a material to 
attract and hold molecules or chemicals from its surroundings is referred to as its adsorption capacity. The ideal 
pH range for maximizing KC hydrogel adsorption capability is typically near-neutral to slightly alkaline (about 
pH-6 to pH-8). KPB-1, for instance, has greater adsorption capability at pH-6 and pH-8 than at pH-2 and pH-4. 
This behaviour can be explained by swelling behavior of KPB-1 hydrogel which might swell at higher pH i.e. 6 
to 8. This excessive swelling increases the surface area and active sites for adsorption.

Figure 1.   FTIR of Functionalization of Bentonite Nano clay.

Table 2.   K-carrageenan-based hydrogel nano-composite with significant FTIR peaks. Although there are 
several smaller peaks, the ones named are the most noticeable.

Nano-composite Major Peaks (cm−1) Functional Groups Present

Kc/PVA 3689.8, 3620.3, 1589.3, 912.3, 754.1 O–H, C–C, C–H, hydroxyl groups

Kc/KPB-2(0.05) 1581.6, 1352.1, 1382.9, 1027.4 C–C, C–O, alcohol group, Nano-clay

Kc/KPB-3(0.1) 3620.3, 1587.4, 1004.9, 914.2, O–H, C–C, C–O, alcohol, Si–O, Nano-clay
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The reaction to pH changes is also concentration dependent, depending on the starting concentration of 
KC hydrogel. Understanding these pH-dependent adsorption properties is critical for optimizing the hydrogel 
performance in various applications such as water treatment, drug delivery, and adsorption of pollutants from 
aqueous solutions.

Figure 7 shows that pH has a substantial impact on the OTC adsorption capacity of KC hydrogel. The adsorp-
tion capability across multiple pH levels, the hydrogel, especially KC/PVA/0.05, consistently outperforms other 
hydrogel formulations.

Figure 2.   FTIR analysis of hydrogel at magnifications (a) KPB-1 (b) KPB-2 (c) KPB-3 (d) KPB-4 (e) KPB-5 (f) 
KPB-6.
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Effect of initial concentration on K‑carrageenan hydrogel
The ideal adsorbent dose is 0.05 g with a pH of 6 over 120 min on a magnetic stirrer at 35 °C. At an initial con-
centration of 40 mg/L, the KC/PVA/0.1 (H) Bentonite Nano clay nano-composite adsorbent displays outstanding 
capacity to adsorb OTC, with an excellent adsorption of 99%. The adsorbent’s effectiveness rises as the initial 
oxytetracycline concentration increases. The adsorbent still has 98% adsorption capacity at a lower starting 
concentration of 20 mg/L.

However, Fig. 8 shows that when the initial OTC concentration rises to 40 mg/L, the adsorbent reaches its 
maximum potential, obtaining a adsorption capacity of more than 95%. This is due to the fact because initially 
at higher OTC concentrations, the driving force is maximum and more active sites are available for adsorption. 
As the adsorption proceeds, the gydrogel has reached its maximum potential and the active sites are nearly fully 
occupied by OTC molecules.

Overall removal of OTC from hydrogel
The removal efficiency for OTC from pharmaceutical wastewater by kappa carrageenan/ polyvinyl alcohol/ 
bentonite nanoclay (KPB) hydrogel was evaluated under various conditions and the results are demonstrated 
in Fig. 9. It was observed that removal effectiveness of most adsorbent compositions drecreases, as the initial 

(a) (b)

(c)
(d)

(e) (f)

Figure 3.   SEM images of hydrogel at magnifications ((a) X 1/4 3000 for KPB-1 (b) X 1/4 15,000), for KPB-2 
(0.05) at magnifications ((c) X 1/4 3000 for KPB-3 (0.1) (d) X 1/4 15,000) for KPB-4 (0.15) at magnifications ((e) 
X 1/4 3000 for KPB-5(0.2) (f) X 1/4 15,000) for KPB-6.
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OTC content increases. Thus, the adsorbent composition greatly influence adsorption capacity, with KPB-3 
consistently demonstrating the best removal percentages, even at increasing OTC concentrations. This result 
can be explained by the fact that KPB-3 hydrogel had the optimum composition and it had provided synergistic 
effect of kappa carrageenan, polyvinyl alcohol, and bentonite nanoclay. Moreover, at initial concentrations, the 
hydrogel’s adsorption sites are abundantly available that make it suitable for handling higher OTC loads. The best 
performance of KPB-3 hydrogel can be explained by excellent swelling behaviour of the hydrogels that provide 
excessive surface area and active sites for adsorption.

Significant differences and correlation
The ANOVA test revealed that pH and concentration significantly influence OTC adsorption by a hydrogel 
(Table 4). The adsorption capacity of OTC is marginally higher than 0.054, suggesting that pH and concentration 
are more important. The sum of squares for pH fluctuations affecting OTC adsorption is 8.867, with a p-value 
of 0.01.

