Table 2 Table of the \(I_n\) and \(Q_n\) coefficients obtained from the I-Q-demodulation of the different DFM harmonics.

From: An analytic, efficient and optimal readout algorithm for compact interferometers based on deep frequency modulation

Low-pass filter of

\(=:\)

\(n\) even

\(n\) odd

\(s(t) \cdot \cos (n \omega _m t)\)

\(I_n\)

\(\, \ \ A \cdot J_n(m) \cdot \cos \varphi \cdot \cos n\psi\)

\(-A \cdot J_n(m) \cdot \sin \varphi \cdot \sin n\psi\)

\(s(t) \cdot \sin (n \omega _m t)\)

\(Q_n\)

\(-A \cdot J_n(m) \cdot \cos \varphi \cdot \sin n\psi\)

\(-A \cdot J_n(m) \cdot \sin \varphi \cdot \cos n\psi\)