Table 3 Comparative analysis of CVFBJTL-BCD technique on Histopathological dataset with existing models42,43.

From: Enhanced breast cancer diagnosis through integration of computer vision with fusion based joint transfer learning using multi modality medical images

Histopathological dataset

Methods

\({\varvec{A}}{\varvec{c}}{\varvec{c}}{{\varvec{u}}}_{{\varvec{y}}}\)

\({\varvec{P}}{\varvec{r}}{\varvec{e}}{{\varvec{c}}}_{{\varvec{n}}}\)

\({\varvec{S}}{\varvec{e}}{\varvec{n}}{{\varvec{s}}}_{{\varvec{y}}}\)

\({\varvec{S}}{\varvec{p}}{\varvec{e}}{{\varvec{c}}}_{{\varvec{y}}}\)

CVFBJTL-BCD

98.18

98.38

97.37

97.37

AOADL-HBCC

96.95

95.62

96.03

96.51

DTLRO-HCBC

93.68

90.57

94.84

93.52

IncepceptionV3

81.84

86.56

90.74

91.05

IncepceptionV3 -LSTM

91.61

92.70

92.55

92.60

IncepceptionV3 -BiLSTM

92.23

92.85

96.90

91.12

VGG16 Classifier

80.32

89.36

89.92

90.76

ResNet-50

82.33

83.46

91.06

93.40