ANOVA test revealed that pH and concentration significantly influence the hydrogel’s efficacy in removing 
OTC. The F-statistic is 6.697, with a p-value of 0.01, and the SS for OTC removal efficacy is 3.585, indicating some 
difference but not substantial, as shown in Table 4. Therefore, pH and concentration have a greater influence on 

Figure 4.   X-Rays Diffraction of hydrogel (a) KPB-1 (b) KPB-2 (c) KPB-3 (d) KPB-4 (e) KPB-5 (f) KPB-6.
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Table 3.   The swelling ratio after equal interval of time.

Ws − Wd

Time (min) KC/PVA KC/PVA/0.05 KC/PVA/0.1 KC/PVA/0.15 KC/PVA/0.2 KC/PVA/0.25

10 0.264 0.359 0.403 0.443 0.453 0.509

20 0.265 0.42 0.459 0.659 0.569 0.619

30 0.227 0.465 0.469 0.707 0.651 0.684

40 0.207 0.365 0.483 0.702 0.63 0.696

50 0.174 0.347 0.49 0.685 0.615 0.661

60 0.15 0.303 0.458 0.64 0.573 0.646

70 0.13 0.239 0.407 0.572 0.545 0.557

80 0.114 0.247 0.387 0.512 0.499 0.519

90 0.058 0.219 0.372 0.469 0.434 0.459

100 0.055 0.194 0.328 0.423 0.378 0.412

110 0.031 0.121 0.311 0.327 0.283 0.379

120 0.002 0.087 0.214 0.236 0.325 0.342

a: KPB-1 b: KPB-2

c: KPB-3 d: KPB-4

e: KPB-5 f: KPB-6
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Figure 6.   Variation in pH at various concentration of K-carrageenan hydrogel.
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OTC adsorption. In summary, the ANOVA findings show that pH and concentration have a greater influence 
on OTC adsorption by the hydrogel.

The offered correlation (Table 5) demonstrates the links between several factors associated with KC/ PVA/ 
BNC hydrogel. The degree and direction of a linear link between two variables are measured by correlation.

The study found no significant relationships between pH, temperature, contact time, or swelling. Initial 
concentration had strong positive correlations with pH, temperature, and contact time, indicating weak positive 
linear associations.

Reaction kinetics model
Adsorption is a crucial process used in environmental remediation and wastewater treatment. Researchers used 
OTC solutions in a mixture of Kappa-carrageenan, polyvinyl alcohol, and Bentonite clay (Table 6).

Comparative analysis
Environmental concerns have led to a growing demand for biodegradable polymers, such as Carrageenan, a 
flexible polymer from Irish Moss. Pharmaceutical products (PPs) are ubiquitous in environmental compart-
ments, making efficient removal strategies difficult to identify8. A composite material with a cadmium adsorp-
tion capacity of 20.6 mg/g is selective in removing lead ions. Clay minerals, the oldest and least expensive 
adsorbents, potentially extract pharmaceutical products from wastewater effluents32. Research gaps exist in 
determining the full potential of clay-based adsorbents33,34. A recent research aims to develop biocompatible 
aerogel microparticles using commercial carrageenan as a precursor. Supercritical carbon dioxide extraction 
transform the gel into an aerogel, with analyzed FTIR, SEM, particle density and particle size distribution26. 
Three different carrageenans were used to create biodegradable aerogel micro-spherical particles with varying 

Table 4.   ANOVA test on the properties of hydrogel, including pH and concentration and removal of OTC.

Factors Sum of squares df Mean square F-value Sig

Adsorption-pH

 Between groups 8.867 1 8.867 6.697 0.01

 Within groups 791.773 598 1.324

 Total 800.64 599

Adsorption-concentration

 Between groups 6.404 1 6.404 6.908 0.009

 Within groups 554.394 598 0.927

 Total 560.798 599

Removal (OTC)

Between groups 3.585 1 3.585 3.736 0.054

 Within groups 573.734 598 0.959

 Total 577.318 599

Table 5.   Correlation between the properties of Kappa carrageenan/Polyvinyl alcohol/Bentonite Nano clay 
Hydrogel. **Correlation is significant at the 0.01 level (2-tailed). *Correlation is significant at the 0.05 level 
(2-tailed).

Correlation parameters pH Initial concentration Temperature Contact time Swelling

pH

 Pearson correlation 1

 Sig (2-tailed) 0.000 0.077 0.129 0.093

Initial concentration

 Pearson correlation 0.198* 1

 Sig (2-tailed) 0.000 0.000 0.003 0.0389

Temperature

 Pearson correlation 0.072 0.200** 1

 Sig (2-tailed) 0.077 0.000 0.000 0.030

Contact time

 Pearson correlation 0.042 0.119** 0.274** 1

 Sig (2-tailed) 0.129 0.003 0.000 0.793

Swelling

 Pearson correlation 0.049 0.035 0.089* 0.011 1

 Sig (2-tailed) 0.093 0.389 0.030 0.793
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surface areas and average pore volume and size. The surface area varied from 33 to 174 m2/g, with an average 
pore volume and size of 0.35 0.11 cm3/g and 12.34 3.24. The porous material can be used in medication delivery 
applications26. Hybrid aerogel monoliths from alginate and -carrageenan were created by heating a carrageenan 
solution to 90 °C and adding a KSCN solution as a cross-linker. Cylindrical -carrageenan aerogels were created 
by gently dripping a -carrageenan solution into a -carrageenan solution35. Contact time is an important factor in 
oxytetracycline removal from pharmaceutical wastewater, with extended contact duration from 20 to 120 min, 
improving removal effectiveness with a 0.05 g adsorbent dosage.

