Table 2 The summerized ML algorithms for predicting PPV.

From: Prediction of peak particle velocity using hybrid random forest approach

Researchers

 

No. of parameters

ML algorithm

R2

Qiu29

HR, HD, B, S, Q, CL, R, BI, E, PR, Pv, VoD, DoE

13

(WOA-, GWO-, BO-)XGBoost

0.9757

Zhang30

Q, R, St, B, H, S, PF, HN

8

PSO-XGBoost

0.968

Nguyen31

N, Q, PF, St, B, R, S, H, Δt

9

XGBoost

0.952

Amiri32

Q, R

2

KNN;ANN

0.88

Armaghani33

Q, R

2

ANN

0.987

Ghoraba34

Q, R

2

ANFIS

0.952

Hasanipanah35

Q, R

2

CART

0.95

Khandelwal36

Q, R

2

SVM

0.96

Khandelwal22

Q, R

2

CART

0.92

Arzu37

Q, R, Sv, S, B

5

ANFIS

1

Monjezi38

Q, R, S, HD

4

ANN

0.9493

Nguyen39

B, S, f, Q, R

5

(SpaSO-, SalSO-,MFO-)ELM

0.99

Monjezi40

Q, R, B/S, UCS, RW, HN

6

MLPNN

0.954

Nguyen41

B, S, f, PF, Q, R

6

(MRFO-, HGS-, AO-) SONIA

0.896

Yang42

B, S, St, Q, R

5

FFA-SVR

0.992

Zhou24

HD, PF, S, Q, R

5

FS-RF

0.903

Hosseini25

HN,B,H,HR,Q,R

6

BH-LSTM

0.9956

Fissha26

Q, R

2

PSO-DRVM

0.917