Table 12 Performance of RBFNN models 2–6.

From: Image-processing-based model for surface roughness evaluation in titanium based alloys using dual tree complex wavelet transform and radial basis function neural networks

RBFNN model type

Width

Training data accuracy (%)

Test data accuracy (%)

Average MSE

RBFNN model 2 for 25 RBF units

0.15

97.6879

96.7391

0.0162

0.20

97.3988

95.6522

0.0163

0.25

97.6879

95.6522

0.0164

RBFNN model 3 for 25 RBF units

0.15

98.9130

98.5549

0.0108

0.20

98.5549

97.8261

0.0161

0.25

97.8261

96.5318

0.0420

RBFNN model 4 for 30 RBF units

0.15

98.9130

98.8439

0.0144

0.20

98.8439

96.7391

0.0222

0.25

96.7391

94.5087

0.0419

RBFNN model 5 for 35 RBF units

0.15

98.8439

97.8261

0.0148

0.20

98.2659

94.5652

0.0161

0.25

97.6879

95.6522

0.0186

RBFNN model 6 for 35 RBF units

0.15

100.0000

99.1329

0.0131

0.20

100.0000

98.8439

0.0168

0.25

99.1329

98.9130

0.0173