Researchers are exploring the economic viability of applying kappa carrageenan hydrogels in wastewater treat-
ment and other applications by utilizing conditions, such as temperature, different pH levels and desorbing 
agents. The reusability of kappa carrageenan hydrogel combined with nano-composites has been explored and 
significant adsorption capabilities have been found36. A study on a specific contaminant showed a remarkable 
reusability of the hydrogel-nanocomposite with up to 90% retention of initial capacity even after five to ten 
cycles37. The adsorption process was endothermic, and the hydrogel was more reusable after five cycles and with 
over 70% clearance rate37,38. This study presented a novel carrageenan hydrogel for removing cationic methylene 
blue (MB) from aqueous solutions. PG hydrogel with reactive function groups enhanced the hydrogels adsorp-
tion capacity and stability. The adsorption was well-fitted using the Langmuir isotherm and the pseudo-second 
order model39. The beads could be easily regenerated and reused for at least five cycles efficiently. The material 
demonstrated excellent adsorption ability in various pH ranges, with a maximum capacity of 80.28 mg g−1 at 
45 °C. Thermal, chemical, and pH level changes can be used to renew Kappa carrageenan hydrogel, with the 
effectiveness of regeneration determined by the adsorbate and applied technique40.

Research on the economic feasibility of kappa carrageenan hydrogels for water treatment and other applica-
tions suggests possible cost effective methods of wastewater treatment. Studies on the reusability of nano-compos-
ites mixed with kappa carrageenan hydrogel showed strong adsorption capacities across several cycles. By using 
these nanocomposites in water purification systems, the requirement for single-use materials can be decreased, 
improving sustainability initiatives. The results highlight the vital significance that accurate pH management plays 
in optimizing the adsorption capacity for pollutants in pharmaceutical wastewater treatment regimens. The study 
also emphasizes the wider significance of OTC removal efficiency in adsorption processes and its implications 
for public health and environmental protection. In recent years, numerous different plant extracts, including 
Azadirachta indica leaf extract, have been utilized to remediate industrial effluent. Plant-based remediation has 
gained popularity for the efficient cleanup of polluted water41,42. Recent breakthroughs in materials science and 
green chemistry have resulted in the production of nanomaterials with large specific surface areas and diverse 
functionalities, making them effective in removing heavy metals from wastewater. According to the research, 
the most efficient, effective, clean, and sustainable technique for removing heavy metals from wastewater is by 
the adsorption of these metals onto green nanomaterials derived from plant extracts43–45.

Conclusion
Present study investigated the adsorption of oxytetracycline from pharmaceutical wastewater using a Carra-
geenan-based hydrogel. The hydrogel, consisting of bentonite nano-clay and polyvinyl alcohol, showed out-
standing oxytetracycline removal efficiency, with a maximum removal rate of 98.5% in 120 min. The adsorp-
tion process was pH-dependent, with higher initial oxytetracycline levels improving adsorption capacity. The 
Pseudo-Second-Order kinetic model accurately exhibited the adsorption behaviour with significant chemical 
bonding interactions between the hydrogel and oxytetracycline. The study highlighted the need for accurate pH 
management in pharmaceutical wastewater treatment operations and the impact of oxytetracycline adsorption 
capacity on adsorption. Future research should focus on Carrageenan-based hydrogels for the removal of phar-
maceutical pollutants specifically and generally elimination of water pollutants for environmental sustainability.

Data availability
 All the data of this study is contained in the manuscript. This paper is part of MPhil. thesis of third author 
(Saddam Hussain). Thesis of the said author is submitted to Higher Education Commission Repository (https://​
www.​turni​tin.​com/​downl​oad_​file.​asp?r=​1.​93288​05079​7698&​svr=​6&​lang=​en_​us&​type=​&​oid=​21983​34280​&​

Table 6.   Different parameters of the kinetic model. Pseudo-First-Order Model: ln(qe − qt) = ln (qe) − k1t. 
Pseudo-Second-Order Model: t/qe = 1/(k2*qe2) + t/qt. Where, qe and qt represent the amount of 
Oxytetracycline adsorbed in mg/g at time (t) and at equilibrium. k1 is the rate constant of the pseudo-first-
order reaction (1/min). k2 is the rate constant of the pseudo-second-order reaction (g/mg min).

Pseudo first order Pseudo second order

Adsorbent qe.cal (mg/g) K1 R2 qe.cal (mg/g) K2 R2

KPB-1 2.345 0.035 0.754 2.567 0.091 0.989

KPB-2 1.234 0.042 0.823 1.768 0.122 0.965

KPB-3 0.987 0.025 0.612 0.998 0.055 0.890

KPB-4 2.789 0.048 0.901 2.234 0.105 0.976

KPB-5 1.567 0.031 0.698 1.998 0.076 0.935

KPB-6 2.345 0.035 0.754 2.567 0.091 0.989
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